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Abstract
We study the second-order neutral delay half-linear differential equation
[r(t)�(z′(t))]′ + q(t)�(x(σ (t))) = 0, where �(t) = |t|α–1t, α ≥ 1 and z(t) = x(t) + p(t)x(τ (t)).
We use the method of Riccati type substitution and derive oscillation criteria for this
equation. By an example of the neutral Euler type equation we show that the
obtained results are sharp and improve the results of previous authors. Among others,
we improve the results of Sun et al. (Abstr. Appl. Anal. 2012:819342, 2012) and discuss
also the case when σ ◦ τ �= τ ◦ σ .
MSC: Primary 34K11; secondary 34K40
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1 Introduction
In the paper we study the equation

[
r(t)�

(
z′(t)

)]′ + q(t)�
(
x
(
σ (t)

))
= , z(t) = x(t) + p(t)x

(
τ (t)

)
, ()

where �(t) = |t|α–t is the power type nonlinearity, α ≥ , which ensures that the function
�(·) is a convex function on (,∞). The coefficients r and p are subject of usual conditions
r ∈ C([t,∞),R+), p ∈ C([t,∞),R+

) and the coefficient q is positive q ∈ C([t,∞),R+).
Further we suppose that the deviating arguments are unbounded and sufficiently smooth
functions: τ ∈ C([t,∞),R), τ ′(t) > , limt→∞ τ (t) = ∞, σ ∈ C([t,∞),R), σ ′(t) > ,
limt→∞ σ (t) = ∞ and the deviating arguments from the differential term and potential
satisfy either σ (τ (t)) = τ (σ (t)) or σ (τ (t))≥ τ (σ (t)) (in the latter case we use stronger con-
dition on the coefficient p(t) and the conclusion is weaker than in the commutative case).
By the solution of () we understand any differentiable function x(t) which does not

identically equal zero eventually, such that r(t)�(z′(t)) is differentiable and () holds for
large t.
The solution of () is said to be oscillatory if it has infinitely many zeros tending to in-

finity. Equation () is said to be oscillatory if all its solutions are oscillatory. In the opposite
case, i.e., if there exists an eventually positive solution of (), () is said to be nonoscillatory.
The neutral equations naturally arise in the mathematical models where the rate of the

growth depends not only on the current state and the state in the past, but also on the
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rate of change in the past. The paper [] suggests to imagine a child, which begins to grow
more rapidly at the age of about  years, growing more and more rapidly until a certain
height is approached, at which time there is a rapid slowing of the growth, stopping at the
adult height dictated by genes. This process can easily be modeled by neutral equation.
Similarly, the paper [] suggests one to use a logistic neutral differential equation tomodel
a population ofDaphniamagna. If in the systemmodeled by first-order neutral differential
equation the mature individuals produce some toxin which inhibits the rate the growth
and if the production of this toxin is constant per capita and unit time, then the rate of the
growth is inhibited by the term like

∫ t x(σ (s)) ds and we naturally obtain the second-order
neutral differential equation.
This research is motivated by the paper [], where the main results of [] are illustrated

by an example of the equation

[
�

((
x(t) + p(t)x(λt)

)′)]′ +
β

tα+
�

(
x(λt)

)
=  ()

with ≤ p(t) ≤ p <∞, α ≥ , β > , λ ∈ (, ).
If  < λ ≤ λ, then () is proved to be oscillatory if (see [, Example .])

β >
α–αα+

(α + )α+λα


(
 +

pα


λ

)
. ()

If λ ∈ [λ,∞), then () is proved to be oscillatory if (see [, Example .])

