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1 Introduction
We consider the initial and boundary value problem (BVP) for the following Stokes type
equation with variable coefficients:

∂u
∂t

+
n∑
k=

ak(x)
∂u
∂xk

+A(x)u +
n∑
k=

Ak(x)
∂u
∂xk

+∇ϕ = f (x, t), divu = , (.)

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , k = , , . . . ,n, j = , , (.)

u(x, ) = a(x), x ∈G, t ∈ (,T), (.)

where

x = (x,x, . . . ,xn) ∈G =
n∏
k=

(,bk), mkj ∈ {, },

Gk = (x,x, . . . ,xk–, ,xk+, . . . ,xn),

Gkb = (x,x, . . . ,xk–,bk ,xk+, . . . ,xn),

A = A(x) and Ak = Ak(x) are linear operators in a Banach space E, αkji, βkji are complex
numbers, and ak are complex-valued functions. Here f = (f(x, t), f(x, t), . . . , fn(x, t)) repre-
sents a given, a denotes the initial data and

u =
(
u(x, t),u(x, t), . . . ,un(x, t)

)
, ϕ = ϕ(x, t)
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represent the unknown functions. Moreover, uj(x, t), fj(x, t), and ϕ(x, t) are E-valued func-
tions. This problem is characterized by the presence of abstract operator functions and
complex-valued variable coefficients in the principal part.Moreover, boundary conditions
are nonlocal, generally. The existence, uniqueness, and coercive estimates of maximal reg-
ular solution of problem (.)-(.) are obtained. Since the Banach space E is arbitrary and
A is a possible linear operator, by choosing E and operators A, Ak we can obtain maximal
regularity properties for numerous class of Stokes type problemswith variable coefficients.
For E =C, ak(x)≡ –, A = κ >  problem (.)-(.) is reduced to nonlocal Stokes problem

∂u
∂t

–�u +κu +∇ϕ = f (x, t), divu = ,

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk, t) + βkji
∂ iu
∂xik

(Gkb, t)
]
= , (.)

u(x, ) = a(x), x ∈G, t ∈ (,T),k = , , . . . ,n, j = , ,

whereC is the set of complex numbers. Note that the existence of weak or strong solutions
and regularity properties for the classical Stokes problemswere extensively studied, e.g., in
[–]. There is an extensive literature on the solvability of the initial value problems (IVPs)
for the Stokes equation (see, e.g., [, , ] and further papers cited there). Solonnikov
[] proved that for every f ∈ Lp(� × (,T);R) = B(p), p ∈ (,∞) the instationary Stokes
problem

∂u
∂t

–�u +∇ϕ = f (x, t), divu = , u|∂� = , (.)

u(x, ) = , x ∈ �, t ∈ (,T)

has a unique solution (u,∇ϕ) so that

∥∥∥∥∂u
∂t

∥∥∥∥
B(p)

+
∥∥∇u

∥∥
B(p) + ‖∇ϕ‖B(p,q) ≤ C‖f ‖B(p,q).

Then Giga and Sohr [] improved the result of Sollonikov for spaces with different ex-
ponents in space and time, i.e., they proved that for every f ∈ Lp(,T ; (Lq(�))n) there is a
unique solution (u,∇ϕ) of problem (.) so that

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,q)

+
∥∥∇u

∥∥
B(p,q) + ‖∇ϕ‖B(p,q) ≤ C‖f ‖B(p,q), (.)

where

B(p,q) = Lp
(
,T ;

(
Lq(�)

)n), p,q ∈ (,∞).

Moreover, the estimate obtainedwas global in time, i.e., the constantC = C(�,p,q) is inde-
pendent of T and f . To derive the global Lp-Lq estimates (.), Giga and Sohr used abstract
parabolic semigroup theory in UMD spaces. The estimate (.) allows one to study the ex-
istence of solution and regularity properties of the corresponding Navier-Stokes problem
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(see, e.g., []). Consider first at all, the stationary version of problem (.)-(.), i.e., con-
sider the abstract Stokes problem

n∑
k=

ak(x)
∂u
∂xk

+
(
A(x) + λ

)
u +

n∑
k=

Ak(x)
∂u
∂xk

+∇ϕ = f (x), divu = , x ∈G, (.)

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , k = , , . . . ,n, j = , , (.)

