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Abstract
This paper is concerned with the existence, nonexistence, and uniqueness of convex
monotone positive solutions of elastic beam equations with a parameter λ. The
boundary conditions mean that the beam is fixed at one end and attached to a
bearing device or freed at the other end. By using fixed point theorem of cone
expansion, we show that there exists λ∗ ≥ λ∗ > 0 such that the beam equation has at
least two, one, and no positive solutions for 0 < λ ≤ λ∗, λ∗ < λ ≤ λ∗ and λ > λ∗,
respectively; furthermore, by using cone theory we establish some uniqueness
criteria for positive solutions for the beam and show that such solution xλ depends
continuously on the parameter λ. In particular, we give an estimate for critical value of
parameter λ.
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1 Introduction and preliminaries
In this paper, we consider the following nonlinear fourth-order two-point boundary value
problem (BVP) for elastic beam equation:

{
x()(t) = λf (t,x(t)),  < t < ,
x() = x′() = x′′() = x′′′() + q(x()) = ,

()

where λ ≥  is a parameter. Throughout this paper, we assume that f ∈ C([, ]× R+,R+),
q ∈ C(R+,R+), R+ = [,+∞). x ∈ C[, ] is called a positive solution of BVP () if x is a
solution of BVP () and x(t) > ,  < t < . A convex monotone positive solution means
convex nondecreasing positive solution.
Because of characterization of the deformation of the equilibrium state, fourth-order

boundary value problems for elastic beam equations are extensively applied to mechan-
ics and engineering; see [–]. Some nonlinear elastic beam equations have been studied
extensively. For a small sample of such work, we refer the reader to the work of Bai and
Wang [], Bai [], Bonanno and Bellaa [], Li [], Liu and Li [], Liu [], Ma and Xu [],
and Ma and Thompson [] on an elastic beam whose two ends are simply supported, the
works of Yang [] and Zhang [] on an elastic beam of which one end is embedded and
another end is fastenedwith a sliding clamp, and thework of Graef et al. [] onmultipoint
boundary value problems.
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BVP () with q(x) ≡  is called a cantilever beam equation, it describes the deflection of
the elastic beam fixed at the left end and free at the right end. Existence and multiplicity
of positive solutions of cantilever beam problems without parameter have been studied
by some authors; see Yao [, ] and references therein. BVP () with q(x) 	≡  describes
the deflection of the elastic beam fixed at the left end and attached to a bearing device
given by the function –q at the right end. When the elastic beam equation does not con-
tain parameter λ, the existence of multiple positive solutions and unique positive solution
was presented in [] by variational methods and in [] by a fixed point theorem, re-
spectively; monotone positive solutions were obtained by using the monotone iteration
method in []. However, there are few papers concerned with positive solutions for BVP
() with parameter, especially with the solution’s dependence on parameter λ in the exist-
ing literature. The aim of this paper is to show that the existence and number of convex
monotone positive solutions of BVP () are affected by the parameter λ.
The paper is organized as follows. In Section , we present that a nontrivial and non-

negative solution of BVP () is convex monotone positive solution. In Section , we ob-
tain some results on the existence, multiplicity and nonexistence of positive solutions for
BVP (). These results show that the number of positive solutions for BVP () depends
on the parameter λ. In Section , we establish some uniqueness criteria for positive solu-
tions for BVP () and show that such a positive solution xλ depends continuously on the
parameter λ. In particular, we give an estimate for the critical value of the parameter λ.
In the rest of this section, we introduce some notations and known results. For the

reader’s convenience, we suggest that one refer to [–], and [] for details.
Let E be a real Banach space and θ denote the zero element of E. A nonempty closed

convex set P ⊂ E is called a cone of E if it satisfies (i) x ∈ P, r >  ⇒ rx ∈ P; (ii) x ∈ P,
–x ∈ P ⇒ x = θ . E is partially ordered by the cone P, i.e., x≤ y iff y– x ∈ P. A cone P is said
to be normal if there exists a positive number N , called the normal constant of P, such
that θ ≤ x≤ y implies ‖x‖ ≤N‖y‖. For u, v ∈ E, u≤ v, denote [u, v] = {x ∈ E | u≤ x ≤ v}.
For all x, y ∈ E, the notation x ∼ y means that there exist μ >  and μ >  such that

μx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given e >  (i.e., e ∈ P and e 	= θ ), we
denote by Pe the set Pe = {x ∈ E | x∼ e}. It is easy to see that Pe ⊂ P.
LetD ⊆ E. An operatorT :D → E is said to be increasing if for x, y ∈D, x≤ y ⇒ Tx ≤ Ty.

An element x∗ ∈D is called a fixed point of T if Tx∗ = x∗.

Lemma . (Fixed point theorem of cone expansion) [, ] Assume that � and �

are bounded open subsets of E with θ ∈ � ⊂ � ⊂ �. Let T : P ∩ (� – �) → P be a
completely continuous operator such that ‖Tx‖ ≤ ‖x‖ if x ∈ P ∩ ∂� and ‖Tx‖ ≥ ‖x‖ if
x ∈ P ∩ ∂�. Then T has a fixed point in P ∩ (� –�).

Lemma . [] Let P be a normal cone in E, T : Pe → Pe be increasing and for all x ∈ Pe

and t ∈ (, ), there exists α(t) ∈ (, ) such that T(tx)≥ tα(t)Tx. Then T has a unique fixed
point x∗ in Pe.Moreover, constructing successively the sequence wn = Twn– (n = , , . . .) for
any w ∈ Pe, we have limn→+∞ ‖wn – x∗‖ = .