β >
α–αα+

(α + )α+λα


(
 +

pα


λ

)
. ()

Note that if we put λ = λ =  and p = , both oscillation constants () and () are worse
than the constant

βE :=
αα+

(α + )α+

which is well known to be an optimal oscillation constant for the Euler type equation

[
�

(
x′(t)

)]′ +
β

tα+
�

(
x(t)

)
= ; ()

see [, Chapter ..]. The aim of this paper is to develop sharper results than those of [].
The main idea is to use the classical approach based on Riccati type inequality. Due to the
neutral nature of () we have to work with () and with the same equation shifted from t to
τ (t). In contrast to the results of some other authors [, , ], we do not simply sum up the
arising Riccati equations, but we develop an advanced technique based on suitable linear
combination and careful comparison of q(t) and q(τ (t)). We show that an application of
this technique allows to remove the above mentioned disadvantages of the paper [] and
allows to derive sharper results comparing the results published in the literature. Finally,
we also discuss the case when the usual assumption σ ◦ τ = τ ◦ σ is broken. This step
opens applications to the neutral delay differential equations with proportional delay σ

and constant delay τ .
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The paper is organized as follows. In the following section we formulate inequalities
which are used to prove the main results. Section  contains main results of the paper and
examples which prove that we provide sharp oscillation constant for Euler type differential
equation. These criteria are expressed in terms of positive mutually conjugate numbers l
and l∗, the multiplicative factor ϕ, and a function Q(t).

2 Preliminary results
First we derive some technical lemmas - inequalities which are necessary to reduce
second-order differential equation into a combination of two first-order Riccati type equa-
tions. Note the changes against [] and other related papers.

(i) We use convex linear combination () instead of arithmetic mean in Lemma . To
achieve this, we consider two positive mutually conjugate numbers l and l∗, i.e. l > 
and l∗ = l

l– .
(ii) We relax the condition on the commutativity of the composition of σ and τ if x is

an increasing function in Lemma .
(iii) We use new multiplicative factor ϕ(t) in the definition of the function Q(t) in

Lemma . The factor ϕ allows us to make terms involving q(t) and q(τ (t)) closer (or
even equal, as in Examples  and  below) when looking for a smaller one.

As far as we know, these ideas have never been used in the context of Riccati technique
even in the linear case α =  and in the section withmain results we show that these points
are crucial points of the paper which allow to derive sharper results than the results pub-
lished in the literature.
Throughout the paper A+ denotes the positive part of A, i.e. A+ =max{A, }.

Lemma  The following inequality holds for every A and every B ≥ , ω ≥ :

Aω – Bω
α+
α ≤ αα

(α + )α+
Aα+
+


Bα

.

Proof The inequality is trivial if A ≤  and a special case of the Young inequality if A > .
�

Lemma  The following inequality holds for α ≥ , positive mutually conjugate numbers
l, l∗, and nonnegative a and b:


l
aα +


l∗
bα ≥

(

l
a +


l∗
b
)α

. ()

Proof The proof follows immediately from the convexity of xα . �

Lemma  Suppose that either

σ
(
τ (t)

)
= τ

(
σ (t)

)
()

or suppose that x is an increasing function and

σ
(
τ (t)

) ≥ τ
(
σ (t)

)
. ()
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The inequality

lα–xα
(
σ (t)

)
+

(
l∗

)α–pα
(
σ (t)

)
xα

(
σ
(
τ (t)

)) ≥ zα
(
σ (t)

)
()

holds for positive mutually conjugate numbers l, l∗, and every t which satisfies x(σ (t)) ≥ 
and x(σ (τ (t)))≥ .

Proof From the previous lemma using a = lx(σ (t)) and b = l∗p(σ (t))x(σ (τ (t))) and also
from the definition of z(t) and the fact that x(σ (τ (t)))≥ x(τ (σ (t))). �

Lemma  Let x be solution of (). Suppose that either () holds or suppose that x is an
increasing function and () holds. The inequality

lα–
[
r(t)�

(
z′(t)

)]′ +
(
l∗

)α–
ϕ(t)

pα(σ (t))
τ ′(t)

[
r
(
τ (t)

)
�

(
z′(τ (t)))]′ +Q(t)zα

(
σ (t)

) ≤ , ()

where

Q(t) =min
{
q(t),ϕ(t)q

(
τ (t)

)}
()

is valid for positive mutually conjugate numbers l, l∗, and a positive function ϕ(t) whenever
x(σ (t)) and x(σ (τ (t))) are nonnegative.Moreover, if there exist numbers p and τ such that
p(t) ≤ p < ∞, τ ′(t) ≥ τ > , we have also

lα–
[
r(t)�

(
z′(t)

)]′ +
(
l∗

)α–
ϕ(t)

pα


τ

[
r
(
τ (t)

)
�

(
z′(τ (t)))]′ +Q(t)zα

(
σ (t)

) ≤ , ()

whenever x(σ (t)) and x(σ (τ (t))) are nonnegative and [r(τ (t))�(z′(τ (t)))]′ is negative.

