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Abstract
In this paper, we investigate the initial value problem for the semilinear beam
equation. Under a small condition on the initial value, we prove the global existence
and optimal decay estimate of solutions. Moreover, we show that as time tends to
infinity, the solution is asymptotic to a diffusion wave, which is given explicitly in
terms of the solution of parabolic equation.
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1 Introduction
We investigate the initial value problem for the following semilinear beam equation:

utt – αuxx + ut + uxxxx = f (ux)x (.)

with the initial value

t = : u = u(x), ut = u(x). (.)

Here u = u(x, t) is the unknown function of x ∈R and t > , b > , and α >  are constants.
The nonlinear term f (v) is a given smooth function of v ∈R. More precisely,

f (v) = f () + f ′()v + g(v),

where g(v) =O(v) for v→ .
This initial value problem was studied by [, ] when f satisfies

⎧⎪⎨
⎪⎩

|f (v)| ≤ C|v|p, |f ′(v)| ≤ C|v|p–,
|f (v) – f (v)| ≤ C(|v|p– + |v|p–)|v – v|,
|f ′(v) – f ′(v)| ≤ C(|v|p– + |v|p–)|v – v|

(.)

with p ≥ , so that f ′() = . Here C is independent of v, v, and v. [] proved that there
exists a global solution u ∈ C([,∞);H ∩ L) to the problem (.), (.) under smallness
condition on the initial data u ∈ W , ∩ H and u ∈ L ∩ L. In particular, they showed
the decay estimates:

‖u‖Lq ≤ C( + t)–

 (–


q ), ≤ q ≤ ∞ (.)
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and

∥∥∂
x u

∥∥
Lq ≤ C( + t)–


 (–


q )–,  ≤ q ≤ ∞. (.)

In addition to the above assumptions, suppose that the initial data u,u ∈ L, Takeda and
Yoshikawa [] established the following asymptotic profile of global solution:

∥∥u(t) –MGα(t) – (M̃ +N)∂xGα(t)
∥∥
Lq ≤ C( + t)–


 (–


q )–


 , ≤ q ≤ ∞, (.)

where

M =
∫ ∞

–∞
(u + u)(x)dx, Gα(x, t) = F–[e–αξt], M̃ = –

∫ ∞

–∞
x(u + u)(x)dx

and

N =
∫ ∞



∫ ∞

–∞
f
(
∂xu(x, t)

)
dxdt.

The main purpose of our present paper is two-fold: first, we try to recover all the results
about global existence and decay estimate of solution in Takeda and Yoshikawa [] under
some assumptions on the initial data (u(x),u(x)) and the nonlinear function f , which is
much weaker than those needed in Takeda and Yoshikawa’s arguments. More precisely,
the condition u(x) ∈ W , ∩ H, u(x) ∈ L ∩ L and (.) have been relaxed to u(x) ∈
Hs+ ∩ L, u(x) ∈ Hs ∩ L (s ≥ ) and the nonlinear function f satisfies f ′() > –α in this
paper. Second, we show that the solution is asymptotic to a diffusion wave, given explicitly
in terms of the solution of parabolic equation that is different from the one in []. For the
details, we refer to Theorem .. Moreover, under some additional assumptions on the
initial data, we also prove that the convergence rates of our new asymptotic profile are
better than that obtained by []. For details, we refer to Theorem ..
The study of the global existence and asymptotic behavior of solutions to hyperbolic-

type equations has a long history.We refer to [, ] for hyperbolic equations, [–] for the
damped wave equation and [–] for various aspects of dissipation of the plate equation.
The paper is organized as follows. In Section , we study the decay property of the so-

lution to the linear problem. Then, in Section , we prove the global existence and decay
estimate of the solutions. Finally, we prove that the solution is asymptotic to a diffusion
wave, which is given explicitly in terms of the solution of the parabolic equation in Sec-
tion .

