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Abstract
This paper investigates the higher order differential equations with nonlocal
boundary conditions

⎧⎪⎨
⎪⎩
u(n)(t) + f (t,u(t),u′(t), . . . ,u(n–2)(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–3)(0) = 0,

u(n–2)(0) =
∫ 1
0 u(n–2)(s)dA(s), u(n–2)(1) =

∫ 1
0 u(n–2)(s)dB(s).

The existence results of multiple monotone positive solutions are obtained by means
of fixed point index theory for operators in a cone.
MSC: 34B10; 34B18

Keywords: monotone positive solutions; multiplicity; higher order differential
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1 Introduction
In this paper, we are concernedwith the existence ofmultiplemonotone positive solutions
for the higher order differential equation

u(n)(t) + f
(
t,u(t),u′(t), . . . ,u(n–)(t)

)
= , t ∈ (, ), (.)

subject to the following integral boundary conditions:

⎧⎨
⎩u() = u′() = · · · = u(n–)() = ,

u(n–)() =
∫ 
 u

(n–)(s)dA(s), u(n–)() =
∫ 
 u

(n–)(s)dB(s),
(.)

where n ≥ , f : [, ] × (R+)n– → R+ is continuous in which R+ = [,+∞), A and B are
right continuous on [, ), left continuous at t = , and nondecreasing on [, ], withA() =
B() = ;

∫ 
 v(s)dA(s) and

∫ 
 v(s)dB(s) denote the Riemann-Stieltjes integrals of v with

respect to A and B, respectively.
Boundary value problems (BVPs for short) for nonlinear differential equations arise in

many areas of applied mathematics and physics. Many authors have discussed the ex-
istence of positive solutions for second order or higher order differential equations with
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boundary conditions defined at a finite number of points, for instance, [–]. In [], Graef
and Yang considered the following nth-order multi-point BVP:

⎧⎨
⎩u(n)(t) + λg(t)f (u(t)) = , t ∈ (, ),

u() = u′() = · · · = u(n–)() =
∑m

i= aiu(n–)(ξi) – u(n–)() = ,

where n≥ , λ >  is a parameter, g and f are continuous functions, 
 ≤ ξ < ξ < · · · < ξm <

, ai >  for  ≤ i≤m and
∑m

i= ai = . The authors obtained the existence andnonexistence
results of positive solutions by using Krasnosel’skii’s fixed point theorem in cones. In [],
we studied the following second orderm-point nonhomogeneous BVP:

⎧⎨
⎩u′′(t) + a(t)f (t,u) = , t ∈ (, ),

u() = ,u() –
∑m–

i= kiu(ξi) = b,

where b > , ki >  (i = , , . . . ,m – ),  < ξ < ξ < · · · < ξm– < ,
∑m–

i= kiξi < . The au-
thors obtained the existence, nonexistence and multiplicity of positive solutions by using
the Krasnosel’skii-Guo fixed point theorem, the upper-lower solutions method and topo-
logical degree theory.
Boundary value problems with integral boundary conditions for ordinary differential

equations represent a very interesting and important class of problems and arise in the
study of various physical, biological and chemical processes [–], such as heat con-
duction, chemical engineering, underground water flow, thermo-elasticity, and plasma
physics. They include two, three, multi-point and nonlocal BVPs as special cases. The
existence and multiplicity of positive solutions for such problems have received a great
deal of attention, see [–] and the references therein. In [], Feng, Ji and Ge consid-
ered the existence and multiplicity of positive solutions for a class of nonlinear boundary
value problems of second order differential equations with integral boundary conditions
in ordered Banach spaces

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + f (t,x(t)) = θ , t ∈ (, ),

x() =
∫ 
 g(t)x(t)dt, x() = θ , or

x() = θ , x() =
∫ 
 g(t)x(t)dt.