2 Solutions
In what follows, set E = C[, ], the Banach space of all continuous functions on [, ] with
the norm ‖x‖ =max{|x(t)| | t ∈ [, ]}. P = {x ∈ C[, ] | x(t) ≥ , t ∈ [, ]}. It is clear that P
is a normal cone and its normality constant is .
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From [] and [], it is evident that BVP () has an integral formulation given by

x(t) = λ

∫ 


G(t, s)f

(
s,x(s)

)
ds + q

(
x()

)( 

t –



t

)
, ()

where

G(t, s) =



{
t(s – t), ≤ t ≤ s ≤ ,
s(t – s), ≤ s ≤ t ≤ .

()

It is easy to see that G(t, s)≥  and



ts ≤G(t, s)≤ 


ts, t, s ∈ [, ]. ()

Define operators A,B,Cλ : P → C[, ] by

(Ax)(t) =
∫ 


G(t, s)f

(
s,x(s)

)
ds, (Bx)(t) = q

(
x()

)( 

t –



t

)
, Cλ = λA + B.

Then A(P) ⊂ P, B(P) ⊂ P, and Cλ(P) ⊂ P.
It is clear from () that solving BVP () is equivalent to finding fixed points of the oper-

ator Cλ. In particular, x is a fixed point of B iff x is a solution of the following BVP:

{
x()(t) = ,  < t < ,
x() = x′() = x′′() = x′′′() + q(x()) = ,

and x is a fixed point of λA iff x is a solution of the following cantilever beam problem:

{
x()(t) = λf (t,x(t)),  < t < ,
x() = x′() = x′′() = x′′′() = .

()

Lemma . If x ∈ C[, ] satisfies

{
x()(t) ≥ , t ∈ (, ),
x() = x′() = x′′() = , x′′′() ≤ ,

()

then
(i) x(t) is nondecreasing in t ∈ [, ],moreover,  ≤ x(t)≤ x(), t ∈ [, ];
(ii) x′′(t)≥ , t ∈ [, ], that is, x(t) is a convex function on [, ].

Proof From (), we have x′′′(t)≤ x′′′() ≤ . Moreover, x′′(t)≥ x′′() = . So, x′(t)≥ x′() =
. Thus, we complete the proof of the lemma. �

Now, let

K =
{
x ∈ P

∣∣∣ x(t) is nondecreasing, x(t)≥ 

tx(), t ∈ [, ]

}
,

then, it is easy to show that K ⊂ P is also a cone in E, and if x ∈ K , then ‖x‖ = x().

http://www.boundaryvalueproblems.com/content/2014/1/80
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Lemma . Cλ(P) ⊂ K , A(P) ⊂ K , B(P) ⊂ K .

Proof x ∈ P implies x(t)≥ , so f (t,x(t))≥  and q(x())≥ . Moreover, for x ∈ P,

(Cλx)()(t) = λf
(
t,x(t)

) ≥ , t ∈ (, ),

(Cλx)() = (Cλx)′() = (Cλx)′′() = ,

(Cλx)′′′() = –q
(
x()

) ≤ .

By Lemma ., (Cλx)(t) is convex and nondecreasing in t ∈ [, ]. From () and () we have

(Cλx)(t) –


t(Cλx)()≥ λ


t

∫ 


sf

(
s,x(s)

)
ds + q

(
x()

)( 


t –


t

)
≥ ,

that is, 
 t

(Cλx)() ≤ (Cλx)(t) for t ∈ [, ]. Thus, we obtain Cλ(P) ⊂ K . From the above
proof, we can show that A(P) ⊂ K and B(P) ⊂ K . This ends the proof. �

Lemma .
(i) A : P → K is a completely continuous operator;
(ii) if q(x) is nondecreasing, then B : P → K is a completely continuous operator.

Proof Similarly to the proof of Theorem  in [], applying the Arzela-Ascoli Theorem,
the proof can be completed. �

From the proof of Lemma . we can show the following result.

Theorem . If x ∈ P\{θ} is a solution for BVP (), then x is a convex monotone positive
solution for BVP ().

So, in the following sections, we only need to study solutions for BVP () in P\{θ}.

3 Existence and nonexistence results
It is obvious fromLemma. that if x ∈ P\{θ} is a solution for BVP () then x ∈ K\{θ}. So in
this section, we will apply Lemma . to study the existence, multiplicity and nonexistence
of solutions for BVP () in K\{θ}. It is reasonable that the domain of Cλ is restricted on K .
The following conditions will be assumed:
(H) f (t,x) is nondecreasing in x ∈ [, +∞) for fixed t ∈ [, ];
(H) q(x) is nondecreasing in x ∈ [, +∞);
(H) F :=

∫ 
 s

f (s, )ds > ;
(H) q() < ;
(H) f∞ := limx→+∞ mint∈[  ,]

f (t,x)
x = +∞;

(H) q∞ := lim infx→+∞ q(x)
x > .

Set

� =
{
λ >  | there exists xλ ∈ K\{θ} such that Cλxλ = xλ

}
()

and λ∗ = sup�.

http://www.boundaryvalueproblems.com/content/2014/1/80
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Lemma . Suppose that (H)-(H) hold. If λ′ ∈ �, then (,λ′] ⊂ �.

Proof λ′ ∈ � means that there exists xλ′ ∈ K\{θ} such that Cλ′xλ′ = xλ′ . Therefore, for any
λ ∈ (,λ′], we have Cλxλ′ ≤ Cλ′xλ′ = xλ′ . Set w = xλ′ , wn = Cλwn–, n = , , . . . . From (H)
and (H) we obtain w(t) ≥ w(t) ≥ · · · ≥ wn(t) ≥ · · · ≥ Fλ

 t. By Lemma . and (H),
{wn} converges to a fixed point of Cλ in K\{θ}. Thus (,λ′] ⊂ �. This completes the proof.

�

Let λ∗ = –q()
F

, F =
∫ 
 sf (s, )ds, u(t) =

Fλ

 t, v(t) = t and

F∞ = lim sup
x→+∞

max
t∈[,]

f (t,x)
x

, Q∞ = lim sup
x→+∞

q(x)
x

.

