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Abstract
We study the higher-order boundary value problems. The existence of symmetric
positive solutions of the problem is discussed. Our results extend some recent work in
the literature. The analysis of this paper mainly relies on the monotone iterative
technique.
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1 Introduction
We study the boundary value problem (BVP)

⎧⎨
⎩
(–)nu(n)(t) = f (t,u), t ∈ (, ),

αiu(i–)(j) + (–)j+βiu(i–)(j) = , i = , . . . ,n, j = , ,
(.)

where n ≥  is an integer, f : (, )× (,∞)→ [,∞) is continuous, αi, βi are nonnegative
constants, α

i + αiβi > , i = , . . . ,n. f (t,u) may be singular at u = , t =  (and/or t = ). If
a function u : [, ] → R is continuous and satisfies u(t) = u( – t) for t ∈ [, ], then we say
that u(t) is symmetric on [, ]. By a symmetric positive solution of BVP (.) we mean a
symmetric function u ∈ Cn[, ] such that u(t) >  for t ∈ (, ) and u(t) satisfies (.).
In recent years, many authors have studied BVP (.), they only considered that f is non-

decreasing or nonincreasing in u, or the boundary condition depends only on derivatives
of even orders; see [–] and references cited therein. To the best of the author’s knowl-
edge, there is no such results involving (.). In this note, we intend to fill in such gaps in
the literature.
The organization of this paper is as follows. After this introduction, in Section , we

state the assumptions and some preliminary lemmas. By applying the monotone iterative
technique, we discuss the existence of symmetric positive solutions for (.) and obtain
the main results in Section .

2 Preliminaries
For convenience, in this paper we let E = C(n)[, ], �i = α

i + αiβi,

Gi(t, s) =

⎧⎨
⎩


�i
(βi + αis)(βi + αi( – t)), ≤ s < t ≤ ,


�i
(βi + αit)(βi + αi( – s)), ≤ t ≤ s ≤ ,

(.)
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ei(t) =Gi(t, t) =

�i

(βi + αit)
(
βi + αi( – t)

)
, t ∈ [, ], (.)

where i = , . . . ,n, and define

P =
{
u ∈ E : u() ≥ ,u(t) >  for t ∈ (, ),u(t) = u( – t) and there

exists constant lu ∈ (, ) satisfying lue(t)≤ u(t) ≤ l–u e(t) for t ∈ [, ]
}
.

Remark . The set P is not a cone as it is not closed.

Throughout this paper, we assume the following:

(H) αi, βi are nonnegative constants, α
i + αiβi > , i = , . . . ,n. f : (, ) × (,∞) →

[,∞) is continuous and symmetric in t, i.e., f satisfies

f ( – t,u) = f (t,u), t ∈ (, ). (.)

(H) For (t,u) ∈ (, ) × (,∞), f (t,u) is nondecreasing in u and there exists a constant
λ ∈ (, ) such that if σ ∈ (, ], then

σ λf (t,u) ≤ f (t,σu). (.)

(H′) For (t,u) ∈ (, ) × (,∞), f (t,u) is nonincreasing in u and there exists a constant
λ ∈ (, ) such that if σ ∈ (, ], then

σ –λf (t,u) ≥ f (t,σu). (.)

(H)  <
∫ 
 f (t, e(t))dt < ∞.

Example . Consider the equation

f (t,u) = |t – |u 
 , (t,u) ∈ (, )× (,∞).

It is easy to see that the function f satisfies assumptions (H) and (H). In fact, if σ ∈
(, ], there exists constant λ with 

 ≤ λ <  such that f (t,σu)≥ σλf (t,u).

Remark . It is easy to see that (H) implies that if σ ∈ [,∞), then

f (t,σu)≤ σλf (t,u), (.)

and (H′) implies that if σ ∈ [,∞), then

f (t,σu)≥ σ –λf (t,u). (.)

Now, we present several lemmas that will be used in the proof of our results. By routine
calculations we have the following results.
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Lemma . Let v be integrable on (, ), then the BVP

⎧⎨
⎩
(–)nu(n)(t) = v(t), t ∈ (, ),

αiu(i–)(j) + (–)j+βiu(i–)(j) = , i = , . . . ,n, j = , 

has a unique solution

u(t) =
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)v(s)dsds · · · dsn–,

where Gi(t, s) are defined by (.).

Lemma . For any t, s ∈ [, ], we have

εiei(t)ei(s)≤Gi(t, s)≤ ei(t), (.)

