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Abstract
We discuss the long-time dynamical behavior of the non-autonomous suspension
bridge-type equation, where the nonlinearity g(u, t) is translation compact and the
time-dependent external forces h(x, t) only satisfy Condition (C∗) instead of being
translation compact. By applying some new results and the energy estimate
technique, the existence of uniform attractors is obtained. The result improves and
extends some known results.
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1 Introduction
Consider the following equations:

⎧⎨
⎩
utt + uxxxx + δut + ku+ = l + εh(x, t), in (,L)×R,

u(, t) = u(L, t) = uxx(, t) = uxx(L, t) = , t ∈R.
(.)

Suspension bridge equations (.) have been posed as a new problem in the field of non-
linear analysis [] by Lazer andMcKenna in . This model has been derived as follows.
In the suspension bridge system, the suspension bridge can be considered as an elastic
and unloaded beam with hinged ends. u(x, t) denotes the deflection in the downward di-
rection; δut represents the viscous damping. The restoring force can be modeled owing
to the cable with one-sided Hooke’s law so that it strongly resists expansion but does not
resist compression. The simplest function to model the restoring force of the stays in the
suspension bridge can be denoted by a constant k times u, the expansion, if u is positive,
but zero if u is negative, corresponding to compression; that is, ku+, where

u+ =

⎧⎨
⎩
u, if u > ,

, if u≤ .

Besides, the right-hand side of (.) also contains two terms: the large positive term l cor-
responding to gravity, and a small oscillatory forcing term εh(x, t), possibly aerodynamic
in origin, where ε is small.
There are many results for the problem (.) (cf. [–]), for instance, the existence, mul-

tiplicity and properties of the traveling wave solutions, etc.
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In the study of equations of mathematical physics, the attractor is a proper mathemat-
ical concept as regards the depiction of the behavior of the solutions of these equations
when time is large or tends to infinity, which describes all the possible limits of solutions.
In the past two decades, many authors have proved the existence of an attractor and dis-
cussed its properties for various mathematical physics models (e.g., see [–] and the
references therein). For the long-time behavior of suspension bridge-type equations, for
the autonomous case, in [, ] the authors have discussed long-time behavior of the so-
lutions of the problem on R

 and obtained the existence of global attractors in the space
H

(�)× L(�) and D(A)×H
(�).

It is well known that, for a model to describe the real world which is affected by many
kinds of factors, the corresponding non-autonomous model is more natural and precise
than the autonomous one, moreover, it always presents a nonlinear equation but not just a
linear one. Therefore, in this paper, wewill discuss the following non-autonomous suspen-
sion bridge-type equation: Let � be an open bounded subset of R with smooth bound-
ary, Rτ = [τ , +∞], and we add the nonlinear forcing term g(u, t) (which is dependent on
the deflection u and time t) to (.) and neglect gravity, then we can obtain the following
initial-boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩
utt +�u + αut + ku+ + g(u, t) = h(x, t), in � ×Rτ ,

u(x, t) =�u(x, t) = , on ∂� ×Rτ ,

u(x, τ ) = u(x), ut(x, τ ) = u(x), x ∈ �,

(.)

where u(x, t) is an unknown function, which could represent the deflection of the road bed
in the vertical plane; h(x, t) and g(u, t) are time-dependent external forces; ku+ represents
the restoring force, k denotes the spring constant; αut represents the viscous damping, α
is a given positive constant.
To our knowledge, this is the first time for one to consider the non-autonomous dynam-

ics of equation (.). At the same time, inmathematics, we only assume that the force term
h(x, t) satisfies the so-called Condition (C∗) (introduced in []), which is weaker than the
assumption of being translation compact (see [] or Section  below).
This paper is organized as follows. At first, in Section , we give (recall) some prelimi-

naries, including the notation we will use, the assumption on nonlinearity g(·, t) and some
general abstract results for a non-autonomous dynamical system. In Section  we prove
our main result about the existence of a uniform attractor for the non-autonomous dy-
namical system generated by the solution of (.).