Proof To obtain the second term from the definition of z we shift () from t to τ (t) and
multiply by pα(σ (t)). We get

pα(σ (t))
τ ′(t)

[
r
(
τ (t)

)
�

(
z′(τ (t)))]′ + q

(
τ (t)

)
pα

(
σ (t)

)
xα

(
σ
(
τ (t)

))
= , ()

where z′(τ (t)) = dz(s)
ds |s=τ (t).

Now we multiply () by lα–, () by ϕ(t)(l∗)α–, and we add. We obtain

 ≥ lα–
[
r(t)�

(
z′(t)

)]′ +
(
l∗

)α–
ϕ(t)

pα(σ (t))
τ ′(t)

[
r
(
τ (t)

)
�

(
z′(τ (t)))]′

+min
{
q(t),ϕ(t)q

(
τ (t)

)}[
lα–xα

(
σ (t)

)
+

(
l∗

)α–pα
(
σ (t)

)
xα

(
σ
(
τ (t)

))]
.

Now () follows from the definition of Q and from (). Inequality () follows from ()
and from the fact that [r(τ (t))�(z′(τ (t)))]′ is negative. �

3 Main results with applications to Euler type equation
Now we are ready to prove the main results of the paper. The function Q which appears
in these criteria is a function defined by ().
We will distinguish two cases: σ (t)≤ τ (t) and τ (t)≤ σ (t). Let us start with the first case.
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Theorem  Suppose that () and

∫ ∞ 
r/α(t)

dt =∞ ()

hold. Further suppose that σ (t)≤ t, σ (t)≤ τ (t) and there exist positive mutually conjugate
numbers l, l∗ and positive functions ρ ∈ C([t,∞),R+), ϕ(t) such that

lim sup
t→∞

∫ t

t
ρ(s)Q(s) –


(α + )α+

ρ(s)r(σ (s))
(σ ′(s))α

×
[
lα–

(
ρ ′
+(s)

ρ(s)

)α+

+
(
l∗

)α– pα(σ (s))ϕ(s)
τ ′(s)

×
(

ρ ′(s)
ρ(s)

+
(
pα(σ (s))ϕ(s)

τ ′(s)

)′
τ ′(s)

pα(σ (s))ϕ(s)

)α+

+

]
ds =∞. ()

Then () is oscillatory.

Proof Suppose, by contradiction, that all of the assumptions of the theoremhold and there
exists a solution x(t) of () and a number t > t which satisfies

min
{
x(t),x

(
τ (t)

)
,x

(
σ (t)

)
,x

(
τ
(
σ (t)

))}
> 

for every t > t.
Condition () ensures that the corresponding function z is eventually increasing. In

fact, from () we have

(
r(t)�

(
z′(t)

))′ = –q(t)�
(
x
(
σ (t)

))
< 

for t ∈ (t,∞). Hence r(t)�(z′(t)) is decreasing and either

�
(
z′(t)

)
>  or �

(
z′(t)

)
< 

for large t.
Suppose that there exists T > t such that �(z′(t)) <  for t ≥ T . There exists a positive

constantM such that

r(t)�
(
z′(t)

)
< –M < 

and

z′(t) < –�–(M)r–/α(t)

for t ≥ T . Integrating this inequality over the interval (T , t) we get

z(t) ≤ z(T) –�–(M)
∫ t

T
r–/α(s) ds.
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Letting t → ∞ we have a negative upper bound for the function z and large t. However,
the positivity of both x(t) and x(τ (t)) implies positivity of z. This contradiction proves that
�(z′(t)) >  and z′(t) >  eventually.
Consequently, we will work on the interval (t,∞) where t is such that

min
{
x(t),x

(
τ (t)

)
,x

(
σ (t)

)
,x

(
σ
(
τ (t)

))
, z′(t), z′(τ (t)), z′(σ (t)), z′(τ(

σ (t)
))}

> 

for every t > t.
Define

ω(t) = ρ(t)
r(t)(z′(t))α

zα(σ (t))
. ()

Clearly ω(t) >  and

ω′(t) = ρ ′(t)
r(t)(z′(t))α

zα(σ (t))
+ ρ(t)

(r(t)(z′(t))α)′

zα(σ (t))
– αρ(t)

r(t)(z′(t))αz′(σ (t))σ ′(t)
zα+(σ (t))

.