Gi( – t,  – s) =Gi(t, s), (.)

where εi = �i
(αi+βi)

, i = , . . . ,n.

3 Main results
Define the operator T : E → E by

Tu(t) =
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s,u(s)

)
dsds · · · dsn–, (.)

where Gi(t, s) are defined by (.). It is clear that u is a solution of (.) if and only if u is a
fixed point of T .

Theorem . Assume (H)-(H) hold. Then BVP (.) has at least one symmetric positive
solution.

Proof

Claim . T : P → P is completely continuous and nondecreasing.

In fact, for u ∈ P, it is obvious that Tu ∈ E, Tu(t) >  for t ∈ (, ) and Tu() ≥ . (.),
(.) and a change of variables imply

Tu( – t)

=
∫ 


· · ·

∫ 


G( – t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s,u(s)

)
dsds · · · dsn–

=
∫ 


· · ·

∫ 


G( – t,  – sn–)G( – sn–, sn–) · · ·Gn(s, s)f

(
s,u(s)

)
ds · · · dsn–

= · · · =
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s,u(s)

)
dsds · · · dsn–

= Tu(t), t ∈ [, ]. (.)
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For any u ∈ P, from (.), (.), (.), and (H), we have

Tu(t) ≤ e(t)
∫ 


· · ·

∫ 


G(sn–, sn–) · · ·Gn(s, s)f

(
s, l–u e(s)

)
dsds · · · dsn–

≤ l–λ
u e(t)

∫ 


· · ·

∫ 


G(sn–, sn–) · · ·Gn(s, s)f

(
s, e(s)

)
dsds · · · dsn–

≤ l–Tue(t), (.)

Tu(t) ≥ εe(t)
∫ 


· · ·

∫ 


e(sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, lue(s)

)
dsds · · · dsn–

≥ lλuεe(t)
∫ 


· · ·

∫ 


e(sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, e(s)

)
dsds · · · dsn–

≥ lTue(t) (.)

for t ∈ [, ], where lTu satisfies

 < lTu

< min

{
,

lλu∫ 
 · · · ∫ 

 G(sn–, sn–) · · ·Gn(s, s)f (s, e(s))dsds · · · dsn–
,

lλuε
∫ 


· · ·

∫ 


e(sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, e(s)

)
dsds · · · dsn–

}
.

Thus, it follows from (.) and (.) that Tu(t) ∈ P, and so T : P → P. Next by a standard
method and the Ascoli-Arzela theorem one can prove that T : P → P is completely con-
tinuous, we omit it here. From (H), it is easy to see that T is nondecreasing in u. Hence,
Claim . holds.

Claim . Let  < δ <  be fixed number satisfying

 < δ ≤ l/(–λ)
Te , (.)

where λ is defined in (H) in which σ = δ, and assume

u = δe(t), v = δ–e(t), (.)

un = Tun–, vn = Tvn–, n = , , . . . . (.)

Then

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v, (.)

and there exists u∗ ∈ P such that

un(t) → u∗(t), vn(t)→ u∗(t), uniformly on [, ]. (.)

http://www.boundaryvalueproblems.com/content/2014/1/78
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In fact,  < lTe <  since Te ∈ P. So, from (.) and noting that  < λ < ,  < δ < . From
(.), we have u, v ∈ P and u ≤ v.
On the other hand, from (.) and (.), we have

u = Tu(t)

=
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, δe(s)

)
dsds · · · dsn–

≥ δλ

∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, e(s)

)
dsds · · · dsn–

= δλTe ≥ δλlTee(t) ≥ δλδ–λe(t) = u,

v = Tv(t)

=
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, δ–e(s)

)
dsds · · · dsn–

≤ δ–λ

∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, e(s)

)
dsds · · · dsn–

= δ–λTe ≤ δ–λl–Tee(t) ≤ δ–λδ–(–λ)e(t) = v.

Since u ≤ v and T is nondecreasing, by induction, (.) holds.
Let ς = δ, then  < ς < . It follows from

T(cu) ≥ cλTu, if  < c < ,u ∈ P

that, for any natural number n,

un = Tun– = Tnu = Tn(δe(t)) = Tn(ςδ–e(t)
) ≥ ςλnTn(δ–e(t)) = ςλnvn.