2 Notation and preliminaries
With the usual notation, we introduce the spaces H = L(�), V =H(�) ∩H

(�), D(A) =
{u ∈ H(�) ∩ H

(�)|Au ∈ L(�)}, where A = �. We equip these spaces with an inner
product and a norm 〈·, ·〉, ‖ · ‖, 〈·, ·〉, ‖ · ‖ and 〈·, ·〉, ‖ · ‖, respectively,

〈u, v〉 =
∫

�

u(x)v(x)dx, ‖u‖ =
∫

�

∣∣u(x)∣∣ dx, ∀u, v ∈H ;

〈u, v〉 =
∫

�

�u(x)�v(x)dx, ‖u‖ =
∫

�

∣∣�u(x)
∣∣ dx, ∀u, v ∈ V ;

〈u, v〉 =
∫

�

�u(x)�v(x)dx, ‖u‖ =
∫

�

∣∣�u(x)
∣∣ dx, ∀u, v ∈D(A).
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Obviously, we have

D(A) ⊂ V ⊂H =H∗ ⊂ V ∗,

where H∗, V ∗ is the dual space of H , V , respectively, the injections are continuous and
each space is dense in the following one.
In the following, the assumption on the nonlinearity g is given. Let g be a C function

from R×R to R and satisfy

lim inf|u|→∞
G(u, s)
u

≥ , (.)

where G(u, s) =
∫ u
 g(w, s)dw, and there exists C > , such that

lim inf|u|→∞
〈u, g(u, s)〉 –CG(u, s)

u
≥ . (.)

Suppose that γ is an arbitrary positive constant, and

∣∣gu(u, s)∣∣ ≤ C
(
 + |u|γ )

,
∣∣gs(u, s)∣∣ ≤ C

(
 + |u|γ+), (.)

Gs(u, s)≤ δG(u, s) +C, ∀(u, s) ∈ R×R, (.)

where δ is a sufficiently small constant.
As a consequence of (.)-(.), if we denote G(u, s) =

∫
�
G(u, s)dx, then there exist two

positive constants K, K such that

G(ϕ, s) +m‖ϕ‖ +K ≥ , (.)
〈
ϕ, g(ϕ, s)

〉
–CG(ϕ, s) +m‖ϕ‖ +K ≥ , ∀(ϕ, s) ∈R×R, (.)

wherem,C > , and we can take m sufficiently small.
By virtue of (.), we can get

∣∣g(u, s)∣∣ ≤ C
(
 + |u|γ+), ∣∣G(u, s)∣∣ ≤ C

(
 + |u|γ+). (.)

When A =�, the problem (.) is equivalent to the following equations in H :

⎧⎨
⎩
utt + αut +Au + ku+ + g(u, t) = h(x, t),

u(τ ) = u, ut(τ ) = u.
(.)

From the Poincaré inequality, there exists a proper constant λ > , such that

λ‖u‖ ≤ ‖u‖ , ∀u ∈ V . (.)

We introduce the Hilbert spaces

E = V ×H ,

http://www.boundaryvalueproblems.com/content/2014/1/75
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and endow this space with the norm

‖z‖E =
∥∥(u,ut)∥∥E

=
(


(‖u‖ + ‖ut‖

)) 

.

To prove the existence of uniform attractors corresponding to (.), we also need the
following abstract results (e.g., see []).
Let E be a Banach space, and let a two-parameter family of mappings {U(t, τ )} =

{U(t, τ )|t ≥ τ , τ ∈R} on E:

U(t, τ ) : E → E, t ≥ τ , τ ∈R.

Definition . ([]) Let � be a parameter set. {Uσ (t, τ )|t ≥ τ , τ ∈ R}, σ ∈ � is said to be
a family of processes in Banach space E, if for each σ ∈ �, {Uσ (t, τ )} is a process; that is,
the two-parameter family of mappings {Uσ (t, τ )} from E to E satisfy

Uσ (t, s) ◦Uσ (s, τ ) =Uσ (t, τ ), ∀t ≥ s ≥ τ , τ ∈R, (.)

Uσ (τ , τ ) = I is the identity operator, τ ∈R, (.)

where � is called the symbol space and σ ∈ � is the symbol.

Note that the following translation identity is valid for a general family of processes
{Uσ (t, τ )}, σ ∈ �, if a problem has unique solvability and for the translation semigroup
{T(l)|l ≥ } satisfying T(l)� =�:

Uσ (t + l, τ + l) =UT(l)σ (t, τ ), ∀σ ∈ �, t ≥ τ , τ ∈R, l ≥ .