From σ (t)≤ t and from the monotonicity of r(t)�(z′(t)) we have

z′(σ (t)) ≥
(

r(t)
r(σ (t))

)/α

z′(t)

and combining these computations we get

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′(t))α)′

zα(σ (t))
–

ασ ′(t)
ρ/α(t)r/α(σ (t))

ω
α+
α (t). ()

Further we define

v(t) = ρ(t)
r(τ (t))(z′(τ (t)))α

zα(σ (t))
, ()

we use the obvious fact v(t) >  and differentiate

v′(t) = ρ ′(t)
r(τ (t))(z′(τ (t)))α

zα(σ (t))
+ ρ(t)

(r(τ (t))(z′(τ (t)))α)′

zα(σ (t))

– αρ(t)
r(τ (t))(z′(τ (t)))αz′(σ (t))σ ′(t)

zα+(σ (t))
.

Using the monotonicity of r(t)�(z′(t)) and σ (t)≤ τ (t) we have

z′(σ (t)) ≥
(
r(τ (t))
r(σ (t))

)/α

z′(τ (t))

and hence

v′(t)≤ ρ ′(t)
ρ(t)

v(t) + ρ(t)
(r(τ (t))(z′(τ (t)))α)′

zα(σ (t))
–

ασ ′(t)
ρ/α(t)r/α(σ (t))

v
α+
α (t). ()
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Multiplying () by lα–, () by (l∗)α– p
α (σ (t))ϕ(t)

τ ′(t) , adding the resulting inequalities and
using (), we get

lα–ω′(t) +
(
l∗

)α– pα(σ (t))ϕ(t)
τ ′(t)

v′(t)

≤ –ρ(t)Q(t) + lα–
[

ρ ′(t)
ρ(t)

ω(t) –
ασ ′(t)

ρ/α(t)r/α(σ (t))
ω

α+
α (t)

]

+
(
l∗

)α–
[
pα(σ (t))ϕ(t)

τ ′(t)
ρ ′(t)
ρ(t)

v(t) –
pα(σ (t))ϕ(t)

τ ′(t)
ασ ′(t)

ρ/α(t)r/α(σ (t))
v

α+
α (t)

]
.

Using the product rule for derivatives we obtain

lα–ω′(t) +
(
l∗

)α–
(
pα(σ (t))ϕ(t)

τ ′(t)
v(t)

)′

≤ –ρ(t)Q(t) + lα–
[

ρ ′(t)
ρ(t)

ω(t) –
ασ ′(t)

ρ/α(t)r/α(σ (t))
ω

α+
α (t)

]

+
(
l∗

)α–
[(

pα(σ (t))ϕ(t)
τ ′(t)

ρ ′(t)
ρ(t)

+
(
pα(σ (t))ϕ(t)

τ ′(t)

)′)
v(t)

–
pα(σ (t))ϕ(t)

τ ′(t)
ασ ′(t)

ρ/α(t)r/α(σ (t))
v

α+
α (t)

]

and Lemma  implies

lα–ω′(t) +
(
l∗

)α–
(
pα(σ (t))ϕ(t)

τ ′(t)
v(t)

)′

≤ –ρ(t)Q(t) + lα–
αα

(α + )α+

(
ρ ′
+(t)

ρ(t)

)α+
ρ(t)r(σ (t))
αα(σ ′(t))α

+
(
l∗

)α– αα

(α + )α+

(
pα(σ (t))ϕ(t)

τ ′(t)
ρ ′(t)
ρ(t)

+
(
pα(σ (t))ϕ(t)

τ ′(t)

)′)α+

+

× (τ ′(t))α

pα (σ (t))ϕα(t)
ρ(t)r(σ (t))
αα(σ ′(t))α

.