Notations We give some notations which are used in this paper. Let F [u] denote the
Fourier transform of u defined by

û(ξ ) = F [u] =
∫
Rn

e–iξ ·xu(x)dx,

and we denote its inverse transform by F –.
For  ≤ p ≤ ∞, Lp = Lp(Rn) denotes the usual Lebesgue space with the norm ‖ · ‖Lp .

The usual Sobolev space of s is defined by Ws,p = (I – ∂
x )–

s
 Lp with the norm ‖f ‖Ws,p =

‖(I – ∂
x )

s
 f ‖Lp .
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Finally, in this paper, we denote every positive constant by the same symbol C or cwhich
will not lead to any confusion. [·] is the Gauss symbol.

2 Linear problem
2.1 Solution formula
The aim of this subsection is to derive the solution formula for the problem (.), (.). We
first investigate the linearized equation of (.):

utt – βuxx + ut + uxxxx = , (.)

with the initial data in (.), where β = α + f ′() > . We apply the Fourier transform to
(.). This yields

ûtt + ξ ût +
(
βξ  + ξ)û = . (.)

The corresponding initial values are given as

t = : û = û(ξ ), ût = û(ξ ). (.)

The characteristic equation of (.) is

λ + λ + βξ  + ξ = . (.)

Let λ = λ±(ξ ) be the corresponding eigenvalues of (.), we obtain

λ±(ξ ) =
–± √

 – ξ (β + ξ )


. (.)

The solution to the problem (.), (.) in the Fourier space is then given explicitly in the
form

û(ξ , t) = Ĝ(ξ , t)
(
û(ξ ) + û(ξ )

)
+ Ĥ(ξ , t)û(ξ ), (.)

where

Ĝ(ξ , t) =


λ+(ξ ) – λ–(ξ )
(
eλ+(ξ )t – eλ–(ξ )t

)
(.)

and

Ĥ(ξ , t) =


λ+(ξ ) – λ–(ξ )
((

λ+(ξ ) + 
)
eλ–(ξ )t –

(
λ–(ξ ) + 

)
eλ+(ξ )t

)
. (.)

We define G(x, t) and H(x, t) by

G(x, t) =F –[Ĝ(ξ , t)](x) (.)

and

H(x, t) =F –[Ĥ(ξ , t)
]
(x), (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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respectively, where F – denotes the inverse Fourier transform. Then, applying F – to
(.), we obtain

u(t) =G(t) ∗ (u + u) +H(t) ∗ u. (.)

By the Duhamel principle, we obtain the solution formula to (.), (.),

u(t) =G(t) ∗ (u + u) +H(t) ∗ u +
∫ t


G(t – τ ) ∗ g(ux)x(τ )dτ , (.)

where g(v) is a smooth function; it satisfies g(v) =O(v).

2.2 Decay property
The aim of this subsection is to establish decay estimates of the solution operators G(t)
and H(t) appearing in (.) and (.), respectively.

Lemma . The solution of the problem (.), (.) satisfies

∣∣ût(ξ , t)∣∣ + (
 + ξ )∣∣û(ξ , t)∣∣ ≤ Ce–cρ(ξ )t

(∣∣û(ξ )∣∣ + (
 + ξ )∣∣û(ξ )∣∣) (.)

for ξ ∈R and t ≥ , where ρ(ξ ) = ξ

+ξ
.

Proof Multiplying (.) by ¯̂ut and taking the real part yields



d
dt

{|ût| + βξ |û| + ξ|û|} + |ût| = . (.)

Multiplying (.) by ¯̂u and taking the real part, we obtain



d
dt

{|û| + Re(ût ¯̂u)
}
+ βξ |û| + ξ|û| – |ût| = . (.)

Multiplying both sides of (.) by  and summing up the resulting equation and (.)
yields

d
dt

E + F = , (.)

where

E = |ût| +
(


+ βξ  + ξ

)
|û| +Re(ût ¯̂u)

and

F = |ût| + βξ |û| + ξ|û|.

A simple computation implies that

CE ≤ E ≤ CE, (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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where

E = |ût| +
(
 + ξ )|û|.