Theorem . Suppose that (H)-(H) hold.
(i) If (H) holds, then Cλ has minimal and maximal fixed points in [u, v] for

λ ∈ (,λ∗].Moreover, there exists λ∗ ≥ λ∗ >  such that Cλ has at least one and has
no fixed points in K\{θ} for  < λ < λ∗ and λ > λ∗, respectively.

(ii) If F∞ < +∞, Q∞ < , then when F∞ > , there exists λ∗ ≥ (–Q∞)
F∞ >  such that Cλ

has at least one and no fixed points in K\{θ} for  < λ < λ∗ and λ > λ∗, respectively;
when F∞ = , Cλ has at least one fixed point in K\{θ} for λ > .

Proof (i) From (H), (H), and (H) we have λ∗ > . For any λ ∈ (,λ∗], we obtain

(Cλu)(t) ≥ λ


t

∫ 


sf (s, )ds = u(t), (Cλv)(t) ≤ 


t

(
λ∗F + q()

) ≤ v(t).

Set un = Cλun–, vn = Cλvn–, n = , , . . . , then from (H) and (H) we have

u(t) ≤ u(t)≤ · · · ≤ un(t) ≤ · · · ≤ vn(t)≤ · · · ≤ v(t) ≤ v(t). ()

Lemma . implies that {un} and {vn} converge to fixed points uλ and vλ ofCλ, respectively.
From () it is evident that uλ, vλ ∈ K\{θ} are the minimal fixed point and maximal fixed
point of Cλ in [u, v], respectively. From the definition of λ∗ we can complete the rest of
the proof.
(ii) For any  < ε <  – Q∞, there exists N >  such that f (t,x) ≤ (F∞ + ε)x and q(x) ≤

(Q∞ + ε)x for x >N, t ∈ [, ]. Let w(t) = Nt and λ = (–Q∞–ε)
F∞+ε

, then λ >  and

(Cλw)(t) ≤ 

w(t)

(
λ


(F∞ + ε) +Q∞ + ε

)
≤ w(t).

Similarly to the proof of Lemma ., we can show λ ∈ �. The conclusion (ii) follows from
Lemma . and the definition of λ∗. This completes the proof of Theorem .. �

Lemma . Suppose that (H)-(H) hold and that one of (H) and (H) holds. If � is
nonempty, then

(i) � is bounded from above, that is, λ∗ < +∞;
(ii) λ∗ ∈ �.

http://www.boundaryvalueproblems.com/content/2014/1/80
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Proof (i) Suppose to the contrary that there exists an increasing sequence {λn}+∞
 ⊂ �

such that limn→+∞ λn = +∞. Set xλn ∈ K\{θ} is a fixed point of Cλn , that is, Cλnxλn = xλn .
There are two cases to be considered.
Case . {xλn}+∞

 is bounded, that is, there exists a constant M >  such that ‖xλn‖ ≤ M
for n = , , . . . . Hence, from (H), (H), and () we have

M ≥ ‖xλn‖ = (Cλnxλn )()≥


λn

∫ 


sf

(
s,xλn (s)

)
ds≥ F


λn → +∞,

which is a contradiction.
Case . {xλn}+∞

 is unbounded, that is, there exists a subsequence of {xλn}+∞
 , still denoted

by {xλn}+∞
 , such that limn→+∞ ‖xλn‖ = +∞.

When (H) holds, take L > 
λ
, there exists N >  such that f (t,x) ≥ Lx for x ≥ N,

t ∈ [  , ]. Choose n such that ‖xλn
‖ > N. Thus, f (t, ‖xλn

‖) ≥ 
L‖xλn

‖, t ∈ [  , ].
Moreover, from (H) and the definition of K , we have

‖xλn
‖ = (Cλn

xλn
)() ≥ 


λ

∫ 




sf
(
s,



‖xλn
‖
)
ds >




λL‖xλn
‖ > ‖xλn

‖,

which is a contradiction.
When (H) holds, choose ε >  such that 

 (q∞ – ε) > . There exists N >  such that
q(x)≥ (q∞ – ε)x for x ≥N. Choose n such that ‖xλn

‖ >N, so

q
(
xλn

()
)
= q

(‖xλn
‖) ≥ (q∞ – ε)‖xλn

‖.

Moreover,

‖xλn
‖ = (Cλn

xλn
)() ≥ 


q
(
xλn

()
) ≥ 


(q∞ – ε)‖xλn

‖ > ‖xλn
‖,

which is a contradiction.
Consequently, we find that � is bounded from above.
(ii) By the definition of λ∗, there exists a nondecreasing sequence {λn}+∞

 such that
limn→+∞ λn = λ∗. Let xλn ∈ K\{θ} be a fixed point of Cλn . Arguing similarly as above in
case , we can show that {xλn}+∞

 is a bounded subset in K , that is, there exists a constant
M >  such that ‖xλn‖ ≤M, n = , , . . . ; on the other hand, note that

∣∣xλn (t) – xλn (t)
∣∣ ≤ λ∗

∫ 



∣∣G(t, s) –G(t, s)
∣∣f (s,M)ds +



q(M)|t – t|,

we see that {xλn}+∞
 is an equicontinuous subset in K . Consequently, by an application of

the Arzela-Ascoli Theorem we conclude that {xλn}+∞
 is a relatively compact set in K . So,

there exists a subsequence {xλni
} ⊂ {xλn} converging to x∗ ∈ K . Note that

xλni
(t) = λni

∫ 


G(t, s)f

(
s,xλni

(s)
)
ds + q

(
xλni

()
)( 


t –



t

)
.

By taking the limit we have x∗(t) = (Cλ∗x∗)(t) ≥ λ
 Ft

, that is, λ∗ ∈ �. The proof is com-
plete. �

http://www.boundaryvalueproblems.com/content/2014/1/80
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Theorem . Suppose that (H)-(H) hold and that one of (H) and (H) holds. Then,
there exists a λ∗ ≥ λ∗ >  such that BVP () has at least two, one, and no positive solutions
for  < λ ≤ λ∗, λ∗ < λ ≤ λ∗ and λ > λ∗, respectively.