Integrating from t to t

lα–ω(t) – lα–ω(t) +
(
l∗

)α– pα(σ (t))ϕ(t)
τ ′(t)

v(t) –
(
l∗

)α– pα(σ (t))ϕ(t)
τ ′(t)

v(t)

≤ –
∫ t

t
ρ(s)Q(s) –


(α + )α+

ρ(s)r(σ (s))
(σ ′(s))α

×
[
lα–

(
ρ ′
+(s)

ρ(s)

)α+

+
(
l∗

)α– pα(σ (s))ϕ(s)
τ ′(s)

×
(

ρ ′(s)
ρ(s)

+
(
pα(σ (s))ϕ(s)

τ ′(s)

)′
τ ′(s)

pα(σ (s))ϕ(s)

)α+

+

]
ds.

Multiplying by – and taking into account the fact that bothω(t) and pα (σ (t))ϕ(t)
τ ′(t) v(t) are non-

negative we get a finite upper bound for the integral from (), which contradicts (). �
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Remark  Under the conditions l = l∗ = , ϕ(t) =  we can obtain [, Theorem .] as a
corollary of Theorem , since the inequality

(
ρ ′(s)
ρ(s)

+
(
pα(σ (s))ϕ(s)

τ ′(s)

)′
τ ′(s)

pα(σ (s))ϕ(s)

)
+

≤ ρ ′
+(s)

ρ(s)
+

((
pα(σ (s))ϕ(s)

τ ′(s)

)′
τ ′(s)

pα(σ (s))ϕ(s)

)
+

holds.

The following corollary is in fact a variant of Theorem  if p(t) is bounded above by a
nonnegative number and τ ′(t) is bounded below by a positive number. Since () is not
simply monotone with respect to p(t) and τ (t), we have to include the corresponding es-
timates in the opening part of the proof.

Corollary  Suppose that (), (), σ (t) ≤ t and σ (t) ≤ τ (t) are satisfied and there exist
constants p ≥  and τ >  such that p(t) ≤ p < ∞ and τ ′(t) ≥ τ. If there exist positive
mutually conjugate numbers l, l∗, and positive functions ρ(t), ϕ(t) such that

lim sup
t→∞

∫ t

t
ρ(s)Q(s) –


(α + )α+

ρ(s)r(σ (s))
(σ ′(s))α

×
[
lα–

(
ρ ′
+(s)

ρ(s)

)α+

+
(
l∗

)α– pα
ϕ(s)
τ

(
ρ ′(s)
ρ(s)

+
(
pα
ϕ(s)
τ

)′
τ

pα
ϕ(s)

)α+

+

]
ds =∞, ()

then () is oscillatory.

Proof The proof is the same as the proof of Theorem , we just use () instead of () and
in the remaining part of the proof we replace p(t) by p and τ ′(t) by τ. �

Example  For the Euler type equation () with  < λ ≤ λ <  we have q(t) = β

tα+ , r(t) =
, σ (t) = λt, σ ′(t) = λ, τ (t) = λt, τ ′(t) = τ = λ, q(τ (t)) = β

λα+
 tα+

. Denote ϕ(t) = λα+


and ρ(t) = tα . With this setting we have q(t) = ϕ(t)q(τ (t)) and hence Q(t) = q(t). Further
ρ(t)Q(t) = β

t ,
ρ′(t)
ρ(t) =

α
t ,

pα
ϕ(t)
τ

= (pλ)α and () becomes

[
β –

(
α

α + 

)α+ 
λα


[
lα– +

(
l∗

)α–pα
λ

α

]]

lim sup
t→∞

∫ t 
s
ds =∞

and () is oscillatory if

β >
(

α

α + 

)α+ 
λα


[
lα– +

(
l∗

)α–pα
λ

α

]
. ()

Note that if l = l∗ = , then this condition becomes

β >
(

α

α + 

)α+ α–

λα


[
 + pα

λ
α

]
,

and since for λ <  we have λα
 <  < 

λ
, this oscillation constant is smaller than the oscil-

lation constant from ().

http://www.boundaryvalueproblems.com/content/2014/1/83
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Further, if p =  and λ =  = λ, then () becomes (). Condition () becomes

β >
(

α

α + 

)α+

lα–

and, since l >  is arbitrary, we get

β >
(

α

α + 

)α+

which is well known to be an optimal and non-improvable oscillation constant for (). In
this sense we consider our result as reasonably sharp.
Finally, taking into account that l∗ = l

l– , condition () becomes

β >
(

α

α + 

)α+ 
λα


[
lα– +

(
l

l – 

)α–

pα
λ

α


]
.