Note that

F ≥ cρ(ξ )E.

It follows from (.) that

F ≥ cρ(ξ )E. (.)

Using (.) and (.), we get

d
dt

E + cρ(ξ )E ≤ .

Thus

E(ξ , t)≤ e–cρ(ξ )tE(ξ , ),

which together with (.) proves the desired estimates (.). Then we have completed
the proof of the lemma. �

Lemma. Let Ĝ(ξ , t) and Ĥ(ξ , t) be the fundamental solution of (.) in the Fourier space,
which are given in (.) and (.), respectively. Then we have the estimates

∣∣Ĝt(ξ , t)
∣∣ + (

 + ξ )∣∣Ĝ(ξ , t)∣∣ ≤ Ce–cρ(ξ )t (.)

and

∣∣Ĥt(ξ , t)
∣∣ + (

 + ξ )∣∣Ĥ(ξ , t)
∣∣ ≤ C

(
 + ξ )e–cρ(ξ )t (.)

for ξ ∈R and t ≥ , where ρ(ξ ) = ξ

+ξ
.

Proof Firstly, we investigate the problem (.), (.) with û(ξ ) = , from (.), we obtain

û(ξ , t) = Ĝ(ξ , t)û(ξ ), ût(ξ , t) = Ĝt(ξ , t)û(ξ ).

Substituting the equalities into (.) with û(ξ ) = , we get (.).
In what follows, we consider the problem (.), (.) with û(ξ ) = ; it follows from (.)

that

û(ξ , t) = (Ĝ + Ĥ)(ξ , t)û(ξ ), ût(ξ , t) = (Ĝt + Ĥt)(ξ , t)û(ξ ).

Substituting the equalities into (.) with û(ξ ) = , we get the desired estimate (.).
The lemma is proved. �

http://www.boundaryvalueproblems.com/content/2014/1/84
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Let

G(x, t) = F–[e–βξt](x) = √
πβt

ee
– x
βt

be the fundamental solution to ut – βuxx = .

Lemma. Let Ĝ(ξ , t) and Ĥ(ξ , t) be the fundamental solution of (.) in the Fourier space,
which are given in (.) and (.), respectively. Then there is a small positive number R

such that if |ξ | ≤ R and t ≥ , we have the following estimates:

∣∣(Ĝ – Ĝ)(ξ , t)
∣∣ + ∣∣Ĥ(ξ , t)

∣∣ ≤ Cξ e–cξ
t +Ce–ct , (.)∣∣Ĝt(ξ , t)

∣∣ ≤ Cξ e–cξ
t +Ce–ct (.)

and

∣∣∂t(Ĝ – Ĝ)(ξ , t)
∣∣ + ∣∣Ĥt(ξ , t)

∣∣ ≤ Cξe–cξ
t +Ce–ct . (.)

Proof For sufficiently small ξ , using the Taylor formula, we get

λ+(ξ ) = –βξ  +O
(
ξ), λ–(ξ ) = – +O

(
ξ ),


λ+(ξ ) – λ–(ξ )

=  + βξ  +O
(
ξ). (.)

We rewrite Ĝ(ξ , t) in (.) as

Ĝ(ξ , t) = e–βξt +
(


λ+(ξ ) – λ–(ξ )

– 
)
eλ+(ξ )t

+
(
e(λ+(ξ )+βξ)t – 

)
e–βξt –

eλ–(ξ )t

λ+(ξ ) – λ–(ξ )
. (.)

For sufficiently small ξ , from (.) and (.), we immediately obtain

∣∣(Ĝ – Ĝ)(ξ , t)
∣∣ ≤ Cξ e–cξ

t +Ce–ct .

For sufficiently small ξ , from (.) and (.), we immediately get

∣∣Ĥ(ξ , t)
∣∣ ≤ Cξ e–cξ

t +Ce–ct .