Proof Theorem . implies (,λ∗]⊂ �, so λ∗ ≥ λ∗ > . From Lemmas . and ., we have
(,λ∗] = �. Therefore, from the definition of λ∗ we only to prove that Cλ has at least two
fixed points in K\{θ} for λ ∈ (,λ∗].
Now, given λ ∈ (,λ∗]. Theorem . means that Cλ has at least one fixed point xλ, ∈

K\{θ} which satisfies ‖xλ,‖ ≤ .
Let K = {x ∈ K | ‖x‖ < }. Note that t( – t) ≤  for t ∈ [, ], so for x ∈ K with ‖x‖ = ,

i.e., x ∈ ∂K, we have

‖Cλx‖ = (Cλx)()≤ 


(
λ∗

∫ 


s( – s)f (s, )ds + q()

)
≤ 


< ‖x‖. ()

When (H) holds, take L′ > 
λ
, there exists N ′

 >  such that f (t,x) ≥ L′x for x ≥ N ′
,

t ∈ [  , ]. Set K = {x ∈ K | ‖x‖ < N ′
}. Then K  ⊂ K. If x ∈ ∂K, we have

‖Cλx‖ = (Cλx)()≥ λ



∫ 




sf
(
s,



‖x‖
)
ds >

λL′


‖x‖ > ‖x‖.

When (H) holds, from the proof of Lemma . we can setK ′
 = {x ∈ K | ‖x‖ <N}. Then

K  ⊂ K ′
. If x ∈ ∂K ′

, we have ‖Cλx‖ = Cλx()≥ 
q(x())≥ 

 (q∞ – ε)x() > ‖x‖.
Consequently, in virtue of Lemma . we find that Cλ has another fixed point xλ, with

xλ, ∈
{
K –K, as (H) holds,
K ′

 –K, as (H) holds.

Equation () implies that Cλ has no fixed points in ∂K. In conclusion, for λ ∈ (,λ∗], Cλ

has at least two fixed points xλ, and xλ, in K with  < ‖xλ,‖ <  < ‖xλ,‖. The proof is
complete. �

Remark . In the above results, we can replace (H) with the following condition: there
exists ε ∈ (, ) such that limx→+∞ mint∈[ε,]

f (t,x)
x = +∞.

In the following, we give some sufficient conditions that BVP () has no positive solu-
tions.

Theorem . Suppose that there exists a nonnegative integrable function a(t) such that
f (t,x) ≥ a(t)x, t ∈ [, ], x ∈ [, +∞) and a∗ :=

∫ 
 s

( – s)a(s)ds > . Then BVP () has no
positive solutions for λ > 

a∗ .

Proof Assume to the contrary that xλ ∈ K\{θ} is a solution of BVP (), then ‖xλ‖ =
(Cλxλ)() ≥ 

‖xλ‖λ
∫ 
 s

( – s)a(s)ds > ‖xλ‖, which is a contradiction. The proof is com-
plete. �

Similarly to the proof of Theorem ., we can easily obtain the following results.

http://www.boundaryvalueproblems.com/content/2014/1/80
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Theorem . Suppose that there exist an integrable function a(t) ≥  and a number
b ∈ [, ) such that f (t,x) ≤ a(t)x, q(x) ≤ bx, t ∈ [, ], x ∈ [, +∞) and a∗

 :=
∫ 
 s

( –
s)a(s)ds > . Then BVP () has no positive solutions for  ≤ λ < –b

a∗

.

Theorem . Suppose that q(x) > x, x ∈ [, +∞). Then BVP () has no positive solutions
for λ ≥ .

Remark . When q(x)≡ , BVP () becomes a cantilever beam problem (). In this case,
we can delete the conditions on q in Theorems ., .-. and obtain the following cor-
responding results for BVP ().
Suppose that (H) and (H) hold. Then BVP () has minimal and maximal solutions in

[u, v] for λ ∈ (, 
F
]. Further, if  < F∞ < +∞, then there existsλ∗ ≥max{ 

F
, 
F∞ } such that

BVP () has at least one andhas no positive solutions for  < λ < λ∗ and λ > λ∗, respectively;
if F∞ =  then BVP () has at least one positive solution for λ > .
Suppose that (H), (H), and (H) hold. Then λ∗ ≥ 

F
and BVP () has at least two, one

and has no positive solutions for  < λ ≤ 
F
, 
F

< λ ≤ λ∗ and λ > λ∗, respectively.
Under the conditions in Theorem ., BVP () has no positive solutions for λ > 

a∗ .
Suppose that a(t) and a∗

 satisfy the conditions in Theorem ., then BVP () has no
positive solutions for  ≤ λ < 

a∗

.

Remark . (i) We give an example to illustrate Theorem .. Let f (t,x) = t + 
 ln( + x),

and

q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sinx,  ≤ x ≤ π

 ,

π
x, π

 ≤ x≤ π , π ≤ x≤ π ,
 + | sinx|, π ≤ x≤ π

 ,
, x ≥ π .

By straightforward calculations we see that F = 
 , F =


 ( +

ln
 ), q() = sin , λ∗ = –q()

F
.=

., F∞ = 
 , and Q∞ = . So the conditions in Theorem . are satisfied. Therefore,

by Theorem . we find that there exists λ∗ ≥ 
F∞ =  such that BVP () has minimal

and maximal solutions in [u, v] for  < λ ≤ ., has at least one positive solution for
. < λ < λ∗ and has no positive solutions for λ > λ∗, where u(t) = λ

 t
 and v(t) = t.

We give another example to illustrate Theorem .. Let f (t,x) = t
 ( + x) + 

e
t√x, and

q(x) =

{

x


 , ≤ x ≤ ,

, x ≥ .

