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Abstract
Hermitian Clifford analysis has emerged as a new and successful branch of Clifford
analysis, offering yet a refinement of the Euclidean case; it focuses on the
simultaneous null solutions of two Hermitian Dirac operators. Using a circulant matrix
approach, we will study the R0 Riemann type problems in Hermitian Clifford analysis.
We prove a mean value formula for the Hermitian monogenic function. We obtain a
Liouville-type theorem and a maximummodule for the function above. Applying the
Plemelj formula, integral representation formulas, and a Liouville-type theorem, we
prove that the R0 Riemann type problems for Hermitian monogenic and
Hermitian-2-monogenic functions are solvable. Explicit representation formulas of the
solutions are also given.
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1 Introduction
The classical Riemann boundary value problem (BVP for short) theory in the complex
plane has been systematically developed, see [] and []. It is natural to generalize the
classical Riemann BVP theory to higher dimensions. EuclideanClifford analysis is a higher
dimensional function theory offering a refinement of classical harmonic analysis and a
generation of complex in plane analysis. The theory is centered around the concept of
monogenic functions, see [–], etc. Under the framework, in [–], many interesting
results about BVP formonogenic functions in Clifford analysis were presented. In [] and
[], Riemann BVP for harmonic functions (i.e., -monogenic functions) and biharmonic
functions were studied, the solutions are given in an explicit way.
More recently, Hermitian Clifford analysis has emerged as a new and successful branch

of Clifford analysis, offering yet a refinement of the Euclidean case; it focuses on the simul-
taneous null solutions of two Hermitian Dirac operators invariant under the action of the
unitary group. This function theory can be found in [] and [], etc. In [], based on the
complex Clifford algebra Cn, the Hermitian Cauchy integral formulas were constructed
in the framework of circulant (× ) matrix functions, and the intimate relationship with
holomorphic function theory of several complex variables was considered. For details,
we refer to [–]. In [] and [], a matrix Hilbert transform in Hermitian Clifford
analysis was studied, and analogs of characteristic properties of the matrix Hilbert trans-
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form in classical analysis and orthogonal Clifford analysis were given, for example by the
usual Plemelj-Sokhotski formula. Under this setting it is natural to consider the Riemann
BVP. In [], the Riemann BVP for (left) Helmholtz H-monogenic functions (i.e., null so-
lutions of perturbed Hermitian Dirac operators in the framework of Hermitian Clifford
analysis). If the perturbed value vanishes, DK

(Z,Z†) isD(Z,Z†), then the R– Riemann BVP for
H-monogenic circulant ( × ) matrix functions was solved. Also, we naturally consider
R Riemann BVP for H-monogenic circulant (× ) matrix functions (i.e., null solutions
to D(Z,Z†)) and H--monogenic circulant ( × ) matrix functions (i.e., null solutions to
D

(Z,Z†)). Roughly speaking R Riemann BVP means that we prescribe that the solutions
are bounded at infinity. Up to present, as far as we know, it is a new problem. In this paper,
motivated by [, , , , , ], we will consider R Riemann BVP for H--monogenic
circulant ( × ) matrix functions in Hermitian Clifford analysis. Applying the integral
representation formulas of H-monogenic circulant ( × ) matrix functions and H--
monogenic circulant (×) matrix functions, we get mean values formulas. Furthermore
we prove a maximum modulus theorem and a Liouville theorem in Hermitian Clifford
analysis. Finally we get explicit solutions for R Riemann BVP for H--monogenic circu-
lant (× ) matrix functions in Hermitian Clifford analysis. Some results of [] and []
are generalized in our paper.

2 Preliminaries
In this section we recall some basic facts about Clifford algebras and Hermitian Clifford
analysis which will be needed in the sequel. More details can also be found in [] and [].
Let Vn, be an n-dimensional (n ≥ ) real linear space with basis {e, e, . . . , en},

Cl(Vn,) be the n-dimensional real linear space with basis{
eA,A = {h, . . . ,hr} ∈PN , ≤ h < · · · < hr ≤ n

}
,

whereN stands for the set {, . . . , n} and let PN denote the family of all order-preserving
subsets of N in the above way. Now denote e∅ by e and eh···hr by eA for A = {h, . . . ,hr} ∈
PN . The product on Cl(Vn,) is defined by{

eAeB = (–)#(A∩B)(–)P(A,B)eA�B, if A,B ∈PN ,
λμ =

∑
A,B∈PN λAμBeAeB, if λ =

∑
A∈PN λAeA,μ =

∑
B∈PN μBeB,

(.)

where #(A) is the cardinal number of the set A, the number P(A,B) =
∑

j∈B P(A, j), P(A, j) =
#{i, i ∈ A, i > j}, the symmetric difference set A � B is also order-preserving in the above
way, and λA ∈ R is the coefficient of the eA-component of the Clifford number λ. Also,
denote [λ]A by λA. It follows at once from themultiplication rule (.) that e is the identity
element written now as  and, in particular,⎧⎪⎨⎪⎩

ei = –, if i = , . . . , n,
eiej = –ejei, if ≤ i < j ≤ n,
eheh . . . ehr = ehh...hr , if  ≤ h < h < · · · < hr ≤ n.

(.)

Thus Cl(Vn,) is a real linear, associative, but non-commutative algebra and it is called
the Clifford algebra over Vn,. An involution is defined by{

eA = (–)
#(A)(#(A)+)

 eA, if A ∈PN ,
λ =

∑
A∈PN λAeA, if λ =

∑
A∈PN λAeA.

(.)
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From (.) and (.), we have

{
ei = –ei, if i = , . . . , n,
λμ = μλ, for any λ,μ ∈ Cl(Vn, ).

(.)

The Euclidean space Rn is embedded in Cl(Vn,) by identifying (X, . . . ,Xn) with the
Clifford vector X given by

X =
n∑
j=

ejXj.