The arguments are based upon a specially constructed cone and fixed point theory in a
cone for strict set contraction operators.
Motivated by the works mentioned above, in this paper, we consider the existence of

multiple monotone positive solutions for BVP (.) and (.). In comparison with previous
works, our paper has several new features. Firstly, we consider higher order boundary
value problems, and we allow the nonlinearity f to contain derivatives of the unknown
function u(t) up to n –  order. Secondly, we discuss the boundary value problem with
integral boundary conditions, i.e., BVP (.) and (.), which includes two-point, three-
point, multi-point and nonlocal boundary value problems as special cases. Thirdly, we
consider the existence of multiple monotone positive solutions. To our knowledge, few
papers have considered the monotone positive solutions for a higher order differential
equation with integral boundary conditions. We shall emphasize here that with these new
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features ourwork improves and generalizes the results of [] and someother known results
to some degree. In this work we shall also utilize the following fixed point theorem in
cones.

Lemma. ([, ]) Let K be a cone in aBanach space E.Let D be an open bounded subset
of E with DK =D∩K 	= ∅ and DK 	= K .Assume that A :DK → K is a compact operator such
that u 	= Au for u ∈ ∂DK . Then the following results hold.
() If ‖Au‖ ≤ ‖u‖, u ∈ ∂DK , then iK (A,DK ) = .
() If there exists e ∈ K\{} such that u 	= Au + λe for all u ∈ ∂DK and λ > , then

iK (A,DK ) = .
() Let U be open in E such that U ⊂DK . If iK (A,DK ) =  and iK (A,UK ) = , then A has

a fixed point in DK\UK . The same result holds if iK (A,DK ) =  and iK (A,UK ) = .

2 Preliminary lemmas
Let E = {u ∈ Cn–[, ] : u(i)() = ,  ≤ i ≤ n – }, then E is a Banach space with the norm
‖u‖ = supt∈[,] |u(n–)(t)| for each u ∈ E.
We make the following assumptions:

(H) f : [, ]× (R+)n– → R+ is continuous.
(H) k > , k > , k > , where k = kk – kk,

k =  –
∫ 


( – s)dA(s), k =

∫ 


s dA(s),

k =
∫ 


( – s)dB(s), k =  –

∫ 


s dB(s).

Lemma . Assume that (H) holds. Then, for any y ∈ C[, ], the BVP

⎧⎨
⎩–u′′(t) = y(t), t ∈ (, ),

u() =
∫ 
 u(t)dA(t), u() =

∫ 
 u(t)dB(t)

(.)

has a unique solution u that can be expressed in the form

u(t) =
∫ 


H(t, s)y(s)ds, t ∈ [, ], (.)

where

H(t, s) =G(t, s) +
tk + ( – t)k

k
GA(s) +

tk + ( – t)k
k

GB(s),

GA(s) =
∫ 


G(τ , s)dA(τ ), GB(s) =

∫ 


G(τ , s)dB(τ ), (.)

G(t, s) =

⎧⎨
⎩t( – s),  ≤ t ≤ s ≤ ,

s( – t),  ≤ s ≤ t ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/74
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Proof Firstly, we prove that if u is a solution of BVP (.), then it will take the form of (.).
Now, integrating differential equation (.) from  to t twice, we have

u(t) = u() + u′()t –
∫ t


(t – s)y(s)ds. (.)

Letting t =  in (.), we get

u′() = u() – u() +
∫ 


( – s)y(s)ds. (.)

Substituting the boundary conditions of (.) and (.) into (.) yields

u(t) = u() +
[
u() – u() +

∫ 


( – s)y(s)ds

]
t –

∫ t


(t – s)y(s)ds

= ( – t)
∫ 


u(t)dA(t) + t

∫ 


u(t)dB(t) +

∫ 


G(t, s)y(s)ds, (.)

and, consequently,

∫ 


u(t)dA(t) =

∫ 


( – t)dA(t)

∫ 


u(t)dA(t) +

∫ 


t dA(t)

∫ 


u(t)dB(t)

+
∫ 



∫ 


G(t, s)y(s)dsdA(t),

∫ 


u(t)dB(t) =

∫ 


( – t)dB(t)

∫ 


u(t)dA(t) +

∫ 


t dB(t)

∫ 


u(t)dB(t)

+
∫ 



∫ 


G(t, s)y(s)dsdB(t).