A set B ⊂ E is said to be a uniformly (w.r.t. σ ∈ �) absorbing set for the family of pro-
cesses {Uσ (t, τ )}, σ ∈ � if for any τ ∈ R and B ∈ B(E), there exists t = t(τ ,B) ≥ τ such
that

⋃
σ∈� Uσ (t, τ ) ⊆ B for all t ≥ t. A set Y ⊂ E is said to be uniformly (w.r.t. σ ∈ �)

attracting for the family of processes {Uσ (t, τ )}, σ ∈ �, if for any fixed τ ∈ R and every
B ∈ B(E),

lim
t→∞

(
sup
σ∈�

distE
(
Uσ (t, τ )B,Y

))
= . (.)

Definition . ([]) A closed set A� ⊂ E is said to be the uniform (w.r.t. σ ∈ �) attractor
of the family of processes {Uσ (t, τ )}, σ ∈ � if it is uniformly (w.r.t. σ ∈ �) attracting (at-
tracting property) and contained in any closed uniformly (w.r.t. σ ∈ �) attracting set A′ of
the family of processes {Uσ (t, τ )}, σ ∈ �: A� ⊆ A′ (minimality property).

Now we recall the results in [].

Definition . ([]) A family of processes {Uσ (t, τ )}, σ ∈ �, is said to be satisfying the
uniform (w.r.t. σ ∈ �) Condition (C) if for any fixed τ ∈R, B ∈ B(E) and ε > , there exist
a t = t(τ ,B, ε)≥ τ and a finite dimensional subspace Em of E such that

http://www.boundaryvalueproblems.com/content/2014/1/75
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(i) Pm(
⋃

σ∈�

⋃
t≥t Uσ (t, τ )B) is bounded; and

(ii) ‖(I – Pm)(
⋃

σ∈�

⋃
t≥t Uσ (t, τ )x)‖E ≤ ε, ∀x ∈ B,

where dimEm =m and Pm : E → Em is abounded projector.

Theorem . ([]) Let � be a complete metric space, and let {T(t)} be a continuous in-
variant T(t)� =� semigroup on � satisfying the translation identity.A family of processes
{Uσ (t, τ )}, σ ∈ �, possess a compact uniform (w.r.t. σ ∈ �) attractor A� in E satisfying

A� = ω,�(B) = ωτ ,�(B), ∀t ∈ R, (.)

if it
(i) has a bounded uniformly (w.r.t. σ ∈ �) absorbing set B; and
(ii) satisfies uniform (w.r.t. σ ∈ �) Condition (C),

whereωτ ,�(B) =
⋂

t≥τ [
⋃

σ∈�

⋃
s≥t Uσ (s, t)B].Moreover, if E is a uniformly convex Banach

space, then the converse is true.

Let X be a Banach space. Consider the space Lloc(R;X) of functions φ(s), s ∈ R with
values in X that are -power integrable in the Bochner sense. Lc (R;X) is a set of all trans-
lation compact functions in Lloc(R;X), L


b(R;X) is the set of all translation bound functions

in Lloc(R;X).
In [], the authors have introduced a new class of functions which are translation

bounded but not translation compact. In Section , let the forcing term h(x, t) satisfy
Condition (C∗); we can prove the existence of compact uniform (w.r.t. σ ∈ H(σ), σ(s) =
(g(u, s),h(x, s))) attractor for a non-autonomous suspension bridge equation in E.

Definition . ([]) Let X be a Banach space. A function f ∈ Lb(R;X) is said to satisfy
Condition (C∗) if, for any ε > , there exists a finite dimensional subspace X of X such
that

sup
t∈R

∫ t+

t

∥∥(I – Pm)f (s)
∥∥
X ds < ε,

where Pm : X → X is the canonical projector.

Denote by Lc∗ (R;X) the set of all functions satisfying Condition (C∗). From [], we can
see that Lc (R;X) ⊂ Lc∗ (R;X) ⊂ Lb(R;X).