Note that the square of X is scalar valued and equals the norm squared up to a minus sign:
X = –〈X,X〉 = –|X|. The dual of X is the vector-valued first order differential operator

∂X =
n∑
j=

ej∂Xj

called a Dirac operator. It is precisely this Dirac operator which underlies the notion of
monogenicity of a function, a notion which is the higher dimensional counterpart of holo-
morphy in the complex plane. A function f defined and differentiable in an open region �

ofRn and taking values inCl(Vn,) is called (left)monogenic in� if ∂X[f ] = .As theDirac
operator factorizes the Laplacian, �n = –∂

X , monogenicity can be regarded as a refine-
ment of harmonicity.We refer to this setting as the orthogonal case, since the fundamental
group leaving the Dirac operator ∂X invariant is the special orthogonal group SO(n,R),
which is doubly covered by the Spin(m) group of theClifford algebraCl(Vn,). For this rea-
son, the Dirac operator is also called rotation invariant. When allowing for complex con-
stants, the set of generators {e, . . . , en} produces the complex Clifford algebra Cn, being
the complexification of the real Clifford algebra Cl(Vn,), i.e. Cn = Cl(Vn,)⊕ iCl(Vn,).
Any complex Clifford number λ ∈ Cn may be written as λ = a + ib, a,b ∈ Cl(Vn,), an
observation leading to the definition of the Hermitian conjugation λ† = (a + ib)† = a – ib,
where the bar notation stands for the usual Clifford conjugation in Cl(Vn,), i.e. the main
anti-involution for which ej = –ej, j = , . . . , n. This Hermitian conjugation also leads to a
Hermitian inner product and its associated norm on Cn is given by (λ,μ) = [λ†μ] and
|λ| =√

[λ†λ] = (
∑

A |λA|)  .
The above will be the framework for the so-called Hermitian Clifford analysis, yet a

refinement of orthogonal Clifford analysis. An elegant way for introducing this setting
consists in considering a so-called complex structure, i.e. a specific SO(n;R)-element J
for which J = – (see [–]). Here, J is chosen to act upon the generators e, . . . , en of
the Clifford algebra as

J[ej] = –en+j and J[en+j] = ej, j = , . . . ,n.

With J one may associate two projection operators 
 (± iJ) which will produce the main

protagonists of the Hermitian setting by acting upon the corresponding objects in the
orthogonal framework. First of all, the so-called Witt basis elements {fj, f †j | j = , , . . . ,n}

http://www.boundaryvalueproblems.com/content/2014/1/81
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for the complex Clifford algebra Cn are obtained through the action of ± 
 (± iJ) on the

orthogonal basis elements ej:

fj =


( + iJ)[ej] =



(ej – ien+j), j = , . . . ,n,

f †j = –


( – iJ)[ej] = –



(ej + ien+j), j = , . . . ,n.

These Witt basis elements satisfy the Grassmann identities,

fjfk + fkfj = f †j f
†
k + f †k f

†
j = , j,k = , . . . ,n,

and the duality identities,

fjf †k + f †k fj = δjk , j,k = , . . . ,n.

Next we identify a vector X = (X, . . . ,Xn) in Rn with the Clifford vector X =
∑n

j=(ejxj +
en+jyj) and we denote by X| the action of the complex structure J on X, i.e.

X| = J[X] =
n∑
j=

(ejyj – en+jxj).

Note that the vectors X and X| are orthogonal, the Clifford vectors X and X| anti-
commute. The actions of the projection operators on the Clifford vector X then produce
the Hermitian Clifford variables Z and its Hermitian conjugate Z†:

Z =


( + iJ)[X] =



(X + iX|),

Z† = –


( – iJ)[X] = –



(X – iX|),

which can be rewritten in terms of the Witt basis elements as

Z =
n∑
j=

fjzj and Z† = (Z)† =
n∑
j=

f †j z
c
j ,

where n complex variables zj = xj + iyj have been introduced, with complex conjugates
zcj = xj – iyj, j = , . . . ,n. Finally, the Hermitian Dirac operators ∂Z and ∂Z† are derived from
the orthogonal Dirac operator ∂X :

∂Z† =


( + iJ)[∂X] =



(∂X + i∂X|),

∂Z = –


( – iJ)[∂X] = –



(∂X – i∂X|),

where we have introduced

∂X| = J[∂X] =
n∑
j=

(ej∂yj – en+j∂xj ).

http://www.boundaryvalueproblems.com/content/2014/1/81
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In view of the Witt basis, the Hermitian Dirac operators are expressed as

∂Z =
n∑
j=

f †j ∂Zj and ∂Z† = (∂Z)† =
n∑
j=

fj∂zcj

involving the classical Cauchy-Riemann operators ∂zj =

 (∂xj – i∂yj ) and their complex con-

jugates ∂zcj =

 (∂xj + i∂yj ) in the complex zj-planes, j = , . . . ,n.

Finally observe that the Hermitian vector variables and Dirac operators are isotropic,
since the Witt basis elements are, i.e.

(Z) =
(
Z†

) =  and (∂Z) = (∂Z† ) = ,

whence the Laplacian �n = –∂
X = –∂

X| allows for the decomposition

�n = (∂Z∂Z† + ∂Z†∂Z),

while also

ZZ† + Z†Z = |Z| = ∣∣Z†
∣∣ = |X| = |X||.