Thus we get (.). The other estimates are proved similarly and we omit the details. The
proof of Lemma . is completed. �

Lemma . Let G(x, t) and H(x, t) be the fundamental solutions of (.), which are given
in (.) and (.), respectively. Let  ≤ p ≤ , and let k, j, and l be nonnegative integers.
Then we have

∥∥∂k
xG(t) ∗ φ

∥∥
L ≤ C( + t)–


 (


p–


 )–

k–j


∥∥∂ j
xφ

∥∥
Lp +Ce–ct

∥∥∂k+l–
x φ

∥∥
L , (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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∥∥∂k
xH(t) ∗ φ

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xφ

∥∥
Lp +Ce–ct

∥∥∂k+l
x φ

∥∥
L (.)

for  ≤ j ≤ k, where k + l –  ≥  in (.). Similarly, we have

∥∥∂k
xGt(t) ∗ φ

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xφ

∥∥
Lp +Ce–ct

∥∥∂k+l
x φ

∥∥
L , (.)

∥∥∂k
xHt(t) ∗ φ

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xφ

∥∥
Lp +Ce–ct

∥∥∂k+l+
x φ

∥∥
L (.)

for  ≤ j ≤ k +  in (.) and  ≤ j ≤ k +  in (.).

Proof We only prove (.). By the Plancherel theorem and (.), the Hausdorff-Young
inequality, we obtain

∥∥∂k
xG(t) ∗ φ

∥∥
L =

∫
|ξ |≤

|ξ |k∣∣Ĝ(ξ , t)∣∣∣∣φ̂(ξ )∣∣ dξ +
∫

|ξ |≥
|ξ |k∣∣Ĝ(ξ , t)∣∣∣∣φ̂(ξ )∣∣ dξ

≤ C
∫

|ξ |≤
|ξ |ke–cξt∣∣φ̂(ξ )∣∣ dξ +Ce–ct

∫
|ξ |≥

|ξ |k( + |ξ |)–∣∣φ̂(ξ )∣∣ dξ

=: A +A.

For the term A, letting 
p′ + 

p = , we have

A ≤ C
∫

|ξ |≤
|ξ |k–e–cξt∣∣φ̂(ξ )∣∣ dξ

≤ C
∥∥|ξ |jφ̂∥∥

Lp′

(∫
|ξ |≤

|ξ |(k–j)pe–cqξt dξ

) 
p

≤ C( + t)–(

p–


 )–(k–j)

∥∥∂ j
xφ

∥∥
L̇p ,

where we used the Hölder inequality with 
p′ + 

q =  and the Hausdorff-Young inequality
‖v̂‖Lp′ ≤ C‖v‖Lp for v = ∂

j
xφ. On the other hand, we can estimate the term A simply as

A ≤ Ce–ct
∫

|ξ |≥
|ξ |k–∣∣φ̂(ξ )∣∣ dξ

≤ Ce–ct
∫

|ξ |≥
|ξ |(k+l–)∣∣φ̂(ξ )∣∣ dξ

≤ Ce–ct
∥∥∂k+l–

x φ
∥∥
L ,

where k + l –  ≥ .
Combining the above three inequalities yields (.). This completes the proof of Lem-

ma .. �

From Lemma ., we immediately have the following corollary.

Corollary . Let G(x, t) and H(x, t) be the fundamental solution of (.), which are given
in (.) and (.), respectively. Let  ≤ p ≤ , and let k, j, and l be nonnegative integers.
Then we have

∥∥∂k
xG(t) ∗ gx

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xg

∥∥
Lp +Ce–ct

∥∥∂k+l–
x g

∥∥
L (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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for  ≤ j ≤ k +  and k + l –  ≥ . Also we have

∥∥∂k
xGt(t) ∗ gx

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xg

∥∥
Lp +Ce–ct

∥∥∂k+l+
x g

∥∥
L (.)

for  ≤ j ≤ k + .