Remark . In fact, the function satisfying Condition (C∗) implies the dissipative prop-
erty in some sense, and Condition (C∗) is very natural in view of the compact condition,
and the uniform Condition (C).

Lemma . ([]) If f ∈ Lc∗ (R;X), then for any ε >  and τ ∈R we have

sup
t≥τ

∫ t

τ

e–δ(t–s)∥∥(I – Pm)f (s)
∥∥
X ds ≤ ε,

where Pm : X → X is the canonical projector and δ is a positive constant.

http://www.boundaryvalueproblems.com/content/2014/1/75
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In order to define the family of processes of the equations (.), we also need the follow-
ing results:

Proposition . ([]) If X is reflexive separable, then
(i) for all h ∈H(h), ‖h‖Lb(R;X) ≤ ‖h‖Lb(R;X);
(ii) the translation group {T(t)} is weakly continuous onH(h);
(iii) T(t)H(h) =H(h) for all t ∈R

+.

Proposition . ([]) Let g(s) ∈ Lc (R;X), then
(i) for all g ∈H(g), g ∈ Lc (R;X), and the setH(g) is bound in Lb(R;X);
(ii) the translation group {T(t)} is continuous onH(g) with the topology of Lloc(R,X);
(iii) T(t)H(g) =H(g) for all t ∈R

+.

3 Uniform attractors in E0

To describe the asymptotic behavior of the solutions of our system, we set h ∈ Lc∗ (Rτ ;
H) ⊂ Lb(Rτ ;H) andH(h) = [h(x, s + h)|h ∈R]L,wloc (Rτ ;H), where [ ] denotes the closure of a
set in topological space L,wloc (Rτ ;H). If h ∈H(h), then h ∈ Lb(Rτ ;H); this is to be

sup
t≥τ

∫ t+

t

∥∥h(x, s)∥∥ds <∞,

where ‖ · ‖ denotes the norm in H .

3.1 Existence and uniqueness of solutions
At first, we give the concept of solutions for the initial-boundary value problem (.).

Definition . Set I = [τ ,T], for T > τ ≥ . We suppose that k > , h ∈ Lb(Rτ ;H), g ∈
C(R × R;R) satisfying (.)-(.) and g(, ) = . The function z = (u,ut) ∈ C(I;E) is
said to be a weak solution to the problem (.) in the time interval I , with initial data
z(τ ) = zτ = (u,u) ∈ E, provided

〈utt , v̄〉 + α〈ut , v̄〉 +
∫

�

�u�v̄ dx +
∫

�

g(u, t)v̄ dx + k
〈
u+, v̄

〉
=

∫
�

h(x, t)v̄ dx, (.)

for all v̄ ∈ V and a.e. t ∈ I .

Then, by using of the methods in [] (Galerkin approximation method), we get the
following result as regards the existence and uniqueness of solutions:

Theorem . (Existence and uniqueness of solutions) Define I = [τ ,T], ∀T > τ . Let k > ,
h ∈ Lb(Rτ ;H), g ∈ C(R×R;R) satisfying (.)-(.). Then for any given zτ ∈ E, there is a
unique solution z = (u,ut) for the problem (.) in E. Furthermore, for i = , , let {ziτ ,hi}
(ziτ ∈ E and hi ∈ Lb(R;H)) be two initial conditions, and denote by zi the corresponding
solutions to the problem (.). Then the estimates hold as follows: for all τ ≤ t ≤ T + τ ,

∥∥z(t) – z(t)
∥∥
E

≤Q
(∥∥ziτ∥∥E

,T
)(∥∥zτ – zτ

∥∥
E

+ ‖g – g‖Lb(R;H)

)
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/75
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Thus, (.) will bewritten as an evolutionary system, introduced as z(t) = (u(t),ut(t)) and
zτ = z(τ ) = (u,u) for brevity, as ‖z‖E = 

 (‖u‖ + ‖ut‖), the system (.) can be written
in the operator form

∂tz = Aσ (t)(z), z|t=τ = zτ , (.)