Solving the above two equations for
∫ 
 u(t)dA(t) and

∫ 
 u(t)dB(t), we have

(
k –k
–k k

)(∫ 
 u(t)dA(t)∫ 
 u(t)dB(t)

)
=

(∫ 


∫ 
 G(t, s)y(s)dsdA(t)∫ 


∫ 
 G(t, s)y(s)dsdB(t)

)
,

and so
(∫ 

 u(t)dA(t)∫ 
 u(t)dB(t)

)
= k–

(
k k
k k

)(∫ 


∫ 
 G(t, s)y(s)dsdA(t)∫ 


∫ 
 G(t, s)y(s)dsdB(t)

)
. (.)

Hence, (.) follows from (.) and (.).
Next we prove that the u given by (.) satisfies the differential equation and boundary

conditions of (.). From (.), we have

u(t) =
∫ t


s( – t)y(s)ds +

∫ 

t
t( – s)y(s)ds

+
tk + ( – t)k

k

∫ 



[∫ 


G(τ , s)dA(τ )

]
y(s)ds

+
tk + ( – t)k

k

∫ 



[∫ 


G(τ , s)dB(τ )

]
y(s)ds. (.)

http://www.boundaryvalueproblems.com/content/2014/1/74
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Direct differentiation of (.) gives u′′(t) = –y(t). Also, from (.) we have

∫ 


u(t)dA(t) =

∫ 



∫ 


G(t, s)y(s)dsdA(t)

+ k–
[
kk + k( – k)

] ∫ 



[∫ 


G(τ , s)dA(τ )

]
y(s)ds

+ k–
[
kk + k( – k)

] ∫ 



[∫ 


G(τ , s)dB(τ )

]
y(s)ds

= k–k
∫ 



∫ 


G(τ , s)y(s)dA(τ )ds

+ k–k
∫ 



∫ 


G(τ , s)y(s)dB(τ )ds,

and, similarly,

∫ 


u(t)dB(t) = k–k

∫ 



∫ 


G(τ , s)y(s)dA(τ )ds + k–k

∫ 



∫ 


G(τ , s)y(s)dB(τ )ds.

Therefore, by solving the above two equations with the double integrals as unknowns, we
have

∫ 



∫ 


G(τ , s)y(s)dA(τ )ds = k

∫ 


u(t)dA(t) – k

∫ 


u(t)dB(t) (.)

and
∫ 



∫ 


G(τ , s)y(s)dB(τ )ds = –k

∫ 


u(t)dA(t) + k

∫ 


u(t)dB(t). (.)

Hence (.) follows from (.), (.) and (.), and thus u() =
∫ 
 u(t)dA(t), u() =∫ 

 u(t)dB(t). This completes the proof. �

Defining

G(t, s) =
∫ t


H(v, s)dv, Gi(t, s) =

∫ t


Gi–(v, s)dv, i≥ ,

then Gn(t, s) is the Green function of BVP (.) and (.). Moreover, solving BVP (.) and
(.) is equivalent to finding a solution of the following integral equation:

u(t) =
∫ 


Gn(t, s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds, t ∈ [, ].

Remark . If (H) holds, then for any t, s ∈ [, ], it is easy to testify that

G(t, s)≥ , H(t, s)≥ , Gn(t, s) ≥ , n≥ . (.)