Thus, for all natural numbers n and p, we have

 ≤ un+p – un ≤ vn – un ≤ (
 – ςλn)vn ≤ (

 – ςλn)δ–e(t),
which implies that there exists u∗ ∈ P such that (.) holds, and Claim . holds.
Letting n→ ∞ in (.), we obtain u∗(t) = Tu∗(t), which is a symmetric positive solution

of BVP (.), and this completes the proof of the theorem. �

Theorem . Assume (H), (H′) and (H) hold. Then BVP (.) has at least one symmet-
ric positive solution.

Proof
Claim . T : P → P is completely continuous and nonincreasing.

The proof of Claim . is similar to the proof of Claim ., so this is omitted.

Claim . Let  < ξ <  be fixed number, η >  be sufficiently large constant satisfying

(
ξ–λ+)η ≤ lTe , (.)

http://www.boundaryvalueproblems.com/content/2014/1/78
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where λ is defined in (H′) in which σ = ξη , and assume

u = ξηe(t), un = Tun–, n = , , . . . . (.)

Then

u ≤ u ≤ · · · ≤ un ≤ · · · ≤ un+ ≤ · · · ≤ u ≤ u, (.)

and there exists u∗ ∈ P such that

un(t)→ u∗(t), un+(t) → u∗(t), uniformly on [, ]. (.)

In fact,  < ξη <  since  < ξ <  and η > . So from (.),

u(t) ≤ e(t). (.)

From (.), (.), (.), and noting that T is nonincreasing in u, we have

u = Tu(t)≥ Te(t) ≥ lTee(t) ≥
(
ξ–λ+)ηe(t) =

(
ξλ

)–η
ξηe(t)≥ u, (.)

u = Tu(t)

=
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, ξηe(s)

)
dsds · · · dsn–

≤ (
ξη

)–λ

∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, e(s)

)
dsds · · · dsn–

= ξ–ηλTe ≤ ξ–ηλl–Tee(t) ≤ ξ–ηe(t). (.)

Therefore,

u = Tu(t)≤ Tu(t) = u, (.)

u = Tu(t) ≥ T
(
ξ–ηe(t)

)

=
∫ 


· · ·

∫ 


G(t, sn–)G(sn–, sn–) · · ·Gn(s, s)f

(
s, ξ–ηe(s)

)
dsds · · · dsn–

≥ (
ξ–η

)–λTe(t) ≥ ξηλlTee(t) ≥ ξηe(t) = u. (.)

From (.), (.), (.), and noting that T is nondecreasing, by induction, (.) holds.
On the other hand, from (.) and (.), for  < σ ≤ ,

T(σu)≥ T
(
σ –λTu

) ≥ (
σ –λ

)–λTu = σλTu. (.)

Then from (.) and (.), we have

un = Tun– = Tnu = Tn(ξηe(t)
)

= Tn–T(ξ ηξ–ηe(t)
) ≥ Tn–T(ξ ηu(t)

)

http://www.boundaryvalueproblems.com/content/2014/1/78
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≥ Tn–((ξ η)λTu(t)
) ≥ · · ·

≥ (
ξ η)λnTnu(t)) =

(
ξ η)λnTn+u(t)) =

(
ξ η)λnun+,

and thus

(
ξ η)λnun+(t) ≤ un(t) ≤ un+(t).

Therefore, for all natural numbers n and p, we have

 ≤ un+p(t) – un(t) ≤ un+(t) – un(t)

≤ (
 –

(
ξ η)λn)un+(t)≤ (

 –
(
ξ η)λn)u(t), (.)

 ≤ un+(t) – un+p+(t) ≤ un+(t) – un(t)≤
(
 –

(
ξ η)λn)u(t). (.)

From (.) and (.), there exists u∗ ∈ P such that (.) holds, and Claim . holds.
Letting n→ ∞ in (.), we obtain u∗(t) = Tu∗(t), which is a symmetric positive solution

of BVP (.), and this completes the proof of the theorem. �

Remark . [, ] only considered that f is nondecreasing or nonincreasing in u, and
αi = , βi =  in (.), so our results extend the work in the literature.

Example . Consider the BVP

⎧⎨
⎩
–u()(t) = f (t,u), t ∈ (, ),

αiu(i–)(j) + (–)j+βiu(i–)(j) = , i = , , , j = , ,
(.)

where f (t,u) = uα sinπ t for (t,u) ∈ (, )× (,∞),  < α < , αi = βi = , i = , , .

It is easy to see that function f (t,u) satisfies (H) and (H). If σ ∈ (, ], there exists con-
stant λ with  < α ≤ λ <  such that f (t,σu)≥ σλf (t,u), so (H) is also satisfied. Therefore,
from Theorem ., (.) has at least one symmetric positive solution.
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