A simple computation shows that the function

f (l) = lα– +
(

l
l – 

)α–

pα
λ

α
 , l > , ()

satisfies

f ′(l) = (α – )lα–
[
 –


(l – )α

pα
λ

α


]

and has a global minimum at l = + pλ. Thus the choice l = + pλ in () produces the
smallest oscillation constant

β >
(

α

α + 

)α+ ( + pλ)α

λα


.

Example  Baculíková et al. [, Example .] considered the equation

(
t
∣∣z′(t)

∣∣z′(t)
)′ +

b
t

∣∣x(βt)∣∣x(βt) =  ()

with z(t) = x(t)+px(ωt), p > , b >  and  < β < . They proved that under the condition
β < ω <  () is oscillatory if

b ln
ω

β
>

ω + p
βeω

()

(note that this condition is misprinted in []). This condition naturally produces poor os-
cillation constant if β is close to ω. In our notation we have α = , q(t) = b/t, r(t) = t,
σ (t) = βt, σ ′(t) = β , τ (t) = ωt, τ ′(t) = τ = ω. We choose ϕ(t) = ω and ρ(t) = t. Thus ()
takes the form

[
b –

l + l∗pω
β

]
lim
t→∞

∫ t

t


s
ds = ∞.
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Figure 1 Bounds for oscillation constant b from
(23) for p0 = 0.5, ω = 0.75.

Taking into account that l∗ = l
l– and that the function l + l∗pω has a local minimum

( + p
√

ω) at the point l =  + p
√

ω, we find that () is oscillatory if

b >
( + p

√
ω)

β
. ()

This condition completes condition (). It is possible to find constants ω and β for which
() is better than (), as well as constants where the opposite is true. The fact that both
estimates depend heavily on the parameters is illustrated by Figure .

The following corollary suggests another modification of the proof of Theorem : we
replace condition () by weaker condition () and add conditions which ensure that x pos-
sesses the same type of monotonicity as z.

Corollary  Suppose that p(t) ≡ p, (), (), σ (t)≤ t and σ (t)≤ τ (t) hold. If () holds for
somemutually conjugate numbers l, l∗ and positive functions ρ(t), ϕ(t), then every solution
of () is either oscillatory, or the first derivative of this solution is oscillatory.

Proof Suppose, by contradiction, that the assumptions are satisfied and x is an eventually
positive solution of () such that x′(t) is not oscillatory.
We proceed as in Theorem  with modifications mentioned in the proof of Corollary .

To ensure that Lemma  can be applied even though () need not to hold note that from
the fact that z is eventually increasing, p(t) constant and x(t) not oscillatory we conclude
easily that x is also eventually increasing. �

In the following example we show an application of Corollary  to the equation where
σ (τ (t)) �= τ (σ (t)).

Example  Consider the equation

[
�

((
x(t) + px(t – λ)

)′)]′ +
β

tα+
�

(
x(λt)

)
= 

with  ≤ p, α ≥ , β > , λ > , λ ∈ (, ). We have q(t) = β/tα+, σ (t) = λt, σ ′(t) = λ,
τ (t) = t – λ, τ ′(t) = τ = , σ (τ (t)) = λt – λλ ≥ λt – λ = τ (σ (t)), σ (t) ≤ τ (t) for large t
and q(τ (t)) ≥ q(t). We choose ϕ(t) =  and ρ(t) = tα . With this setting the condition ()
takes the form

[
β –

(
α

α + 

)α+ 
λα


(
lα– +

(
l∗

)α–pα

)]

lim
t→∞ ln

t
t

=∞.
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Using this computation and using the fact that the function lα– + (l∗)α–pα
 takes global

minimum on l ∈ (,∞) for l =  + p and l∗ =  + /p we see that the condition

β >
(

α

α + 

)α+ ( + p)α

λα


guarantees that either every solution or derivative of every solution of the equation is
oscillatory.