A straightforward calculation can show that F = 
 , f∞ = +∞, q() = 

 , F =

 , and λ∗ = 


Therefore, the conditions (H)-(H) hold. Thus, by Theorem . we see that there exists
λ∗ ≥ 

 such that BVP () has at least two, one, and no positive solutions for  < λ ≤ 
 ,


 < λ ≤ λ∗, and λ > λ∗, respectively.
(ii) In Theorems .-., we do not require f and q to be monotone in x. For example,

let f (t,x) = tx
+| cosx| and

q(x) =

{
x| sinx|, ≤ x≤ π ,
, x≥ π .

http://www.boundaryvalueproblems.com/content/2014/1/80
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Take a(t) = t, b = , then the conditions in Theorem . are satisfied and a∗
 =


 . So by

Theorem . we find that BVP () has no positive solutions for  ≤ λ < 
 .

4 Uniqueness and dependence on parameter
In this section, we will apply cone theory to further study the uniqueness of solution for
BVP () in P\{θ} and the dependence of such a positive solution on the parameter λ. The
following hypotheses are needed:
(H) q() 	=  and for all x ∈ [, +∞) and r ∈ (, ), there exists α(r) ∈ (, ) such that

q(rx) ≥ rα(r)q(x);
(H) f (t, ) 	≡  and f (t, rx)≥ rf (t,x) for r ∈ (, ), t ∈ [, ], x ∈ [, +∞);
(H) for all t ∈ [, ], x ∈ [, +∞) and r ∈ (, ), there exists β(r) ∈ (, ) such that

f (t, rx)≥ rβ(r)f (t,x).

Remark . The inequalities in (H), (H), and (H) are equivalent to the following in-
equalities, respectively:

q(sx)≤ sα(

s )q(x), s > ,x ∈ [, +∞),

f (t, sx)≤ sf (t,x), s > , t ∈ [, ],x ∈ [, +∞),

f (t, sx)≤ sβ(

s )f (t,x), s > , t ∈ [, ],x ∈ [, +∞).

Let e(t) = t and define Pe as in Section . It is obvious that Pe ⊂ P and if x ∈ Pe then
x() =  and x(t) > , t ∈ (, ].

Remark . (H) and (H) imply q(x) >  for x > . Moreover, q(x()) >  for x ∈ Pe.

Remark . Let xλ be a solution for BVP () in P\{θ}. If (H) and (H) hold, then xλ ∈ Pe.
Indeed, from Theorem . we have xλ() = ‖xλ‖. So Remark . implies q(xλ()) > . Note
that

q(xλ())


t ≤ xλ(t) = (Cλxλ)(t) ≤ 


(
λ

∫ 


sf

(
s,xλ(s)

)
ds + q

(
xλ()

))
t,

we conclude xλ ∈ Pe.

So, in this section, we only need to consider the unique solution for BVP () in Pe.

Lemma . Assume that (H) and (H) hold. Then B has a unique fixed point x in Pe,
moreover, constructing successively the sequence wn = Bwn– (n = , , . . .) for any initial
value w ∈ Pe, we have limn→+∞ ‖wn – x‖ = .

Proof For any x ∈ Pe, we have 
q(x())t

 ≤ Bx(t)≤ 
q(x())t

, whichmeansB(Pe) ⊂ Pe. For
all x ∈ Pe, r ∈ (, ), from (H) we have B(rx)(t)≥ rα(r)Bx(t). Consequently, the conclusion
follows from Lemma .. This completes the proof. �

Lemma . Assume that (H), (H), (H), and (H) hold. Then
(i) Cλ : Pe → Pe is an increasing operator;

http://www.boundaryvalueproblems.com/content/2014/1/80
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(ii) for any λ ≥  and x ∈ Pe, there exists ϕ(λ,x) ∈ (, ) such that Bx≥ ϕ(λ,x)Cλx;
(iii) for [u, v]⊂ Pe and r ∈ (, ), there exists η(r,u, v) >  such that

Cλ(rx)≥ r
(
 + η(r,u, v)

)
Cλx, ∀x ∈ [u, v].

Proof The conclusion (i) follows from (H), (H), (H), and ().
The proof of (ii). For given λ ≥ , x ∈ Pe, from (H) and () we have

(Cλx)(t)≤ 

t

(
λ

∫ 


sf

(
s,‖x‖)ds + q

(
x()

)) ≤ (λ
∫ 
 sf (s,‖x‖)ds + q(x())

q(x())
Bx(t).

Let

ϕ(λ,x) =
q(x())

(λ
∫ 
 sf (s,‖x‖)ds + q(x()))

, ()

then  < ϕ(λ,x) <  and

Bx≥ ϕ(λ,x)Cλx. ()

The proof of (iii). For any x ∈ [u, v], u, v ∈ Pe, from () and () we have

Bx≥ q(x())
(λ

∫ 
 sf (s,‖x‖)ds + q(x())

Cλx≥ q(u())
(λ

∫ 
 sf (s,‖v‖)ds + q(v()))

Cλx.

Moreover, from (H) and (H) we have

Cλ(rx)≥ λrAx + rα(r)Bx ≥ r
(
 + η(r,u, v)

)
Cλx, ∀r ∈ (, ),x ∈ [u, v],

where η(r,u, v) = (rα(r)–r)q(u())
r(λ

∫ 
 sf (s,‖v‖)ds+q(v())) > . This completes the proof. �

Lemma. Assume that (H), (H), (H), and (H) hold.ThenCλ has a unique fixed point
xλ in Pe iff there exists yλ ∈ Pe such that Cλyλ ≤ yλ.Moreover, constructing successively the
sequence wn = Cλwn– (n = , , . . .) for any initial value w ∈ Pe, we have

lim
n→+∞‖wn – xλ‖ = . ()

Proof ‘⇒’ Let xλ be a fixed point of Cλ in Pe, i.e., Cλxλ = xλ. Taking yλ = xλ, we obtain
Cλyλ ≤ yλ.
‘⇐’ By virtue of Lemma ., B has a unique fixed point x in Pe. Moreover,

x ≤ Cλx, λ ≥ . ()

Now, we are going to prove

x ≤ yλ, λ ≥ . ()

http://www.boundaryvalueproblems.com/content/2014/1/80
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Let τ = inf{τ >  | x ≤ τyλ}, then τ ≤ . Otherwise, τ > , from Lemma . we have

x ≤ Cλx ≤ Cλ(τyλ) ≤ τ

 + η( 
τ
,x, τyλ)

Cλyλ ≤ τ

 + η( 
τ
,x, τyλ)

yλ.