Lemma . Let G(x, t) be the fundamental solution of (.), given in (.) and let G(x, t)
be the fundamental solution of (.), given in (.). Let  ≤ p ≤ , and let k, j, and l be
nonnegative integers. Then we have

∥∥∂k
x (G –G)(t) ∗ φ

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xφ

∥∥
Lp +Ce–ct

∥∥∂k+l
x φ

∥∥
L (.)

for  ≤ j ≤ k + . Similarly,

∥∥∂k
x (G –G)t(t) ∗ φ

∥∥
L ≤ C( + t)–


 (


p–


 )–

k+–j


∥∥∂ j
xφ

∥∥
Lp +Ce–ct

∥∥∂k+l+
x φ

∥∥
L (.)

for  ≤ j ≤ k + .

Proof The proof of Lemma . is similar to the proof of Lemma .. By employing (.)
and (.), we can prove Lemma .. We omit the details. �

3 Global existence and asymptotic behavior of solutions to (1.1), (1.2)
The purpose of this section is to prove global existence and optimal decay estimate of
solutions to the initial value problem (.), (.). We need the following lemma, which
comes from [] (see also []).

Lemma . Assume that f = f (v) is a smooth function. Suppose that f (v) =O(|v|+θ ) (θ ≥ 
is an integer)when |v| ≤ ν. Then for integer m ≥ , if v ∈Wm,q(Rn)∩Lp(Rn)∩L∞(Rn) and
‖v‖L∞ ≤ ν, the following inequalities hold:

∥∥∂m
x f (v)

∥∥
Lr ≤ C‖v‖Lp

∥∥∂m
x v

∥∥
Lq‖v‖θ–

L∞ , (.)

where 
r =


p +


q , ≤ p,q, r ≤ +∞.

Theorem . Let s ≥ . Suppose that f (v) is a smooth function and f ′() > –α. Assume
that u ∈Hs+ ∩ L, u ∈ Hs ∩ L. Put

E := ‖u‖Hs+∩L + ‖u‖Hs∩L .

Then there exists a positive constant δ such that if E ≤ δ, and the initial value problem
(.), (.) has a unique global solution u(x, t) satisfying

u ∈ C([,∞);Hs+(R)
) ∩C([,∞);Hs(R)

)
.

Moreover, the solution satisfies the decay estimate

∥∥∂k
x u(t)

∥∥
L ≤ CE( + t)–


 –

k
 (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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and

∥∥∂k
x ut(t)

∥∥
L ≤ CE( + t)–


 –

k
 , (.)

where  ≤ k ≤ s +  in (.) and  ≤ k ≤ s in (.).

Proof The existence and uniqueness of small solutions can be proved by the contraction
mapping principle. Here we only show the decay estimates (.) and (.) for the solution
u of (.) satisfying ‖u(t)‖L∞ ≤M with someM. To this end, we introduce the quantity

X(t) =
s+∑
k=

sup
≤τ≤t

( + τ )

 +

k

∥∥∂k

x u(τ )
∥∥
L . (.)

Here we note that

∥∥ux(t)∥∥L∞ ≤ CX(t)( + t)–, (.)

provided that s ≥ . This follows from the Gagliardo-Nirenberg inequality, ‖ux‖L∞ ≤
C‖uxx‖



L‖ux‖



L and the definition of X(t) in (.).

Applying ∂k
x to (.) and taking the L norm, we obtain

∥∥∂k
x u(t)

∥∥
L ≤ ∥∥∂k

xG(t) ∗ (u + u)
∥∥
L +

∥∥∂k
xH(t) ∗ u

∥∥
L

+
∫ t



∥∥G(t – τ ) ∗ ∂xg
(
ux(τ )

)∥∥
L dτ

=: I + I + J . (.)

Firstly, we estimate I. We apply (.) with p = , j =  and l =  (l =  for k = , l =  for
k = ). This yields

I ≤ C( + t)–

 –

k
 ‖u + u‖L +Ce–ct

∥∥∂ (k–)+
x (u + u)

∥∥
L ≤ CE( + t)–


 –

k
 , (.)

where (k – )+ =max{k – ,}. Similarly, applying (.) with p = , j = , and l =  to the
term I, we have

I ≤ C( + t)–

 –

k
 ‖u‖L +Ce–ct

∥∥∂k
x u

∥∥
L ≤ CE( + t)–


 –

k
 . (.)