For further use, we introduce the Hermitian oriented surface elements dσZ and dσZ† as
follows:

dσZ = –


(–)

n(n+)
 (i)n(d̃σX – id̃σX|),

dσZ† = –


(–)

n(n+)
 (i)n(d̃σX + id̃σX|),

where d̃σX denotes the vector-valued oriented surface element and d̃σX| = J[d̃σX]. They
are explicitly given by means of the following differential forms of order n – :

d̃σX =
n∑
j=

ej(–)j– ˜̂dxj + n∑
j=

en+j(–)n+j– ˜̂dyj,
d̃σX| =

n∑
j=

ej(–)n+j– ˜̂dyj – n∑
j=

en+j(–)j– ˜̂dxj,
here

˜̂dxj = dx ∧ · · · ∧ dxj– ∧ dxj+ ∧ · · · ∧ dxn ∧ dy ∧ · · · ∧ dyn,˜̂dyj = dx ∧ · · · ∧ dxn ∧ dy ∧ · · · ∧ dyj– ∧ dyj+ ∧ · · · ∧ dyn,

and the corresponding oriented volume elements then read

d̃V (X) = dx ∧ · · · ∧ dxn ∧ dy ∧ · · · ∧ dyn,

d̃V (X|) = dy ∧ · · · ∧ dyn ∧ (–dx)∧ · · · ∧ (–dxn).

http://www.boundaryvalueproblems.com/content/2014/1/81
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We also consider the associated volume element dW (Z,Z†), defined as

dW
(
Z,Z†

)
=

(
dz ∧ dzc

) ∧ (
dz ∧ dzc

) ∧ · · · ∧ (
dzn ∧ dzcn

)
,

reflecting integration over the respective complex zj-planes, j = , . . . ,n. One has

d̃V (X) = (–)
n(n–)



(
i


)n

dW
(
Z,Z†

)
.

We still introduce the matrix

d�(Z,Z†) =

(
dσZ –dσZ†

–dσZ† dσZ

)
,

which will play the role of the differential form.

Definition . A continuously differentiable function f on an open region � of Rn with
values in Cn is called a (left) h-monogenic function in �, iff it satisfies in � the system

∂Xf =  = ∂X|f

or, equivalently, the system

∂Zf =  = ∂Z† f .

The respective fundamental solutions of ∂X and ∂X| are given by

E(X) =


ωn

X
|X|n , E|(X) = 

ωn

X|
|X|n , X ∈ Rn \ {},

where ωn denotes the area of the unit sphere Sn– in Rn. The transition from Hermi-
tian Clifford analysis to a circulant matrix approach is essentially based on the following
observation. Introducing the particular circulant (× ) matrices

D(Z,Z†) =

(
∂Z ∂Z†

∂Z† ∂Z

)
and E =

(
E E†

E† E

)
,

where E = –(E + iE|) and E† = (E – iE|). ThenD(Z,Z†)E = δ, where δ is the diagonal matrix
with the Dirac delta distribution δ on the diagonal, may be considered as a fundamental
solution of thematrix operatorD(Z,Z†). This has also led to a theory ofH-monogenic (×)
circulant matrix functions, the framework for this theory being as follows. Let g, g be
continuously differentiable functions defined in � and taking values in Cn, and consider
the corresponding (× ) circulant matrix function

G
(X) =

(
g(X) g(X)
g(X) g(X)

)
.

The ring of such matrix functions over Cn is denoted by CM×. In what follows,O will
be denoting the matrix in CM× with zero entries.

http://www.boundaryvalueproblems.com/content/2014/1/81
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Definition . Thematrix functionG
 ∈ CM× is called (left)H-monogenic in� if and

only if it satisfies in � the system D(Z,Z†)[G
] =O.

The notions of continuity, differentiability, and integrability of G
 ∈ CM× have the

usual component-wise meaning. In particular, we will need to defined in this way the
classes Cr(�), r ∈N \ {}, of r times continuously differentiable functions over some suit-
able subset � of Rn, C,α(�) stands for Hölder continuous circulant matrix functions
over �. We introduce the non-negative function

∥∥G
(X)

∥∥ =

( ∑
i=

∣∣gi(x)∣∣)



,

where | · | denotes the Clifford norm.

Definition . The matrix function G
 ∈ CrM× (r ≥ ) is called (left) H--monogenic

in � if and only if it satisfies in � the system (D(Z,Z†))[G
] =O.

In what follows we suppose

B+(Y ,R) =
{
X ∈ Rn : |X – Y | < R

}
,

B–(Y ,R) =
{
X ∈ Rn : |X – Y | > R

}
,

∂B(Y ,R) =
{
X ∈ Rn : |X – Y | = R

}
,

with R > .

3 Some properties forH-monogenic circulant (2× 2)matrix functions
Theorem . If the matrix functions G

(X) =
( g(X) g(X)
g(X) g(X)

)
is H-monogenic in � then

n
ωnRn

∫
B(Y ,R)

G
(X) d̃V (X) =G

(Y ) (.)

for each R >  such that B(Y ,R)⊂ �.

Proof Take R >  such that B(Y ,R) ⊂ �. Apply Hermitian Cauchy’s integral formula I (in
[]). On the ball B(Y ,R), we have

G
(Y ) = (–)

n(n+)


(
–
i


)n ∫
∂B(Y ,R)

E(Z –V )d�(Z,Z†)G

(X)

=


ωnRn (–)
n(n+)



(
–
i


)n ∫
∂B(Y ,R)

GZ–V d�(Z,Z†)G

(X),

where

GZ–V =

(
Z –V Z† –V †

Z† –V † Z –V

)
.

http://www.boundaryvalueproblems.com/content/2014/1/81
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As [GZ–V ]D(Z,Z†) =
( n 
 n

)
, we apply the Hermitian Clifford-Stokes theorem (in []),

G
(Y ) =


ωnRn

∫
B(Y ,R)

(
n 
 n

)
G

(X) d̃V (X).

The result follows. �

The notions of continuity, differentiability, and integrability of G
(X) have the usual

component-wise meaning.