Lemma . Let δ ∈ (,  ), then for any t ∈ [δ,  – δ], η, s ∈ [, ], we have

H(t, s)≥ δH(η, s).

http://www.boundaryvalueproblems.com/content/2014/1/74
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Proof It is easy to show that G(t, s) ≥ δG(η, s), ∀t ∈ [δ,  – δ], η, s ∈ [, ]. For t ∈ [δ,  – δ],
η, s ∈ [, ], we have

H(t, s) =G(t, s) +
tk + ( – t)k

k

∫ 


G(τ , s)dA(τ ) +

tk + ( – t)k
k

∫ 


G(τ , s)dB(τ )

≥ δG(η, s) +
δ(k + k)

k

∫ 


G(τ , s)dA(τ ) +

δ(k + k)
k

∫ 


G(τ , s)dB(τ )

≥ δ

[
G(η, s) +

ηk + ( – η)k
k

∫ 


G(τ , s)dA(τ )

+
ηk + ( – η)k

k

∫ 


G(τ , s)dB(τ )

]

= δH(η, s).

For any s ∈ [, ], we defineH(s) =maxt∈[,]H(t, s). From Lemma ., we know that

δH(s) ≤H(t, s)≤H(s), t ∈ [δ,  – δ], s ∈ [, ]. (.)
�

Lemma . Assume that (H) holds. If u ∈ Cn[, ] satisfies the boundary conditions (.)
and

u(n)(t)≤ , t ∈ [, ],

then

u(t) ≥  and u′(t) ≥  for t ∈ [, ]. (.)

Proof Let m(t) = u(n–)(t), t ∈ [, ], then we have

⎧⎨
⎩m′′(t) ≤ , t ∈ [, ],

m() =
∫ 
 m(t)dA(t), m() =

∫ 
 m(t)dB(t).

For t ∈ [, ],m′′(t) ≤  implies that

m(t) =m
[
( – t) ·  + t · ] ≥ ( – t)m() + tm().

Thus

m() =
∫ 


m(t)dA(t)≥m()

∫ 


( – t)dA(t) +m()

∫ 


t dA(t)

= ( – k)m() + km(),

i.e.,

m()≥ k
k
m().

http://www.boundaryvalueproblems.com/content/2014/1/74
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On the other hand,

m() =
∫ 


m(t)dB(t)≥m()

∫ 


( – t)dB(t) +m()

∫ 


t dB(t)

= km() + ( – k)m(),

and so

m() ≥ k
k

m()≥ kk
kk

m(),

i.e., km() ≥ , thereforem()≥ , and so m() ≥ .
Now,m() ≥ ,m()≥  andm(t) is concave downward, so we have

m(t) = u(n–)(t) ≥ , t ∈ [, ]. (.)

From (.) and u() = u′() = · · · = u(n–)() = , we obtain (.). This completes the
proof of Lemma .. �

Remark . From Lemma ., if u is a positive solution of BVP (.) and (.), then u is
nondecreasing on [, ], i.e., u is a monotone positive solution of BVP (.) and (.).
Let

K =
{
u ∈ E : u(n–)(t) ≥ , t ∈ [, ],u(n–)(t) ≥ δ‖u‖, t ∈ [δ,  – δ]

}
.

Obviously, K is a cone in E. For any ρ > , let Kρ = {u ∈ K : ‖u‖ < ρ}, ∂Kρ = {u ∈ K : ‖u‖ =
ρ} and Kρ = {u ∈ K : ‖u‖ ≤ ρ}. Define an operator T : K → E as follows:

(Tu)(t) =
∫ 


Gn(t, s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds, t ∈ [, ]. (.)

Then u is a solution of BVP (.) and (.) if and only if u solves the operator equation
u = Tu.

Lemma . Suppose that (H) and (H) hold, then T : K → K is completely continuous.

Proof For all u ∈ K , t ∈ [, ], by (H), (.), (.) and (.), we have

(Tu)(n–)(t) =
∫ 


H(t, s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds≥ ,

(Tu)(n–)(t) =
∫ 


H(t, s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds

≤
∫ 


H(s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds,

and

‖Tu‖ ≤
∫ 


H(s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2014/1/74
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Thus, further from the first inequality of (.), we have

(Tu)(n–)(t) =
∫ 


H(t, s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds

≥ δ

∫ 


H(s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds

≥ δ‖Tu‖, t ∈ [δ,  – δ].