where σ (s) = (g(u, s),h(x, s)) is the symbol of (.). If zτ ∈ E, then the problem (.) has
a unique solution z(t) ∈ C(Rτ ,E). This implies that the process {Uσ (t, τ )} given by the
formula Uσ (t, τ )zτ = z(t) is defined in E.
Now we define the symbol space. A fixed symbol σ(s) = (g(u, s),h(x, s)) can be given,

where h(x, s) is in Lc∗ (Rτ ;H), the function g(u, s) ∈ Lc (Rτ ;M) satisfying (.)-(.), and
M is a Banach space,

M =
{
g ∈ C(R×R,R)

∣∣∣ |g(u)| + |gs(u)|
|u|γ+ + 

+
|gu(u)|
|u|γ + 

< ∞
}
,

endowed with the following norm:

‖g‖M = sup
u∈R

{ |g(u)| + |gs(u)|
|u|γ+ + 

+
|gu(u)|
|u|γ + 

}
.

Obviously, the function σ(s) = (g(u, s),h(x, s)) is in Lc (Rτ ;M) × Lc∗ (Rτ ;H). We define
H(σ) =H(g)×H(h) = [g(u, s+ l)|l ∈R]L,wloc (Rτ ;M) × [h(x, s+ l)|l ∈R]L,wloc (Rτ ;H), where [ ]
denotes the closure of a set in topological space L,wloc (Rτ ;M) (or L,wloc (Rτ ;H)). So, if (g,h) ∈
H(σ), then g(u, t) and h(x, t) all satisfy Condition (C∗).
Applying Proposition ., Proposition ., and Theorem ., we can easily know that the

family of processes {Uσ (t, τ )} : E → E, σ ∈ H(σ), t ≥ τ , are defined. Furthermore, the
translation semigroup {T(l)|l ∈ R

+} satisfies ∀l ∈R
+,T(l)H(σ) =H(σ), and the following

translation identity:

Uσ (t + l, τ + l) =UT(l)σ (t, τ ), ∀σ ∈H(σ), for t ≥ τ ≥ , l ≥ ,

holds.
Then for any σ ∈H(σ), the problem (.) with σ instead of σ possesses a correspond-

ing process {Uσ (t, τ )} acting on E.
Consequently, for each σ ∈ H(σ), σ(s) = (g(u, s),h(x, s)) (here h(x, s) ∈ Lc∗ (Rτ ;H),

g(u, s) ∈ Lc (Rτ ;M) satisfying (.)-(.)), we can define a process

Uσ (t, τ ) : E → E,

zτ = (u,u) →
(
u(t),ut(t)

)
=Uσ (t, τ )zτ ,

and Uσ (t, τ ), σ ∈H(σ), is a family of processes on E.

3.2 Bounded uniformly absorbing set
Before we show the existence of bounded uniformly absorbing set, we firstly make a prior
estimate of solutions for equations (.) in E.

http://www.boundaryvalueproblems.com/content/2014/1/75
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Lemma . Assume that z(t) is a solution of (.) with initial data z ∈ B. If the nonlin-
earity g(u, t) satisfies (.)-(.), h ∈ Lc∗ (Rτ ;H), h ∈ H(h), k > , then there is a positive
constantμ such that for any bounded (in E) subset B, there exists t = t(‖B‖E ) such that

∥∥z(t)∥∥
E

=


(‖u‖ + ‖ut‖

) ≤ μ
, t ≥ t = t

(‖B‖E
)
. (.)

Proof Now we will prove z = (u,ut) to be bounded in E = V ×H .
We assume that � is positive and satisfies

 < �(α – �) < λ. (.)

Multiplying (.) by v(t) = ut(t) + �u(t) and integrating over �, we have



d
dt

(‖v‖ + ‖u‖
)
+ �‖u‖ + (α – �)‖v‖ – �(α – �)〈u, v〉

+ k
〈
u+, v

〉
+

〈
g(u, t), v

〉
=

〈
h(t), v

〉
. (.)

We easily see that

�(α – �)〈u, v〉 ≤ (α – �)
‖v‖


+ (α – �)�‖u‖, (.)

〈
h(t), v

〉 ≤ (α – �)
‖v‖


+
‖h(t)‖
α – �

. (.)

Then, substituting (.)-(.) into (.), we obtain

d
dt

(‖v‖ + ‖u‖
)
+ �‖u‖ + (α – �)‖v‖ – �(α – �)‖u‖

+ k
〈
u+, v

〉
+ 〈g, v〉 ≤ 

‖h(t)‖
α – �

. (.)