Theorem . (Liouville theorem) If the matrix function G
 ∈CM× isH-monogenic in

Rn and satisfies ‖G
(X)‖ ≤ M for all X ∈ Rn then G

(X) must be a constant circulant
matrix in Rn.

Proof By Theorem ., we have

∥∥G
(Y ) –G

()
∥∥ =

n
ωnRn

∥∥∥∥∫
B(Y ,R)

G
(X) d̃V (X) –

∫
B(,R)

G
(X) d̃V (X)

∥∥∥∥
≤ M

V (DR)
V (B(,R))

, (.)

whereDR denotes the symmetric difference ofB(Y ,R) andB(,R),V (·) is Lebesgue volume
measure on Rn, so that DR = [B(Y ,R) ∪ B(,R)] \ [B(Y ,R) ∩ B(,R)]. The last expression
above tends to  as R → ∞. Thus G

(Y ) = G
() and so G

(Y ) is a constant circulant
matrix. �

Theorem . (Maximum modulus theorem) Let the matrix functions G
(X) be a

H-monogenic in the open and connected set �. If there exists a point A ∈ � such that

∥∥G
(X)

∥∥ ≤ ∥∥G
(A)

∥∥
for all X ∈ �, then G

 must be constant circulant matrix in �.

Proof Put ‖G
(A)‖ = λ and consider the subset �λ of � given by

�λ =
{
X ∈ � | ∥∥G

(X)
∥∥ = λ

}
.

Since A ∈ �λ, then �λ �=∅. So let Y ∈ � \ �λ; this implies that ‖G
(Y )‖ < λ. As ‖G

(X)‖
is continuous in �, there exists an R′ >  such that B(Y ,R′) ⊂ � \ �λ. This means that �λ

is relatively closed in �.
Now take Y ′ ∈ �λ and R >  such that B(Y ′,R) ⊂ �. By Theorem ., we have

G

(
Y ′) = n

ωnRn

∫
B(Y ′ ,R)

G
(X) d̃V (X), (.)

i.e. (
g(Y ′) g(Y ′)
g(Y ′) g(Y ′)

)
=

n
ωnRn

(∫
B(Y ′ ,R) g(X) d̃V (X)

∫
B(Y ′ ,R) g(X) d̃V (X)∫

B(Y ′ ,R) g(X) d̃V (X)
∫
B(Y ′ ,R) g(X) d̃V (X)

)
,

http://www.boundaryvalueproblems.com/content/2014/1/81
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we then have

λ =
∥∥G


(
Y ′)∥∥ = n

(
n

ωnRn

) ∑
i=

∑
A

∣∣∣∣∫
B(Y ′ ,R)

giA (X) d̃V (X)
∣∣∣∣. (.)

Applying Hölder’s inequality,

λ ≤ n
n

ω
nRn

∑
i=

∑
A

(∫
B(Y ′ ,R)

d̃V (X)
)(∫

B(Y ′ ,R)

∣∣giA (X)∣∣ d̃V (X)
)

≤ n
ωnRn

∑
i=

∫
B(Y ′ ,R)

∣∣gi(X)∣∣ d̃V (X)

=
n

ωnRn

∫
B(Y ′ ,R)

∥∥G
(X)

∥∥ d̃V (X).

Hence

 ≤ n
ωnRn

∫
B(Y ′ ,R)

(∥∥G
(X)

∥∥ – λ) d̃V (X) ≤ ,

which yields ‖G
‖ = λ for all X ∈ o

B(Y ′,R), this means that
o
B(Y ′,R) ⊂ �λ and hence that

�λ is relatively open in �. As � is supposed to be connected it follows that � =�λ.
Now if λ =  then clearlyG

(X) =O for allX ∈ �. For λ �= , sinceG
(X) isH-monogenic

in �, we have

O = (D(Z,Z†))
†(D(Z,Z†))

(
g(X) g(X)
g(X) g(X)

)

=

(
�n 
 �n

)(
g(X) g(X)
g(X) g(X)

)
, (.)

then for all X ∈ �, �ng(X) =  and �ng(X) = . Hence we obtain �ngA (X) =  and
�ngA (X) =  for all X ∈ �. For all X ∈ � we have

n
∑
i=

∑
A

∣∣giA (X)∣∣ = λ (.)

i.e.

n
∑
i=

∑
A

gA (X)giA (X) = λ (.)

and by (.), differentiating twice, we get

∑
i=

∑
A

∂
xj
giA (X)giA (X) +

∑
i=

∑
A

giA (X)∂

xj
giA (X) + 

∑
i=

∑
A

∣∣∂xj giA (X)∣∣ = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/81
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Summing up over j = , , . . . , n yields

∑
i=

∑
A

(
�ngiA (X)

)(
giA (X)

)
+

∑
i=

∑
A

giA (X)
(
�ngiA (X)

)

+ 
∑
i=

∑
j,A

∣∣∂xj giA (X)∣∣ = , (.)

we have ∂xj giA (X) =  (i = , ) in � for all j = , , . . . , n all A ∈ PN . Thus g(X), g(X) are
constants in �. The result follows. �

Corollary . Let � be a bounded open set in Rn and suppose that g(X), g(X) are func-
tions in C(�,Cn) and G

(X) =
( g(X) g(X)
g(X) g(X)

)
is H-monogenic in �. Then

sup
X∈�

∥∥G
(X)

∥∥ = sup
X∈∂�

∥∥G
(X)

∥∥.
4 Higher order Hermitian Borel-Pompeiu formula in Hermitian Clifford analysis
Integral representation formulas in Clifford analysis have been well developed in [, –
], etc. These integral representation formulas are powerful tools. In this section, we get
the explicit expression of the kernel function for (D(Z,Z†)) and then get the explicit inte-
gral representation formulas for functions in Hermitian Clifford analysis. These explicit
integral representation formulas play an important role in studying the further properties
of the functions in Hermitian Clifford analysis.
In what follows, we denote

I =

(
 
 

)
, (.)