In the following theorem we drop the condition σ (t)≤ τ (t) and use the opposite σ (t)≥
τ (t). In this case wemodify the denominator in the Riccati type substitutions () and ().

Theorem Suppose that (), (), τ (t)≤ t and σ (t)≥ τ (t) hold. Further suppose that there
exist positive mutually conjugate numbers l, l∗ and positive functions ρ ∈ C([t,∞),R+),
ϕ(t) such that

lim sup
t→∞

∫ t

t
ρ(s)Q(s) –


(α + )α+

ρ(s)r(τ (s))
(τ ′(s))α

×
[
lα–

(
ρ ′
+(s)

ρ(s)

)α+

+
(
l∗

)α– pα(σ (s))ϕ(s)
τ ′(s)

×
(

ρ ′(s)
ρ(s)

+
(
pα(σ (s))ϕ(s)

τ ′(s)

)′
τ ′(s)

pα(σ (s))ϕ(s)

)α+

+

]
ds =∞.

Then () is oscillatory.

Proof Suppose, by contradiction, that all the conditions are satisfied and an eventually
positive solution x(t) of () exists. As in the proof of Theorem , we can show that
r(t)�(z′(t)) is decreasing eventually and z′(t) increasing eventually. Let us work on the
interval (t,∞) where t is such that

min
{
x(t),x

(
τ (t)

)
,x

(
σ (t)

)
,x

(
τ
(
σ (t)

))
, z′(t), z′(τ (t)), z′(σ (t)), z′(τ(

σ (t)
))}

> 

for every t > t.
Define

ω(t) = ρ(t)
r(t)(z′(t))α

zα(τ (t))
.

As in the proof of Theorem , we have ω(t) >  and

ω′(t) = ρ ′(t)
r(t)(z′(t))α

zα(τ (t))
+ ρ(t)

(r(t)(z′(t))α)′

zα(τ (t))
– αρ(t)

r(t)(z′(t))αz′(τ (t))τ ′(t)
zα+(τ ′(t))

.

From τ (t) ≤ t and from the monotonicity of r(t)�(z′(t)) we have

z′(τ (t)) ≥
(

r(t)
r(τ (t))

)/α

z′(t)
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and combining these computations we get

ω′(t) ≤ ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′(t))α)′

zα(τ (t))
–

ατ ′(t)
ρ/α(t)r/α(τ (t))

ω
α+
α (t).

Further we define

v(t) = ρ(t)
r(τ (t))(z′(τ (t)))α

zα(τ (t))
,

differentiate

v′(t) = ρ ′(t)
r(τ (t))(z′(τ (t)))α

zα(τ (t))
+ ρ(t)

(r(τ (t))(z′(τ (t)))α)′

zα(τ (t))

– αρ(t)
r(τ (t))(z′(τ (t)))αz′(τ (t))τ ′(t)

zα+(τ (t))
,

and conclude

v′(t) =
ρ ′(t)
ρ(t)

v(t) + ρ(t)
(r(τ (t))(z′(τ (t)))α)′

zα(τ (t))
–

ατ ′(t)
ρ/α(t)r/α(τ (t))

v
α+
α (t).

Similarly as in the proof of Theorem  and using the fact that monotonicity of z(t) and
inequality σ (t)≥ τ (t) imply Q(t) z(σ (t))z(τ (t)) ≥Q(t), we get

lα–ω′(t) +
(
l∗

)α– pα(σ (t))ϕ(t)
τ ′(t)

v′(t)

≤ –ρ(t)Q(t) + lα–
[

ρ ′(t)
ρ(t)

ω(t) –
ατ ′(t)

ρ/α(t)r/α(τ (t))
ω

α+
α (t)

]

+
(
l∗

)α–
[
pα(σ (t))ϕ(t)

τ ′(t)
ρ ′(t)
ρ(t)

v(t) –
pα(σ (t))ϕ(t)

τ ′(t)
ατ ′(t)

ρ/α(t)r/α(τ (t))
v

α+
α (t)

]
.