By the definition of τ, we get a contradiction τ ≤ τ
+η( 

τ
,x,τyλ)

. Thus, () holds.

Set xn = Cλxn–, yn = Cλyn–, y = yλ, n = , , . . . . From () and () we have

x ≤ x ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y ≤ y = yλ. ()

Lemma . implies that {xn} and {yn} converge to fixed points x∗ and y∗ ofCλ, respectively.
From (), we have

x ≤ x ≤ · · · ≤ xn ≤ · · · ≤ x∗ ≤ y∗ ≤ · · · ≤ yn ≤ · · · ≤ y ≤ yλ. ()

To prove that Cλ has only one fixed point in [x, yλ], let

μn = sup{τ >  | xn ≥ τyn}, n = , , , . . . , ()

then

 < μn ≤ , xn ≥ μnyn, n = , , . . . . ()

From ()-() we infer that  < μ ≤ μ ≤ · · · ≤ μn ≤ · · · ≤ , which means that
limn→+∞ μn = μ ≤ . We assert that μ = . Otherwise,  < μn ≤ μ <  for n ≥ , then
by Lemma . we deduce that

xn+ ≥ Cλ(μnyn) ≥ Cλ

(
μn

μ
μyn

)
≥ μn

μ
Cλ(μyn) ≥ μn

(
 + η(μ,x, yλ)

)
yn+.

By (), we have μn+ ≥ μn( + η(μ,x, yλ)), moreover, μ ≥ μ( + η(μ,x, yλ)), which is a
contradiction. So μ = . Thus, by () and () we have

∥∥y∗ – x∗∥∥ ≤ ‖yn – xn‖ ≤ ( –μn)‖y‖ →  as n→ +∞,

which means that x∗ = y∗ := xλ is the unique fixed point of Cλ in [x, yλ].
Now, we prove that x∗ is the unique fixed point of Cλ in Pe. By the above proof, we only

need to show that Cλ does not have any fixed point in Pe \ [x, yλ]. If x is a fixed point of
Cλ in Pe \ [x, yλ]. Let

μ = sup

{
τ > 

∣∣∣ τx∗ ≤ x ≤ 
τ
x∗

}
. ()

It is evident that  < μ ≤ . If  < μ < , then x ≤ x∗ ≤ 
μ
x∗ ≤ 

μ
yλ. By Lemma . we have

μ

(
 + η

(
μ,x,


μ
yλ

))
x∗ ≤ Cλ

(
μx∗) ≤ x = Cλx ≤ Cλ

(

μ
x∗

)

≤ 
μ( + η(μ,x, 

μ
yλ))

x∗.

http://www.boundaryvalueproblems.com/content/2014/1/80
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Thus, from () we haveμ ≥ μ(+η(μ,x, 
μ
yλ)), which is a contradiction. Soμ = .More-

over, x = x∗, which implies the contradiction: x = x∗ ∈ [x, yλ] and x ∈ Pe \ [x, yλ].
Finally, the iterative scheme and () can be proved in a similar way to the proof of

Theorem . of [], here it is omitted. The proof is complete. �

Theorem. Assume that (H), (H), (H), and (H) hold.Then there exists a λ∗ >  such
that BVP () has a unique solution xλ in Pe for λ ∈ [,λ∗) and does not have any solution
in Pe for λ ≥ λ∗.Moreover, set wn = λAwn– + Bwn– (n = , , . . .) for any w ∈ Pe, then ()
holds.

Proof By Lemma ., B has the unique fixed point x in Pe. So x(t) = q(x())(  t
 – 

 t
),

moreover, ‖x‖ = x() = 
q(x()) > . Let ρ = 


∫ 


sf (s,x())
x()

ds, we have

(Ax)(t)≤ t



∫ 


sf

(
s,x()

)
ds≤ q

(
x()

)( 

t –



t

)
ρ = ρx(t). ()

Set � = {λ ≥  | there exists xλ ∈ Pe such that Cλxλ = xλ}. Lemma . implies that

� = {λ ≥  | there exists yλ ∈ Pe such that Cλyλ ≤ yλ}. ()

Similarly to the proof of Lemma ., we can show that λ ∈ � implies [,λ]⊂ �.

Now, take s >  and let λ = 
ρ
( – s

α( 
s

)–
 ) and yλ = sx, then λ >  and yλ ∈ Pe. By

(H), (H), and (), we haveCλyλ ≤ λsρx + s
α( 

s
)

 x ≤ yλ , that is, λ ∈ �. Moreover,
[,λ] ⊂ �.
Let λ∗ = sup�, then λ∗ ≥ λ > . We assert that λ∗ /∈ �. Indeed, if λ∗ = +∞, from the

definition of λ∗ it is obvious that λ∗ /∈ �. Suppose that λ∗ < +∞ and λ∗ ∈ �. Then by ()
and () there exists x ≤ yλ∗ ∈ Pe such that Cλ∗yλ∗ ≤ yλ∗ . Similarly to the proof of (), we
have

(Ayλ∗ )(t)≤
(



∫ 



sf (s,‖yλ∗‖)
x()

ds
)
x(t)≤

(



∫ 



sf (s,‖yλ∗‖)
x()

ds
)
(Byλ∗ )(t).