In view of (.) and (.), we know

〈g, v〉 = 〈g,ut + �u〉

=
d
dt

∫
�

G
(
u(x, t), t

)
dx + �

〈
g(u, t),u

〉
–

∫
�

Gs
(
u(x, t), t

)
dx

=
d
dt

∫
�

G
(
u(x, t), t

)
dx + �

∫
�

g
(
u(x, t), t

)
u(x, t)dx

– �C

∫
�

G
(
u(x, t), t

)
dx + �C

∫
�

G
(
u(x, t), t

)
dx

–
∫

�

Gs
(
u(x, t), t

)
dx

≥ d
dt

G
(
u(x, t), t

)
+ �CG

(
u(x, t), t

)
– �

(
m‖u‖ +K

)

– δG
(
u(x, t), t

)
–C|�| (.)

http://www.boundaryvalueproblems.com/content/2014/1/75


Wang et al. Boundary Value Problems 2014, 2014:75 Page 9 of 14
http://www.boundaryvalueproblems.com/content/2014/1/75

and

k
〈
u+, v

〉
=


d
dt

k
∥∥u+∥∥ + �k

∥∥u+∥∥. (.)

Consequently,

d
dt

(‖v‖ + ‖u‖ + k
∥∥u+∥∥ + G

(
u(x, t), t

))
+ (α – �)‖v‖

+ 
�

λ

(
λ – �(α – �) –m

)‖u‖ + �k
∥∥u+∥∥

+
(
�C – δ

)
G

(
u(x, t), t

)

≤ 
‖h(t)‖
α – �

+ 
(
�K +C|�|). (.)

We introduce the functional as follows:

y(t) = ‖v‖ + ‖u‖ + k
∥∥u+∥∥ + G

(
u(x, t), t

)
+ K, for t ≥ τ . (.)

Setting β =min{α –�, �λ–
 (λ –�(α –�) –m), �,�C – δ}, we choose proper positive

constantsm and δ, such that

m < λ – �(α – �), δ < �C (.)

hold, then β > .
We define mh(t) = ‖h(t)‖, then

d
dt

y(t) + βy(t) ≤ C +Cmh(t), (.)

where C = (�K +C|�|) + βK, C = (α – �)–.
Analogous to the proof of Lemma .. in [], we can estimate the integral and obtain

y(t) ≤ y(τ )e–β(t–τ ) +Cβ
–( – e–βt) +C

∫ t


mh(s)e–β(t–s) ds

≤ y(τ )e–β(t–τ ) +Cβ
–( – e–βt) +C

∫ t

t–
mh(s)e–β(t–s) ds

+C

∫ t–

t–
mh(s)e–β(t–s) ds + · · ·

≤ y(τ )e–β(t–τ ) +Cβ
–( – e–βt) +C

∫ t

t–
mh(s)ds

+Ce–β

∫ t–

t–
mh(s)ds +Ce–β

∫ t–

t–
mh(s)ds + · · ·

≤ y(τ )e–β(t–τ ) +Cβ
–( – e–βt) +Cm

(
 + e–β + e–β + · · · )

≤ y(τ )e–β(t–τ ) +Cβ
–( – e–βt) +Cm

(
 + β–)

≤ y(τ )e–β(t–τ ) +Cβ
– +Cm

(
 + β–), for t ≥ τ , (.)

wherem = supt≥τ

∫ t+
t mh(s)ds.
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By virtue of (.), we get

G(u, t) ≥ –m‖u‖ – K ≥ –mλ–
 ‖u‖ – K.

Choosingm ≤ λ/, we obtain from (.)

y(t) = ‖u‖ + ‖ut + �u‖ + k
∥∥u+∥∥ + G(u, t) + K

≥ 

‖u‖ + ‖ut + �‖ + k

∥∥u+∥∥

≥ ∥∥z(t)∥∥
E
. (.)