We estimate the nonlinear term J . We divide J into two parts and write J = J + J, where
J and J are corresponding to the time intervals [, t/] and [t/, t], respectively. For the
term J, we apply (.) with p = , j = , and l = . This yields

J ≤ C
∫ t/


( + t – τ )–


 –

k

∥∥g(ux)(τ )∥∥L dτ

+C
∫ t/


e–c(t–τ )∥∥∂ (k–)+

x g(ux)(τ )
∥∥
L dτ

=: J + J. (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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Here we see that ‖g(ux)‖L ≤ C‖ux‖L by Lemma .. Thus we have ‖g(ux)(τ )‖L ≤
CX(t)( + τ )– 

 . Therefore we can estimate the term J as

J ≤ CX(t)
∫ t/


( + t – τ )–


 –

k
 ( + τ )–


 dτ

≤ CX(t)( + t)–

 –

k


∫ t/


( + τ )–


 dτ

≤ CX(t)( + t)–

 –

k
 .

On the other hand, we have ‖∂ (k–)+
x g(ux)‖L ≤ C‖ux‖L∞‖∂k

x u‖L by Lemma .. There-
fore, using (.), we find that ‖∂ (k–)+

x g(ux)‖L ≤ CX(t)( + τ )– 
 –

k
 . Consequently, we can

estimate the term J as

J ≤ CX(t)
∫ t/


e–c(t–τ )( + τ )–


 –

k
 dτ ≤ CX(t)e–ct .

Finally, we estimate the term J on the time interval [t/, t]. Applying (.) with p = ,
j = k, and l = , and using ‖∂ (k–)+

x g(ux)(τ )‖L ≤ CX(t)( + τ )– 
 –

k
 , we obtain

J ≤ C
∫ t

t/
( + t – τ )–

∥∥∂ (k–)+
x g(ux)(τ )

∥∥
L dτ +C

∫ t

t/
e–c(t–τ )∥∥∂ (k–)+

x g(ux)(τ )
∥∥
L dτ

≤ CX(t)
∫ t

t/
( + t – τ )–( + τ )–


 –

k
 dτ

≤ CX(t)( + t)–

 –

k
 +ε . (.)

Thus we have shown that

J ≤ CX(t)( + t)–

 –

k
 .

Substituting all these estimates into (.), we obtain

( + t)

 +

k

∥∥∂k

x u(t)
∥∥
L ≤ CE +CX(t)

for  ≤ k ≤ s + . Consequently, we have X(t)≤ CE +CX(t), from which we can deduce
X(t)≤ CE, provided that E is suitably small. This proves the decay estimate (.).
In what follows, we prove the decay estimate (.) for the time derivative ut . For this

purpose we differentiate (.) with respect to t to obtain

ut(t) =Gt(t) ∗ (u + u) +Ht(t) ∗ u +
∫ t


Gt(t – τ ) ∗ ∂xg(ux)(τ )dτ . (.)

Applying ∂k
x to (.) and taking the L norm, we have

∥∥∂k
x ut(t)

∥∥
L ≤ ∥∥∂k

xGt(t) ∗ (u + u)
∥∥
L +

∥∥∂k
xHt(t) ∗ u

∥∥
L

+
∫ t



∥∥∂k
xGt(t – τ ) ∗ ∂xg(ux)(τ )

∥∥
L dτ

=: I ′ + I ′ + J ′, (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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where  ≤ k ≤ s. For the term I ′, we apply (.) with p = , j = , and l =  to get

I ′ ≤ C( + t)–

 –

k
 ‖u + u‖L + e–ct

∥∥∂k
x (u + u)

∥∥
L ≤ CE( + t)–


 –

k
 .