Ĩ =

(
 
 

)
, (.)

GZ–V =

(
Z –V Z† –V †

Z† –V † Z –V

)
, (.)

G(X,Y ) =

(
 |X – Y |

|X – Y | 

)
, (.)

E(Z –V ) =


ωn( – n)

(
 

|X–Y |n–


|X–Y |n– 

)
, X ∈ Rn \ {Y }, (.)

where ωn denotes the area of the unit sphere in Rn.

Lemma . Let E(Z –V ) be as in (.). Then [E(Z –V )]D(Z,Z†) = E(Z –V ).

Proof The identity is obtained by straightforward calculation. �

Lemma . Denote ∂X =
∑n

j=(ej∂xj + en+j∂yj ), ∂X| =
∑n

j=(ej∂yj – en+j∂xj ), then
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.

∂X
(|X – Y |) = (X – Y ), (.)

.

∂X|
(|X – Y |) = (X| – Y |). (.)

Lemma . Let G(X,Y ) and GZ–V be as in (.) and (.). Then

G(X,Y )D(Z,Z†) =GZ–V . (.)

Proof In view of Lemma ., the identity is obtained by straightforward calculation. �

Theorem . (Higher order Hermitian Borel-Pompeiu formula) Suppose � ⊂ � is a
n-dimensional compact differentiable and oriented manifold with C∞ smooth boundary
∂�, g and g are functions in C(�,Cn) andG

(X) =
( g(X) g(X)
g(X) g(X)

)
is the matrix function. It

then follows that∫
∂�

E(Z –V )d�(Z,Z†)G

(X) –

∫
∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X)

+
∫

�

E(Z –V )
[
(D(Z,Z†))

G
(X)

]
dW(Z,Z†)

=

{
O, if Y ∈ �–,
(–)

n(n+)
 (i)nG

(Y ), if Y ∈ �+.
(.)

Proof First let Y = V – V † ∈ �–. It then follows from the Stokes formula, which can be
found in [], that we have∫

�

E(Z –V )
[
(D(Z,Z†))

G
(X)

]
dW(Z,Z†)

=
∫

∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X)

–
∫

�

[
E(Z –V )D(Z,Z†)

][
D(Z,Z†)G


(X)

]
dW(Z,Z†)

=
∫

∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X) –

∫
�

E(Z –V )
[
D(Z,Z†)G


(X)

]
dW(Z,Z†)

=
∫

∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X) –

∫
∂�

E(Z –V )d�(Z,Z†)G

(X), (.)

then the left-hand side of the stated formula apparently equals zero.
Now, let Y = V –V † ∈ �+ and take R >  such that B(Y ,R) ⊂ �+. Invoking the previous

case, we may then write∫
∂(�\B(Y ,R))

E(Z –V )d�(Z,Z†)G

(X) –

∫
∂(�\B(Y ,R))

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X)

+
∫

�\B(Y ,R)
E(Z –V )

[
(D(Z,Z†))

G
(X)

]
dW(Z,Z†) =O. (.)

http://www.boundaryvalueproblems.com/content/2014/1/81
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Here we take the limits for R → . In view of the weak singularity of 
ωn(–n)


|X–Y |n– the

third term of (.) yields

lim
R→

∫
�\B(Y ,R)

E(Z –V )
[
(D(Z,Z†))

G
(X)

]
dW(Z,Z†)

=
∫

�

E(Z –V )
[
(D(Z,Z†))

G
(X)

]
dW(Z,Z†), (.)

since the integrand only contains functions which are integrable on �. Furthermore we
may write∫

∂(�\B(Y ,R))
E(Z –V )d�(Z,Z†)G


(X)

–
∫

∂(�\B(Y ,R))
E(Z –V )d�(Z,Z†)D(Z,Z†)G


(X)

=
∫

∂�

E(Z –V )d�(Z,Z†)G

(X) –

∫
∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X)

–
[∫

∂B(Y ,R)
E(Z –V )d�(Z,Z†)G


(X)

–
∫

∂B(Y ,R)
E(Z –V )d�(Z,Z†)D(Z,Z†)G


(X)

]
, (.)

we denote

ϒ :=
∫

∂B(Y ,R)
E(Z –V )d�(Z,Z†)G


(X)

–
∫

∂B(Y ,R)
E(Z –V )d�(Z,Z†)D(Z,Z†)G


(X). (.)

Combining the Stokes formula in Hermitian Clifford analysis with

(
Z –V Z† –V †

Z† –V † Z –V

)
D(Z,Z†) =

(
n 
 n

)
,

we get

ϒ =
n

ωnRn

∫
B(Y ,R)

G
(X)dW(Z,Z†) +

∫
B(Y ,R)

GZ–V
[
D(Z,Z†)G


(X)

]
dW(Z,Z†)

+


(n – )ωnRn–

∫
B(Y ,R)

Ĩ
[
(D(Z,Z†))

G
(X)

]
dW(Z,Z†), (.)

where Ĩ is defined as in (.).
It is clear that

lim
R→

ϒ = (–)
n(n+)

 (i)nG
(Y ). (.)

Then the result follows. �
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Theorem . If the matrix function G
 is H--monogenic in � then∫

∂�

E(Z –V )d�(Z,Z†)G

(X) –

∫
∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X)

=

{
O, if Y ∈ �–,
(–)

n(n+)
 (i)nG

(Y ), if Y ∈ �+.
(.)

Proof Since G
 is H--monogenic in �, in view of Theorem ., the result follows. �

Theorem . Let B(a,R) be an open ball centered at a with radius R in Rn, G
 ∈

C(B(a,R)) ∩ C(B(a,R)) and the matrix function G
 is H--monogenic in B(a,R), then

for all Y ∈ B(a,R)∫
∂B(a,R)

E(Z –V )d�(Z,Z†)G

(X) –

∫
∂B(a,R)

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X)

= (–)
n(n+)

 (i)nG
(Y ). (.)