In consideration of (.) and  < γ < ∞, we see

G
(
uτ (x), τ

) ≤ C

∫
�

(∣∣uτ (x)
∣∣γ+ + 

)
dx ≤ C

(‖uτ‖γ+
 + 

)
(.)

and

y(τ ) =
∥∥u(τ )∥∥

 +
∥∥ut(τ ) + �u(τ )

∥∥ + k
∥∥(
u(τ )

)+∥∥ + G
(
u(τ ), τ

)
+ K

≤ C
(∥∥z(τ )∥∥γ+

E
+ 

)
. (.)

Combining (.), (.), and (.), we deduce that

∥∥z(t)∥∥
E

≤ y(τ )e–β(t–τ ) +Cβ
– +Cm

(
 + β–)

≤ C
(∥∥z(τ )∥∥γ+

E
+ 

)
e–β(t–τ ) +Cβ

– +Cm
(
 + β–)

≤ C
∥∥z(τ )∥∥γ+

E
e–β(t–τ ) +C, t ≥ τ .

Assuming that ‖z(τ )‖E ≤ R, as t ≥ t = t(‖B‖E ), we have
∥∥z(t)∥∥E

≤ μ. (.)

We thus complete the proof. �

And then, combining Theorem . with Lemma ., we get the result as follows.

Theorem . (Bounded uniformly absorbing set) Presume that g ∈ Lc (Rτ ;M) and h ∈
Lc∗ (Rτ ;H). Let g ∈H(g) satisfy (.)-(.), h ∈H(h), and {Uσ (t, τ )}, σ ∈H(σ) =H(g)×
H(h) be the family of processes corresponding to (.) in E, then {Uσ (t, τ )} has a uniformly
(w.r.t. σ ∈ H(σ)) absorbing set B = BE (,μ) in E. That is, for any bounded subset B ⊂
E, there exists t = t(‖B‖E ) such that

⋃
σ∈H(σ)

Uσ (t, τ )B⊂ B, for all t ≥ t.
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3.3 The existence of uniform attractor
We will show the existence of uniform attractor to the problem (.) in E.

Theorem. (Uniform attractor) Let {Uσ (t, τ )} be the family of processes corresponding to
the problem (.). If g ∈ Lc (Rτ ;M) satisfying (.), (.), (.), and (.), h ∈ Lc∗ (Rτ ;H),
and σ = (g,h), then {Uσ (t, τ )} possesses a compact uniform (w.r.t. σ ∈ H(σ)) attractor
AH(σ) in E, which attracts any bounded set in E with ‖ · ‖E , satisfying

AH(σ) = ω,H(σ)(B) = ωτ ,H(σ)(B), (.)

where B is the uniformly (w.r.t. σ ∈H(σ)) absorbing set in E.

Proof From Theorem . and Theorem ., we merely need to prove that the family of
processes {Uσ (t, τ )}, σ ∈H(σ) satisfy the uniform (w.r.t. σ ∈H(σ)) Condition (C) in E.
We assume that λ̃i, i = , , . . . are eigenvalue of operator A in D(A), satisfying

 < λ̃ < λ̃ ≤ · · · ≤ λ̃j ≤ · · · , λ̃j → ∞, as j → ∞,

ω̃i denotes eigenvector corresponding to eigenvalue λ̃i, i = , , , . . . , which forms an or-
thogonal basis in D(A), at the same time they are also a group of canonical basis in V or
H , and they satisfy

Aω̃i = λ̃iω̃i, ∀i ∈N.

LetHm = span{ω̃, ω̃, . . . , ω̃m}, Pm :H →Hm is an orthogonal projector. For any (u,ut) ∈
E, we write

(u,ut) = (u,ut) + (u,ut),

where (u,ut) = (Pmu,Pmut).
Choosing  < � <  and  < �(α – �) < λ. Taking the scalar product with v(t) = ut(t) +

�u(t) for (.) in H , we have



d
dt

(‖v‖ + ‖u‖
)
+ �‖u‖ – �(α – �)〈u, v〉 + (α – �)‖v‖

+ k
〈
u+, v

〉
+

〈
g(u, t), v

〉
=

〈
h(t), v

〉
, (.)

where

〈
h(t), v

〉 ≤ (α – �)‖v‖/ + (α – �)–
∥∥(I – Pm)h(t)

∥∥, (.)
〈
g(u, t), v

〉 ≤ (α – �)‖v‖/ + (α – �)–
∥∥(I – Pm)g(u, t)

∥∥. (.)