Also, for the term I ′, applying (.) with p = , j =  and l = , we have

I ′ ≤ C( + t)–

 –

k
 ‖u‖L + e–ct

∥∥∂k+
x u

∥∥
L ≤ CE( + t)–


 –

k
 .

To estimate the nonlinear term J ′, we rewrite J ′ = J ′ + J ′, where J ′ and J ′ correspond to the
time intervals [, t/] and [t/, t], respectively. For the term J ′, we apply (.) with p = ,
j = , and l = . This yields

J ′ ≤ C
∫ t/


( + t – τ )–


 –

k

∥∥g(ux)(τ )∥∥L dτ

+C
∫ t/


e–c(t–τ )∥∥∂k+

x g(ux)(τ )
∥∥
L dτ

=: J ′ + J ′.

Since ‖g(ux)(τ )‖L ≤ CX(t)( + τ )– 
 as before, we can estimate the term J ′ as

J ′ ≤ CX(t)
∫ t/


( + t – τ )–


 –

k
 ( + τ )–


 dτ

≤ CX(t)( + t)–

 –

k
 .

Also, the term J ′ is estimated similarly as before and we have J ′ ≤ CX(t)e–ct . Finally, we
estimate the term J ′ by applying (.) with p = , j = k + , and l =  and obtain

J ′ ≤ C
∫ t

t/
( + t – τ )–

∥∥∂k+
x g(ux)(τ )

∥∥
L dτ +C

∫ t

t/
e–c(t–τ )∥∥∂k+

x g(ux)(τ )
∥∥
L dτ

≤ CX(t)
∫ t

t/
( + t – τ )–( + τ )–


 –

k
 dτ

≤ CX(t)( + t)–

 –

k
 +ε ,

where we used the estimate ‖∂k+
x g(ux)(τ )‖L ≤ CX(t)( + τ )– 

 –
k
 . Consequently we have

shown that

J ′ ≤ CX(t)( + t)–

 –

k
 .

Substituting all these estimates together with the previous estimateX(t)≤ CE into (.),
we arrive at the desired estimate (.) for  ≤ k ≤ s. This completes the proof of Theo-
rem .. �

The above proof of Theorem . shows that the solution u to the integral equation (.)
is asymptotic to the linear solution uL given by the formula uL(t) :=G(t)∗ (u +u) +H(t)∗
u in (.) as t → ∞. This result is stated as follows.

http://www.boundaryvalueproblems.com/content/2014/1/84
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Corollary . Assume the same conditions of Theorem ..Then the solution u of the prob-
lem (.), (.), which is constructed in Theorem ., can be approximated by the solution
uL to the linearized problem (.), (.) as t → ∞. More precisely, we have the following
asymptotic relations:

∥∥∂k
x (u – uL)(t)

∥∥
L ≤ CE

( + t)–

 –

k
 ,∥∥∂k

x (u – uL)t(t)
∥∥
L ≤ CE

( + t)–

 –

k


for ≤ k ≤ s+ and  ≤ k ≤ s, respectively, where uL(t) :=G(t) ∗ (u +u) +H(t) ∗u is the
linear solution.

4 Asymptotic profile
In this section, our aim is to establish an asymptotic profile to our global solution that is
constructed in Theorem .. In the previous section, we have shown that the solution u
to the problem (.), (.) can be approximated by the linear solution uL. In what follows,
we shall derive a simpler asymptotic profile of the linear solution uL.
Let v be the solution to the initial data problem

vt – βvxx = , t = : v = (u + u)(x). (.)

Then

v =G(x, t) ∗ (u + u)(x) (.)

gives a asymptotic profile of the linear solution uL. In fact we have the following.

Lemma . Let s ≥ . Assume that u,u ∈ Hs+ ∩ L and put E = ‖(u,u)‖Hs+∩L . Let
uL be the linear solution and let v be defined by (.). Then we have

∥∥∂k
x (uL – v)(t)

∥∥
L ≤ CE( + t)–


 –

k
 (.)

for  ≤ k ≤ s + .