Hence, Tu ∈ K and T(K ) ⊂ K .
Next by standardmethods and theAscoli-Arzela theorem, one can prove thatT : K → K

is completely continuous. So this is omitted. �

Let


ρ =
{
u ∈ K : min

δ≤t≤–δ
u(n–)(t) < δρ

}

=
{
u ∈ E : u(n–)(t)≥ , t ∈ [, ], δ‖u‖ ≤ min

δ≤t≤–δ
u(n–)(t) < δρ

}
.

Proceeding as for the proof of Lemma . in [], we have the following.

Lemma . 
ρ has the following properties:
(a) 
ρ is open relative to K ;
(b) Kδρ ⊂ 
ρ ⊂ Kρ ;
(c) u ∈ ∂
ρ if and only if minδ≤t≤–δ u(n–)(t) = δρ ;
(d) if u ∈ ∂
ρ , then δρ ≤ u(n–)(t) ≤ ρ for δ ≤ t ≤  – δ.

Now for convenience we introduce the following notations:

fδρ,ρ =min

{
min

δ≤t≤–δ

f (t,u, . . . ,un–)
ρ

: u,u, . . . ,un– ∈ [,ρ],un– ∈ [δρ,ρ]
}
,

f ,ρ =max

{
max
≤t≤

f (t,u,u, . . . ,un–)
ρ

: (u,u, . . . ,un–) ∈ [,ρ]n–
}
,

f  = lim
u,u,...,un–→

max
≤t≤

f (t,u,u, . . . ,un–)
un–

,

f ∞ = lim
u+u+···+un–→+∞ max

≤t≤

f (t,u,u, . . . ,un–)
u + u + · · · + un–

,

f = lim
u,u,...,un–→

min
δ≤t≤–δ

f (t,u,u, . . . ,un–)
un–

,

f∞ = lim
u+u+···+un–→+∞ min

δ≤t≤–δ

f (t,u,u, . . . ,un–)
u + u + · · · + un–

,

m =
(
max
≤t≤

∫ 


H(t, s)ds

)–

, M =
(

min
δ≤t≤–δ

∫ –δ

δ

H(t, s)ds
)–

.

To prove our main results, we need the following lemmas.

http://www.boundaryvalueproblems.com/content/2014/1/74
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Lemma . Assume that (H), (H) hold and f satisfies

f ,ρ ≤m and u 	= Tu for u ∈ ∂Kρ , (.)

then iK (T ,Kρ) = .

Proof For u ∈ ∂Kρ , we have  ≤ u(n–)(t) ≤ ρ and  ≤ u(i)(t) =
∫ t
 u

(i+)(s)ds ≤
max≤t≤ u(i+)(t) ≤ ‖u‖ = ρ , t ∈ [, ], i = , , . . . ,n–. Then by (.)we have, for t ∈ [, ],

(Tu)(n–)(t) =
∫ 


H(t, s)f

(
s,u(s),u′(s), . . . ,u(n–)(s)

)
ds

≤mρ

∫ 


H(t, s)ds≤ ρ = ‖u‖.

This implies that ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kρ . By the point () in Lemma ., we have
iK (T ,Kρ) = . �

Lemma . Assume that (H), (H) hold and f satisfies

fδρ,ρ ≥ δM and u 	= Tu for u ∈ ∂
ρ , (.)

then iK (T ,Kρ) = .

Proof Let e(t) = tn–
(n–)! , t ∈ [, ], then e ∈ K with ‖e‖ = . Next we prove that

u 	= Tu + λe, u ∈ ∂
ρ ,λ > .

In fact, if not, then there exist u ∈ ∂
ρ and λ >  such that u = Tu + λe. By (.) and
the point (d) in Lemma ., we have, for t ∈ [δ,  – δ],

u(n–) (t) = (Tu)(n–)(t) + λe(n–)(t)

=
∫ 


H(t, s)f

(
s,u(s),u′

(s), . . . ,u
(n–)
 (s)

)
ds + λ

≥
∫ –δ

δ

H(t, s)f
(
s,u(s),u′

(s), . . . ,u
(n–)
 (s)

)
ds + λ

≥ δMρ

∫ –δ

δ

H(t, s)ds + λ ≥ δρ + λ > δρ.