Theorem . (Mean value theorem for H--monogenic matrix function) If the matrix
function G

(X) =
( g(X) g(X)
g(X) g(X)

)
is H--monogenic in � then

n
ωnRn

∫
B(Y ,R)

G
(X) d̃V (X) =G

(Y ) (.)

for each R >  such that B(Y ,R)⊂ �.

Proof Take R >  such that B(Y ,R) ⊂ �, by Theorem . we get

(–)
n(n+)

 (i)nG
(Y ) =

∫
∂B(Y ,R)

E(Z –V )d�(Z,Z†)G

(X)

–
∫

∂B(Y ,R)
E(Z –V )d�(Z,Z†)D(Z,Z†)G


(X)

=


ωnRn

∫
∂B(Y ,R)

GZ–V d�(Z,Z†)G

(X)

+


(n – )ωnRn–

∫
∂B(Y ,R)

Ĩd�(Z,Z†)D(Z,Z†)G

(X)

:= ϒ. (.)

Combining with the Stokes formula in Hermitian Clifford analysis, G
 isH--monogenic

in �, Lemma . with (–i)n(–)
n(n–)

 d̃V (X) = dW (Z,Z†), we have

ϒ =
n

ωnRn

∫
B(Y ,R)

G
(X)dW

(
Z,Z†

)
+


ωnRn

∫
B(Y ,R)

GZ–V
[
D(Z,Z†)G


(X)

]
dW

(
Z,Z†

)
=

n
ωnRn (–i)

n(–)
n(n–)



∫
B(Y ,R)

G
(X) d̃V (X)

http://www.boundaryvalueproblems.com/content/2014/1/81
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+


ωnRn

∫
B(Y ,R)

[G(X,Y )D(Z,Z†)]
[
D(Z,Z†)G


(X)

]
dW

(
Z,Z†

)
=

n
ωnRn (–i)

n(–)
n(n–)



∫
B(Y ,R)

G
(X) d̃V (X)

+
R

ωnRn

∫
∂B(Y ,R)

Ĩd�(Z,Z†)D(Z,Z†)G

(X)

=
n

ωnRn (–i)
n(–)

n(n–)


∫
B(Y ,R)

G
(X) d̃V (X). (.)

The proof is done. �

Corollary . If the matrix function G
 =

( g(X) g(X)
g(X) g(X)

)
is H--monogenic in Rn and satis-

fies ‖G
(X)‖ ≤M for all X ∈ Rn, then G

(X)must be a constant circulant matrix in Rn.

Proof The proof is similar to the method in Theorem .. �

Suppose � is an open bounded non-empty subset of Rn with a Liapunov boundary ∂�,
we usually write �+ = � and �– = Rn \ �. The notations Y and Y | will be reserved for
Clifford vectors associated to points �+, while their Hermitian counterparts are denoted
V = 

 (Y + iY |) and V † = – 
 (Y – iY |). By means of the matrix approach sketched above,

the following Hermitian Plemelj-Sokhotski formula.
We shall introduce the following matrix operators:

C
[
G


]
(Y ) =

∫
∂�

E(Z –V )d�(Z,Z†)G

(X), Y ∈ �±, (.)

H∂�

[
G


]
(Y ) = (–)

n(n+)


(
–
i


)n ∫
∂�

E(Z –V )d�(Z,Z†)G

(X), Y ∈ ∂�, (.)

where G
(X) ∈C,α(∂�).

Lemma . [, ] Let G
(X) ∈ C,α(∂�). Then the boundary values of the Hermitian

Cauchy integral C[G
] are given by

C
[
G


]±(U) = lim

Y→U∈∂�Y∈�± C
[
G


]
(Y )

= (–)
n(n+)

 (i)n
(

± 

G

(U) +H∂�

[
G


]
(U)

)
.

Theorem . Let B(a,R) be an open ball centered at a, with radius R in Rn, g, g ∈
C(Rn \ ∂B(a,R),Cn), D(Z,Z†)G

 =  in Rn \ ∂B(a,R), [G
]+(Y ) = [G

]–(Y ) ∈ C,α(∂B(a,
R)),  < α ≤ . Then D(Z,Z†)G

 =  in Rn.

Proof Weonly need to prove that for any Y  ∈ ∂B(a,R),D(Z,Z†)G
(Y ) = . DefineG

(Y ) =
[G

]+(Y ) = [G
]–(Y ), Y ∈ ∂B(a,R). For any Y  ∈ ∂B(a,R), taking constants δ > , B(Y , δ) is

a ball with the center at Y  and radius δ such that B(a,R) ⊂ B(Y , δ). Obviously, ∂B(a,R)∪
∂B(Y , δ) is a Liapunov boundary. Using the Hermitian Borel-Pompeiu formula, we have

(–)
n(n+)

 (i)nG
(Y ) =

∫
∂B(a,R)

E(Z –V )d�(Z,Z†)G

(X), Y  ∈ B(a,R), (.)

http://www.boundaryvalueproblems.com/content/2014/1/81
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(–)
n(n+)

 (i)nG
(Y ) =

∫
∂B(a,R)∪∂B(Y,δ)

E(Z –V )d�(Z,Z†)G

(X),

Y  ∈ o
B(Y , δ) \ B(a,R). (.)

Using Lemma ., for Y  ∈ ∂B(a,R), we obtain

G
(Y ) =

[
G


]+(Y ) =G

(Y ) +H∂B(a,R)
[
G


]
(Y ), (.)

G
(Y ) =

[
G


]–(Y ) =

(


G

(Y ) +H∂B(a,R)∪∂B(Y,δ)
[
G


]
(Y )

)
. (.)