Denote ρ = 

∫ 


sf (s,‖yλ∗ ‖)
x()

ds, then

 < ρ < +∞ and Ayλ∗ ≤ ρByλ∗ . ()

Set v = syλ∗ for given s > , then v ∈ Pe. Since s
α( 

s
)–

 < , we can choose δ >  such that

s
α( 

s
)–

 <  – δρ. Therefore, from () we have

Cλ∗+δ(v) ≤ (
λ∗ + δ

)
sAyλ∗ + s

α( 
s
)

 Byλ∗

≤ s
(
λ∗Ayλ∗ + δρByλ∗ + Byλ∗ – δρByλ∗

) ≤ v.

This means that λ∗ + δ ∈ �, which is a contradiction to the definition of λ∗. So, � = [,λ∗).
Consequently, an application of Lemma . completes the proof. �

In what follows, we assume that x is the unique fixed point of B in Pe, xλ is the unique
fixed point of Cλ in Pe and λ∗ = sup�.

http://www.boundaryvalueproblems.com/content/2014/1/80
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Theorem . Assume that (H), (H), (H), and (H) hold. Then xλ depends upon the
parameter λ as follows:

(i) xλ is nondecreasing with respect to λ for λ ∈ [,λ∗);
(ii) xλ is continuous with respect to λ for λ ∈ [,λ∗);
(iii) limλ→+ ‖xλ – x‖ =  and limλ→λ∗– ‖xλ‖ = +∞.

Proof (i) Let λ,λ ∈ [,λ∗) with λ ≤ λ. Since Cλxλ ≤ Cλxλ = xλ , from the proof of
Lemma ., we find that the unique fixed xλ of Cλ belongs to [x,xλ ], which means that
xλ ≤ xλ .
(ii) Let λ ∈ (,λ∗). In order to prove limλ→λ–

‖xλ – xλ‖ = , let sequence {λn} satisfy

 < λ ≤ λ ≤ · · · ≤ λn ≤ · · · ≤ λ and lim
n→+∞λn = λ.

By virtue of the above conclusion (i) we have

xλ ≤ xλ ≤ · · · ≤ xλn ≤ · · · ≤ xλ , ()

which implies that {xλn} is a bounded subset in P. Further, similarly to the proof of the
conclusion (ii) in Lemma . we see that {xλn} converges to x∗ ∈ P. From () we have
x∗ ∈ [xλ ,xλ ], which leads to x∗ ∈ Pe. Note that

xλn = λnAxλn + Bxλn .

By taking the limit we have x∗ = λAx∗ + Bx∗ = Cλx∗. Since Cλ has only one fixed point
in Pe, then x∗ = xλ . This means that ‖xλ – xλ‖ →  as λ → λ–

 .
A similar argument can show that for any λ ∈ [,λ∗), ‖xλ – xλ‖ →  as λ → λ+

. Thus,
the proof of (ii) is complete.
(iii) It is obvious from the above conclusion (ii) that limλ→+ ‖xλ – x‖ = .
In order to finish the proof of limλ→λ∗– ‖xλ‖ = +∞, we consider two cases.
Case . λ∗ = +∞.
Since xλ = λAxλ +Bxλ ≥ λAx, then ‖xλ‖ ≥ λ‖Ax‖, whichmeans limλ→λ∗– ‖xλ‖ = +∞.
Case . λ∗ < +∞.
By the above conclusion (i) we have limλ→λ∗– ‖xλ‖ ≤ +∞. Suppose to the contrary that

limλ→λ∗– ‖xλ‖ < +∞. Similarly to the case  in the proof of Lemma ., we conclude that
Cλ∗ has a fixed point x∗ ∈ P\{θ}. From Remark . we have x∗ ∈ Pe. So λ∗ ∈ [,λ∗), which
is a contradiction. This ends the proof. �

Now, we give an estimate for critical value λ∗ in Theorem .. If (H) and (H) hold,
then

f (t,x)
x

≤ f (t, )≤ max
t∈[,]

f (t, ), x > , t ∈ [, ].

Moreover, F∞ = lim supx→+∞ maxt∈[,] f (t,x)
x ∈ [, +∞).

Theorem . Assume that (H), (H), (H), and (H) hold. Then

λ∗
{

≥ 
F∞ ,  < F∞ < +∞,

= +∞, F∞ = .
()

http://www.boundaryvalueproblems.com/content/2014/1/80
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Proof For any ε > , there exists r ∈ (, ) such that

q() ≤ 
r

and f
(
t,

r

)
≤ 

r
(F∞ + ε), r ≤ r, t ∈ [, ], ()

Note that rα(r)
r

> , we can choose a sufficiently large positive integer number k such that

( r
α(r)

r

)k ≥ 
r
, that is,

(


rα(r)

)k

≤ 
rk–

. ()

Let w(t) = ( 
r
)ke(t), then, from (), (), and () we have

(Aw)(t) ≤ t



∫ 


sf

(
s,


rk

)
ds≤ t

rk–

∫ 


sf

(
s,


r

)
ds≤ 


(F∞ + ε)w(t),

(Bw)(t)≤ t


q
(

rk

)
≤ t



(


rα(r)

)
q
(


rk–

)
≤ t



(


rα(r)

)k

q() ≤ t



(

r

)k

=


w(t).

Moreover, taking λε = 
F∞+ε

, we have

(Cλεw)(t) = λε(Aw)(t) + (Bw)(t)≤ 


λε(F∞ + ε)w(t) +


w(t) ≤ w(t).

Consequently, from () we obtain λε = 
F∞+ε

∈ [,λ∗), that is, λ∗ > 
F∞+ε

, which implies
that () holds. This completes the proof. �

Remark . Different fromTheorems . and ., the estimate of λ∗ in Theorem. does
not take into account effect of q(x). This is valuable, because the conditions (H) and (H)
cannot ensure Q∞ <  as lim supr→ α(r) = . Certainly, if Q∞ < , then λ∗ ≥ (–Q∞)

F∞ . In
particular, if Q∞ = , then λ∗ ≥ 

F∞ .