This implies that mint∈[δ,–δ] u(n–) (t) > δρ , and so by the point (c) in Lemma ., this is a
contradiction. It follows from the point () of Lemma . that iK (T ,Kρ) = . �

3 Main results
In the following, we shall give the main results on the existence of multiple positive solu-
tions of BVP (.) and (.).

Theorem . Suppose that (H) and (H) are satisfied. In addition, assume that one of the
following conditions holds.

http://www.boundaryvalueproblems.com/content/2014/1/74


Hao and Liu Boundary Value Problems 2014, 2014:74 Page 10 of 12
http://www.boundaryvalueproblems.com/content/2014/1/74

(H) There exist ρ,ρ,ρ ∈ (, +∞) with ρ < δρ and ρ < ρ such that

f ,ρ ≤m, fδρ,ρ ≥ δM, u 	= Tu for u ∈ ∂
ρ and f ,ρ ≤m.

(H) There exist ρ,ρ,ρ ∈ (, +∞) with ρ < ρ < δρ such that

fδρ,ρ ≥ δM, f ,ρ ≤m, u 	= Tu for u ∈ ∂Kρ and fδρ,ρ ≥ δM.

Then BVP (.) and (.) has two nondecreasing positive solutions u, u in K .Moreover, if
in (H) f ,ρ ≤m is replaced by f ,ρ <m, then BVP (.) and (.) has a third nondecreasing
positive solution u ∈ Kρ .

Proof Assume that (H) holds. We show that either T has a fixed point u ∈ ∂Kρ or in

ρ\Kρ . If u 	= Tu for u ∈ ∂Kρ ∪ ∂Kρ , by Lemmas . and ., we have iK (T ,Kρ ) = ,
iK (T ,
ρ ) = , and iK (T ,Kρ ) = . By Lemma .(b), we have Kρ ⊂ Kδρ ⊂ 
ρ since
ρ < δρ. It follows from Lemma .() that T has a fixed point u ∈ 
ρ\Kρ . Similarly,
T has a fixed point u ∈ Kρ\
ρ . The proof is similar when (H) holds. �

Corollary . If there exists ρ >  such that one of the following conditions holds:

(H)  ≤ f  <m, fδρ,ρ ≥ δM, u 	= Tu for u ∈ ∂
ρ ,  ≤ f ∞ < m
n– ,

(H) M < f ≤ ∞, f ,ρ ≤m, u 	= Tu for u ∈ ∂Kρ ,M < f∞ ≤ ∞,

then BVP (.) and (.) has at least two nondecreasing positive solutions in K .

Proof We show that (H) implies (H). It is easy to verify that  ≤ f  <m implies that there
exists ρ ∈ (, δρ) such that f ,ρ <m. Let k ∈ (f ∞, m

n– ), by f
∞ < m

n– , there exists r > ρ such
that f (t,u,u, . . . ,un–) ≤ k(u +u + · · ·+un–) for t ∈ [, ], u +u + · · ·+un– ∈ [r, +∞).
Let

M′ =max
{
max
t∈[,]

f (t,u,u, . . . ,un–) : u + u + · · · + un– ∈ [, r]
}
,

ρ >max

{
M′

m – (n – )k
, r

}
,

then for (u,u, . . . ,un–) ∈ [,ρ]n–, we have

max
t∈[,]

f (t,u,u, . . . ,un–) ≤M′ + k(u + u + · · · + un–) ≤M′ + k(n – )ρ <mρ.

This implies that f ,ρ ≤ m and (H) holds. Similarly, (H) implies (H). This completes
the proof. �

Remark . We establish the multiplicity of monotone positive solutions for a higher or-
der differential equation with integral boundary conditions, and we allow the nonlinearity
f to contain derivatives of the unknown function u(t) up to n –  order, so our work im-
proves and generalizes the results of [] to some degree.
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