Combining (.) with (.), we get

(–)
n(n+)

 (i)nG
(Y ) =

∫
∂B(Y,δ)

E(Z –V )d�(Z,Z†)G

(X).

Therefore D(Z,Z†)G
(Y ) = , and the result follows. �

Theorem . Let B(a,R) be an open ball centered at a, with radius R in Rn, g, g ∈
C(B(a,R),Cn)∩C(B(a,R),Cn) g, g ∈ C(B–(a,R),Cn)∩C(B–(a,R),Cn), (D(Z,Z†)) ×
G

 =  in Rn \ ∂B(a,R), and G
 satisfies the following conditions:{

[G
]+(Y ) = [G

]–(Y ) ∈C,α(∂B(a,R)),
[D(Z,Z†)G

]+(Y ) = [D(Z,Z†)G
]–(Y ) ∈C,β (∂B(a,R)),

where  < α,β ≤ , then (D(Z,Z†))G
 =  in Rn.

Proof In view of the weak singularity of 
ωn(–n)


|X–Y |n– , combining Theorem . with

Lemma ., the theorem can be similarly proved similarly to Theorem .. �

Theorem . Let g, g ∈ C(B–(a,R),Cn) ∩ C(B–(a,R),Cn), (D(Z,Z†))G
 =  in B–(a,

R), {
[G

]+(Y ) = [G
]–(Y ) ∈C,α(∂B(a,R)),

[D(Z,Z†)G
]+(Y ) = [D(Z,Z†)G

]–(Y ) ∈C,β (∂B(a,R)),

where  < α,β ≤ , ‖G
(X)‖ ≤M (|X| → ∞), then for Y ∈ B–(a,R)

(–)
n(n+)

 (i)nG
(Y ) = –

∫
∂�

E(Z –V )d�(Z,Z†)G

(X)

+
∫

∂�

E(Z –V )d�(Z,Z†)D(Z,Z†)G

(X) +C

∞, (.)

where C
∞ be a constant circulant matrix.

5 Riemann boundary value problem forH-monogenic functions
An R Riemann boundary value problem for H-monogenic functions is denoted as fol-
lows:⎧⎪⎨⎪⎩

D(V ,V†)G
 = , in Rn \ ∂B(a,R),

[G
]+(Y ) = [G

]–(Y )A
 + F

(Y ), Y ∈ ∂B(a,R),
‖G

(∞)‖ ≤M,
(.)
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where A
 is any invertible constant circulant matrix, we denote by [A

]– an invertible
element for A

. Here F
 is a given circulant matrix function in C,α(∂B(a,R)),  < α ≤ .

Theorem . The Riemann boundary value problem (.) is solvable and the solution can
be written as

(–)
n(n+)

 (i)nG
(Y ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
∂B(a,R) E(Z –V )d�(Z,Z†)F

(X)
+C

∞, Y ∈ B+(a,R),∫
∂B(a,R) E(Z –V )d�(Z,Z†)F

(X)[A
]–

+C
∞[A

]–, Y ∈ B–(a,R).

(.)

Proof Let

X 
 (Y ) =

{
(–)

n(n+)
 (– i

 )
nI, Y ∈ B+(a,R),

(–)
n(n+)

 (– i
 )

n[A
]–, Y ∈ B–(a,R).

(.)

Furthermore, we denote

[
X 


]–(Y ) = {

(–)
n(n+)

 (i)nI, Y ∈ B+(a,R),
(–)

n(n+)
 (i)nA

, Y ∈ B+(a,R),
(.)

and we then have D(V ,V†)[X 
 ]–(Y ) = , Y ∈ Rn \ ∂B(a,R). The transmission condition

[
G


]+(Y ) = [

G

]–(Y )A

 + F
(Y )

can be changed into

[
G


]+(Y )[[X 


]–]+(Y ) = [

G

]–(Y )[[X 


]–]–(Y ) + F

(Y )
[[
X 


]–]+(Y ), (.)

and if we denote

�
(Y ) =

∫
∂B(a,R)

E(Z –V )d�(Z,Z†)F

(X), Y ∈ Rn \ ∂B(a,R), (.)

then D(V ,V†)�

(Y ) = , Y ∈ Rn \ ∂B(a,R), and �

(∞) =O. Using Lemma ., we have

[
�


]+(Y ) – [

�

]–(Y ) = F

(Y )
[[
X 


]–]+(Y ), Y ∈ ∂B(a,R). (.)

From (.) and (.) we have

[
G


[
X 


]– –�


]+(Y ) = [

G

[
X 


]– –�


]–(Y ), Y ∈ ∂B(a,R). (.)

Combining Theorem . with Theorem ., there exists a constant (× ) circulant ma-
trix C

∞ such that [G
[X 

 ]– –�
](Y ) =C

∞.
On the other hand, it can be directly proved that (.) is the solution of (.), and the

proof is done. �

Remark . If (.) is solved in R–, i.e. ‖G
(∞)‖ =  is required, then the problem has

the unique solution (.) (taking C
∞ = ).
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6 Riemann boundary value problem forH-2-monogenic function in Hermitian
Clifford analysis

In this section, we shall consider the following R Riemann boundary value problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(D(V ,V†))G

 = , in Rn \ ∂B(a,R),
[G

]+(Y ) = [G
]–(Y )A

 + F
(Y ), Y ∈ ∂B(a,R),

[D(V ,V†)G
]+(Y ) = [D(V ,V†)G

]–(Y )B
 +U

(Y ), Y ∈ ∂B(a,R),
‖G

(∞)‖ ≤M,

(.)

where A
, B

 are invertible constant circulant matrices and F
(Y ), U

(Y ) are given circu-
lant matrix functions in C,α(∂B(a,R)),  < α ≤ . We shall give the explicit expression of
solutions for (.).