Proof Note that (uL – v)(t) = (G –G)(t) ∗ (u + u) +H(t) ∗ u, so for the proof of (.), it
suffices to show the following estimates:

∥∥∂k
x (G –G)(t) ∗ φ

∥∥
L ≤ C( + t)–


 ‖φ‖L +Ce–ct

∥∥∂k
xφ

∥∥
L ,∥∥∂k

xH(t) ∗ φ
∥∥
L ≤ C( + t)–


 ‖φ‖L +Ce–ct

∥∥∂k
xφ

∥∥
L ,

where  ≤ k ≤ s + . These estimates can be obtained by (.) and (.). Here we omit
the details. �

WhenM =
∫
R
(u + u)(x)dx �= , we call

v̄(x, t) =MG(x, t + ) (.)

http://www.boundaryvalueproblems.com/content/2014/1/84
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the diffusion wave with the amountM. Obviously, v̄(x, t) satisfies the following problem:
{
v̄t – β v̄xx = ,
t = : v̄ =MG(x, ).

(.)

Therefore, v – v̄ satisfies{
(v – v̄)t – β(v – v̄)xx = ,
t = : v – v̄ = u + u –MG(x, ).

(.)

It is not difficult to prove the following lemma.

Lemma . Assume that
∫ x
–∞(u(y) + u(y) –MG(y, ))dy ∈ L, then

∥∥∂k
x (v – v̄)(t)

∥∥
L ≤ C( + t)–


 –

k
 . (.)

Combining Corollary ., Lemma ., and Lemma ., we immediately have the follow-
ing.

Theorem . Under the same assumption as Theorem ., and also assuming that M =∫
R
(u + u)(x)dx �=  and

∫ x
–∞(u(y) + u(y) – MG(y, ))dy ∈ L, we let u be the global

solution to the problem (.), (.), which is constructed in Theorem . and we let v̄ be the
diffusion wave defined by (.). Then we have

∥∥∂k
x (u – v̄)(t)

∥∥
L ≤ C( + t)–


 –

k
 . (.)

We have M =
∫ ∞
–∞(u + u)(x)dx =  and M =

∫ ∞
–∞ U(x)dx �= , where U(x) :=∫ x

–∞(u + u)(y)dy. We consider the initial value problem

{
ρt – βρxx = ,
t = : ρ =U(x)

(.)

and {
ρ̄t – βρ̄xx = ,
t = : ρ̄ =MG(x, ).

(.)

When
∫ x
–∞(U(y) –MG(y, ))dy ∈ L, by applying Lemma ., we have

∥∥∂k
x (ρ – ρ̄)(t)

∥∥
L ≤ C( + t)–


 –

k
 . (.)

We call

ṽ(x, t) =MGx(x, t + ) (.)

the diffusion wave with the amountM. Obviously, v – ṽ satisfies

v – ṽ = ∂xρ – ∂xρ̄. (.)

From (.) and (.), we immediately obtain the following lemma.

http://www.boundaryvalueproblems.com/content/2014/1/84
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Lemma . Assume that
∫ x
–∞(U(y) –MG(y, ))dy ∈ L, then

∥∥∂k
x (v – ṽ)(t)

∥∥
L ≤ C( + t)–


 –

k
 . (.)

Corollary ., Lemma ., and Lemma . immediately give the following result.

Theorem . Under the same assumption as Theorem ., also assuming that M =∫
R
(u + u)(x)dx = , M =

∫
R
U(x)dx �= , and

∫ x
–∞(U(y) – MG(y, ))dy ∈ L, where

U(x) :=
∫ x
–∞(u + u)(y)dy, we let u be the global solution to the problem (.), (.), which

is constructed in Theorem . and we let ṽ be the diffusion wave defined by (.). Then we
have

∥∥∂k
x (u – ṽ)(t)

∥∥
L ≤ C( + t)–


 –

k
 . (.)
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