Clearly, we get

�(α – �)〈u, v〉 ≤ (α – �)‖v‖/ + (α – �)�‖u‖, (.)

k
〈
u+, v

〉
=


d
dt

k
∥∥(u)+∥∥ + �k

∥∥(u)+∥∥. (.)
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Combining (.)-(.), we obtain from (.)



d
dt

(‖v‖ + ‖u‖ + k
∥∥(u)+∥∥) + �‖u‖ +



(α – �)‖v‖

+ �k
∥∥(u)+∥∥ – (α – �)�‖u‖

≤ 

d
dt

(‖v‖ + ‖u‖ + k
∥∥(u)+∥∥) + �λ–


(
λ – (α – �)�

)‖u‖
+


(α – �)‖v‖ + �k

∥∥(u)+∥∥

≤ (α – �)–
∥∥(I – Pm)g(u, t)

∥∥ + (α – �)–
∥∥(I – Pm)h(t)

∥∥

≤ C(α – �)–
∥∥(I – Pm)g(u, t)

∥∥
M

(
 + ‖u‖γ+

)
+ (α – �)–

∥∥(I – Pm)h(t)
∥∥. (.)

We define the functional

L(t) = 

(‖v‖ + ‖u‖ + k

∥∥(u)+∥∥),

and we set ω =min{�λ–
 (λ – (α – �)�),α – �, �}, then

d
dt

L(t) +ωL(t)≤ C(α – �)–
∥∥(I – Pm)g(u, t)

∥∥
M

(
 + (

√
μ)γ+

)

+ (α – �)–
∥∥(I – Pm)h(t)

∥∥, for t ≥ t. (.)

By Gronwall’s lemma, we obtain

L(t)≤L(t)e–ω(t–t) +


α – �

∫ t

t
e–ω(t–s)∥∥(I – Pm)h(s)

∥∥ ds

+
C

α – �

∫ t

t
e–ω(t–s)∥∥(I – Pm)g(u, s)

∥∥
M ds, for t ≥ t. (.)

Obviously, there exists a constant C̃, such that

∥∥z(t)∥∥
E

≤L(t) ≤ C̃
∥∥z(t)∥∥

E
,

so

∥∥z(t)∥∥
E

≤ C̃
∥∥z(t)∥∥

E
e–ω(t–t)

+


α – �

∫ t

t
e–ω(t–s)∥∥(I – Pm)h(s)

∥∥ ds

+
C

α – �

∫ t

t
e–ω(t–s)∥∥(I – Pm)g(u, s)

∥∥
M ds. (.)
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Since g ∈ Lc (Rτ ,M) ⊂ Lc∗ (Rτ ,M), h ∈ Lc∗ (Rτ ,H), from Lemma ., we can know for
any ε > , there exists a constantm large enough such that


α – �

∫ t

t
e–ω(t–s)∥∥(I – Pm)h(s)

∥∥ ds≤ ε


, ∀h ∈H(h), (.)

C

α – �

∫ t

t
e–ω(t–s)∥∥(I – Pm)g(u, s)

∥∥
M ds≤ ε


, ∀g ∈H(g), (.)

where t ≥ τ .
Let t = /ω ln(C̃μ

/ε) + t, then

C̃
∥∥z(t)∥∥

E
e–ω(t–t) ≤ ε


, ∀t ≥ t.

So for every σ ∈H(σ), we get

∥∥z(t)∥∥
E

≤ ε, ∀t ≥ t, (.)

where ‖z(t)‖E = 
 (‖u‖ + ‖ut‖).

Therefore, the family of processesUσ (t, τ ), σ ∈H(σ) satisfy uniformly (w.r.t. σ ∈H(σ))
Condition (C) in E. ApplyingTheorem., we can obtain the existence of a uniform (w.r.t.
σ ∈ H(σ)) attractor of the family of processes Uσ (t, τ ), σ ∈ H(σ) in E, which satisfies
(.).
We thus complete the proof. �

So we can draw the conclusion: when the nonlinearity g(u, t) is translation compact and
the time-dependent external forces h(x, t) only satisfies Condition (C∗) instead of transla-
tion compact, the uniform attractors in (H(�)∩H

(�))× L(�) exist.
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