The remaining part of the proof is the same as in Theorem . �

Remark  Similarly as in Remark , [, Theorem .] is a corollary of Theorem .

Corollary  Suppose that (), (), τ (t) ≤ t and σ (t) ≥ τ (t) hold. Furthermore, suppose
that there exist constants p ≥  and τ >  such that p(t) ≤ p < ∞ and τ ′(t) ≥ τ. If there
exist positive mutually conjugate numbers l, l∗, and positive functions ρ(t), ϕ(t) such that

lim sup
t→∞

∫ t

t
ρ(s)Q(s) –


(α + )α+

ρ(s)r(τ (s))
(τ ′(s))α

×
[
lα–

(
ρ ′
+(s)

ρ(s)

)α+

+
(
l∗

)α– pα
ϕ(s)
τ

(
ρ ′(s)
ρ(s)

+
(
pα
ϕ(s)
τ

)′
τ

pα
ϕ(s)

)α+

+

]
ds =∞, ()

then () is oscillatory.

Proof The proof is he same as the proof of Corollary . We just use Theorem  instead of
Theorem . �
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Example  Consider () with λ ≥ λ. We choose the functions ρ and ϕ as in Example 
and find that () is oscillatory if

β >
(

α

α + 

)α+ ( + pλ)α

λα


. ()

Let us compare this result with (). The inequalities α ≥ , p ≥ , and λ <  imply

α– + α– pα


λ
≥ α– + α–pα

λ
α
 = f ()≥ ( + pλ)α ,

where f is defined by () and ( + pλ)α is a global minimum of f on (,∞). Hence

α–αα+

(α + )α+λα


(
 +

p
λ

)
≥

(
α

α + 

)α+ ( + pλ)α

λα


and () is sharper than ().

The following corollary is a variant of Corollary  for σ (t)≥ τ (t).

Corollary  Suppose that p(t) ≡ p, (), (), τ (t) ≤ t and σ (t)≥ τ (t) hold. If () holds for
somemutually conjugate numbers l, l∗ and positive functions ρ(t), ϕ(t), then every solution
of () is either oscillatory, or the first derivative of this solution is oscillatory.

Proof The proof is the same as the proof of Corollary ; we only replace Theorem  by
Theorem  and Corollary  by Corollary . �

Remark  There are two main approaches how to handle Riccati type transformation
in the oscillation theory of neutral differential equations. The first applies if  ≤ p(t) < 
and the shift in the differential term is handled by utilizing the estimate z(t)( – p(t)) ≤
x(t); see e.g. [–]. Thus the results of this type depend on term ( – p(σ (t))). Another
frequent approach which has been used in [, ] and also in this paper is summing up
the equation at t and τ (t) and working with the resulting sum. Since it is necessary to
take out common factor, the oscillation criteria usually contain term min{q(t),q(τ (t))}.
Since both q(t) and q(τ (t)) may differ significantly, we developed in this paper a method
which replaces this term with the term min{q(t),ϕ(t)q(τ (t))}, where the function ϕ(t) is
in some sense arbitrary and may have influence on the final oscillation criterion. We also
showed on examples in previous section that this idea produces nonempty extension of
known results. We conjecture that a similar idea can be used to obtain new results also in
the case of a series of papers by Baculíková and Džurina [, , ], where a sum of two
equations (in the original variable and in the shifted variable) is used to derive a certain
first-order delay differential equation and the oscillation criteria are formulated in terms
of this first-order equation. However, this idea exceeds the scope of this paper and will be
examined in other research.

4 Conclusion
New oscillation theorems for second-order half-linear differential equations have been
obtained. The novelty is in the point that we employed general linear combination based
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on conjugate numbers l and l∗ rather than its special case l =  = l∗ considered in the
other papers devoted to this problem and also included a parameter ϕ(t) which plays a
role when taking minimum of q(t) and q(τ (t)). These extensions are capable to produce
sharper results than the results published in the literature as has been shown on exam-
ples. As a byproduct we also relaxed in Corollaries  and  the usual requirement that the
composition of delays is commutative. Thismakes our results applicable to equations with
combined constant and proportional delays.
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