Corollary . Assume that (H), (H), (H), and (H) hold. Then
(i) BVP () has a unique positive solution xλ in Pe for λ ∈ [, +∞).Moreover, for any

w ∈ Pe, set wn = λAwn– + Bwn– (n = , , . . .), then limn→+∞ ‖wn – xλ‖ = ;
(ii) xλ is nondecreasing with respect to λ for λ ∈ [, +∞);
(iii) xλ is continuous with respect to λ for λ ∈ [, +∞);
(iv) limλ→+ ‖xλ – x‖ =  and limλ→+∞ ‖xλ‖ = +∞.

Proof From (H), (H), (H), and (), we see that Cλ : Pe → Pe is increasing for any given
λ ≥ . Further, for any given λ ≥  we have

Cλ(rx) = λA(rx) + B(rx)≥ rδ(r)Cλx, x ∈ Pe, r ∈ (, ),

where δ(r) =max{α(r),β(r)}. Thus, the conclusion (i) follows from Lemma ..
From (H), we have f (t, rx) ≥ rf (t,x) for r ∈ (, ), t ∈ [, ] and x ∈ [, +∞). Therefore,

in the same way as in the proof of Theorem ., we can complete the rest of the proof.
�
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When q(x) ≡ c >  is a constant function, Q∞ =  and Bx(t) = c(  t
 – 

 t
) := x(t). It is

evident that B satisfies (H) and (H). So we can obtain the following two results.

Corollary . Assume that (H) and (H) hold. If F∞ > , then
(i) there exists λ∗ ≥ 

F∞ >  such that BVP () with q(x) ≡ c has a unique positive
solution xλ in Pe for λ ∈ [,λ∗) and does not have any solution in Pe for λ ≥ λ∗.
Moreover, for any w ∈ Pe, set wn = x + λAwn– (n = , , . . .), then
limn→+∞ ‖wn – xλ‖ = ;

(ii) xλ is nondecreasing with respect to λ for λ ∈ [,λ∗);
(iii) xλ is continuous with respect to λ for λ ∈ [,λ∗);
(iv) limλ→+ ‖xλ – x‖ =  and limλ→λ∗– ‖xλ‖ = +∞.

Corollary . Assume that (H) and (H) hold. If F∞ = , then
(i) for any λ ∈ [, +∞), BVP () with q(x)≡ c has a unique positive solution xλ in Pe,

moreover, for any w ∈ Pe, set wn = x + λAwn– (n = , , . . .), then
limn→+∞ ‖wn – xλ‖ = ;

(ii) xλ is nondecreasing in λ for λ ∈ [, +∞);
(iii) xλ is continuous with respect to λ for λ ∈ [, +∞);
(iv) limλ→+ ‖xλ – x‖ =  and limλ→+∞ ‖xλ‖ = +∞.

Corollary . Assume that (H) and (H) hold. Then the conclusions (i), (ii), (iii), and
(iv) in Corollary . hold.

Finally, we give two concrete examples to illustrate those results in the section.

Example  In BVP (), let

f (t,x) =

{
t
x,  ≤ x≤ ,
t
 (x +

√
x), x > 

and q(x) =

{
x


 , ≤ x≤ ,

, x > ,

it is obvious that the conditions (H) and (H) are satisfied. For any r ∈ (, ),
as  ≤ x≤ , we have f (t, rx) = tr

 x = rf (t,x);
as x >  and  < rx≤ , we have f (t, rx) = tr

 x ≥ rt
 (


x +



√
x) ≥ tr

 (x +
√
x) = rf (t,x);

as x >  and rx > , we have f (t, rx) = t
 (rx +

√
rx) ≥ tr

 (x +
√
r
√
x) ≥ rf (t,x),

that is, f (t, rx) ≥ rf (t,x) for x ∈ [, +∞) and t ∈ [, ]. Similarly, we can obtain q(rx) ≥
r

 q(x) for x ∈ [, +∞). Therefore, the conditions (H) and (H) are satisfied. Note that

F∞ = lim sup
x→+∞

max
t∈[,]

f (t,x)
x

=


, Q∞ = lim sup

x→+∞
q(x)
x

= .

By Theorems ., . and Remarks ., . we see that there exists λ∗ ≥  such that
BVP () has a unique positive solution xλ for λ ∈ [,λ∗) and does not have any positive so-
lution for λ ≥ λ∗. Moreover, for any w ∈ Pe, set wn(t) = λAwn–(t) + Bwn–(t) (n = , , . . .),
then limn→∞ ‖wn – xλ‖ = , and such solution xλ(t) satisfies the properties (i), (ii), and (iii)
in Theorem ..
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Figure 1 Solutions for BVP (1) with f (t,x) = t(1–t)x
1+x and q(x) = 1

Example  In BVP (), let f (t,x) = t(–t)x
+x , q(x) = , t ∈ [, ], x ∈ [, +∞), it is easy to see

that (H) holds. For any r ∈ (, ), we have

f (rx) =
t( – t)rx
 + rx

≥ r · t( – t)x
 + x

≥ rf (t,x), x ∈ [, +∞).

So, (H) holds. Note that

F∞ = lim sup
x→+∞

max
t∈[,]

f (t,x)
x

= ,

by Corollary . we find that BVP () has a unique positive solution xλ for λ ≥ .Moreover,
for any w ∈ Pe, set wn(t) = 

 t
 – 

 t
 + λAwn–(t) (n = , , . . .), then limn→∞ ‖wn – xλ‖ = ,

and such a solution xλ(t) satisfies the properties (ii), (iii), and (iv) in Corollary . with
x(t) = 

 t
 – 

 t
.

In this example, by usingWolframMathematica ., we can plot the graphs of solutions
xλ(t) for BVP () with λ = , , , , , , as the Figure  shows.
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