Theorem . The Riemann boundary value problem (.) is solvable and the solution is
given by

C(n)G
(Y ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂B(a,R) E(Z –V )d�(Z,Z†)F̃

(X)
–

∫
∂B(a,R) E(Z –V )d�(Z,Z†)U

(X)
+C

∞, Y ∈ B+(a,R),∫
∂B(a,R) E(Z –V )d�(Z,Z†)F̃

(X)[A
]–

–
∫
∂B(a,R) E(Z –V )d�(Z,Z†)U

(X)[B
]–

+C
∞[A

]–, Y ∈ B–(a,R),

(.)

where

C(n) = (–)
n(n+)

 (i)n, (.)

F̃
(Y ) = F

(Y ) – (–)
n(n+)



(
–
i


)n ∫
∂B(a,R)

E(Z –V )d�(Z,Z†)U

(X)

+ (–)
n(n+)



(
–
i


)n ∫
∂B(a,R)

E(Z –V )d�(Z,Z†)U

(X)

[
B

]–A

,

Y ∈ ∂B(a,R). (.)

Proof Let G
(Y ) be the solution of (.) for Y ∈ Rn \ ∂B(a,R). We denote W

(Y ) =
D(V ,V†)G

(Y ). Then[
W


]+(Y ) = [

W

]–(Y )B

 +U
(Y ), Y ∈ ∂B(a,R). (.)

By D(V ,V†)G
(∞) =O and Theorem ., we have

C(n)W
(Y ) =

{∫
∂B(a,R) E(Z –V )d�(Z,Z†)U

(X), Y ∈ B+(a,R),∫
∂B(a,R) E(Z –V )d�(Z,Z†)U

(X)[B
]–, Y ∈ B–(a,R).

(.)

We denote

C(n)J(Y ) =

{
–

∫
∂B(a,R) E(Z –V )d�(Z,Z†)U

(X), Y ∈ B+(a,R),
–

∫
∂B(a,R) E(Z –V )d�(Z,Z†)U

(X)[B
]–, Y ∈ B+(a,R).

(.)
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Combining (.) with (.) we then get

D(V ,V†)
[
G

 – J
]
(Y ) = , Y ∈ Rn \ ∂B(a,R). (.)

If we denote G
 – J :=�

(Y ), where Y ∈ Rn \ ∂B(a,R) and use

[
G


]+(Y ) = [

G

]–(Y )A

 + F
(Y ), Y ∈ ∂B(a,R),

then we obtain

[
�


]+(Y ) = [

�

]–(Y )A

 + F̃
(Y ), Y ∈ ∂B(a,R), (.)

where F̃
(Y ) is denoted as in (.).

It is obvious that F̃
(Y ) ∈ C,α(∂B(a,R)),  < α ≤ . Since ‖�

(∞)‖ ≤ M, using Theo-
rem . we get the following representation:

C(n)�
(Y ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
∂B(a,R) E(Z –V )d�(Z,Z† )̃F

(X)
+C

∞, Y ∈ B+(a,R),∫
∂B(a,R) E(Z –V )d�(Z,Z† )̃F

(X)[A
]–

+C
∞[A

]–, Y ∈ B–(a,R).

(.)

Combining (.) with (.) we arrive at the proposed result.
On the other hand, it can be directly proved that (.) are the solution of (.) and the

proof is done. �

Remark . If (.) is solved in R–, i.e. ‖G
(∞)‖ =  is required, then the problem has

the unique solution (.) (taking C
∞ = ).
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4. Delanghe, R, Sommen, F, Souček, V: Clifford Algebra and Spinor-Valued Functions. Kluwer Academic, Dordrecht

(1992)
5. Delanghe, R: On the regular analytic functions with values in a Clifford algebra. Math. Ann. 185, 91-111 (1970)
6. Delanghe, R: On the singularities of functions with values in a Clifford algebra. Math. Ann. 196, 293-319 (1972)
7. Bernstein, S: On the left linear Riemann problem in Clifford analysis. Bull. Belg. Math. Soc. Simon Stevin 3, 557-576

(1996)
8. Zhang, Z, Du, J: On certain Riemann boundary value problems and singular integral equations in Clifford analysis.

Chin. Ann. Math., Ser. A 22, 421-426 (2000)
9. Xu, Z: On linear and nonlinear Riemann-Hilbert problems for regular functions with values in a Clifford algebra. Chin.

Ann. Math., Ser. B 11(3), 349-358 (1990)

http://www.boundaryvalueproblems.com/content/2014/1/81


Gu and Fu Boundary Value Problems 2014, 2014:81 Page 19 of 19
http://www.boundaryvalueproblems.com/content/2014/1/81

10. Abreu Blaya, R, Bory Reyes, J: On the Riemann Hilbert type problems in Clifford analysis. Adv. Appl. Clifford Algebras
11(1), 15-26 (2001)

11. Bory Reyes, J, Abreu Blaya, R: The quaternionic Riemann problem with natural geometric condition on the boundary.
Complex Var. Theory Appl. 42, 135-149 (2000)

12. Abreu Blaya, R, Bory Reyes, J: Boundary value problems for quaternionic monogenic functions on non-smooth
surfaces. Adv. Appl. Clifford Algebras 9(1), 1-22 (1999)

13. Gürlebeck, K, Zhang, Z: Some Riemann boundary value problems in Clifford analysis. Math. Methods Appl. Sci. 33,
287-302 (2010)

14. Zhang, Z, Gürlebeck, K: Some Riemann boundary value problems in Clifford analysis (I). Complex Var. Elliptic Equ. 58,
991-1003 (2013)

15. Brackx, F, Bureš, J, De Schepper, H, Eelbode, D, Sommen, F, Soucěk, V: Fundaments of Hermitean Clifford analysis part
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