λ is a complex number. By applying the corresponding projection transformation P, (.)-
(.) can be reduced to the following problem:

P
n∑
k=

ak(x)
∂u
∂xk

+ P
(
A(x) + λ

)
u + P

n∑
k=

Ak(x)
∂u
∂xk

= f (x), x ∈G, (.)

Lkju =
mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , k = , , . . . ,n, j = , . (.)

Let Oq denote the operator generated by problem (.)-(.), i.e., let Oq be a Stokes oper-
ator in the E-valued solenoidal space Lqσ (G;E) defined by

D(Oq) =
(
W ,q

σ

(
G;E(A),E

))n = {
u ∈ (

W ,q(G;E(A),E))n,Lkju = ,divu = 
}
,

Oqu = P
n∑
k=

ak(x)
∂u
∂x

u + PAu + P
n∑
k=

Ak(x)
∂u
∂xk

.

We prove that Oq is a positive operator and –Oq is a generator of an analytic semigroup
in Lqσ (G;E). In other words, we consider the instationary Stokes problem (.)-(.) and
prove the well-posedness of this problem.We prove that there is a unique solution (u,∇ϕ)
of problem (.)-(.) for f ∈ (Lp(,T ;Xq))n, a ∈ Yp,q, and the following estimate holds:

∥∥∥∥∂u
∂t

∥∥∥∥
Lp,q

+
n∑
k=

∥∥∥∥∂u
∂xk

∥∥∥∥
Lp,q

+ ‖Au‖Lp,q + ‖∇ϕ‖Lp,q ≤ C
(‖f ‖Lp,q + ‖a‖Yp,q

)
, (.)

whereXq is the class of E-valued Lq-spaces and Yp,q is a corresponding interpolation space.
The estimate (.) allows one to study the existence of solution and regularity properties
of the corresponding Navier-Stokes problem. Finally, we give some application of this ab-
stract Stokes problem to anisotropic Stokes equations and systems of equations. Note that
the abstract Stokes problem with constant coefficients was studied in [].

2 Definitions and background
Let E be a Banach space. Lp(�;E) denotes the space of stronglymeasurable E-valued func-
tions that are defined on the measurable subset � ⊂ Rn with the norm

‖f ‖Lp = ‖f ‖Lp(�;E) =
(∫

�

∥∥f (x)∥∥p
E dx

) 
p
, ≤ p < ∞.

http://www.boundaryvalueproblems.com/content/2014/1/86
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The Banach space E is called an UMD space if the Hilbert operator

(Hf )(x) = lim
ε→

∫
|x–y|>ε

f (y)
x – y

dy

is bounded in Lp(R,E), p ∈ (,∞) (see, e.g., []). UMD spaces include e.g. Lp, lp spaces,
and Lorentz spaces Lpq, p,q ∈ (,∞).
Let

Sψ =
{
λ ∈C, | argλ| ≤ ψ , ≤ ψ < π

}
,

Sψ ,κ =
{
λ ∈ Sψ , |λ| > κ > 

}
.

A linear operator A is said to be ψ-positive in a Banach space E with bound M >  if
D(A) is dense on E and ‖(A + λI)–‖B(E) ≤ M( + |λ|)– for any λ ∈ Sψ ,  ≤ ψ < π , where
I is the identity operator in E, and B(E) is the space of bounded linear operators in E. It
is known [, §..] that there exist fractional powers Aθ of a positive operator A. Let
E(Aθ ) denote the space D(Aθ ) with norm

‖u‖E(Aθ ) =
(‖u‖p + ∥∥Aθu

∥∥p) 
p , ≤ p < ∞,  < θ < ∞.

Let E and E be two Banach spaces. By (E,E)θ ,p,  < θ < ,  ≤ p≤ ∞, will be denoted
the interpolation spaces obtained from {E,E} by the K-method [, §..].
Let N denote the set of natural numbers. A set � ⊂ B(E,E) is called R-bounded

(see, e.g., []) if there is a positive constant C such that for all T,T, . . . ,Tm ∈ � and
u,u, . . . ,um ∈ E,m ∈N,

∫
�

∥∥∥∥∥
m∑
j=

rj(y)Tjuj

∥∥∥∥∥
E

dy≤ C
∫

�

∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy,

where {rj} is a sequence of independent symmetric {–, }-valued random variables on �.
The smallest C for which the above estimate holds is called a R-bound of the collection �

and denoted by R(�).
A set �h ⊂ B(E,E) is called uniform R-bounded in h, if there is a constant C indepen-

dent on h ∈ σ ⊂R such that

∫
�

∥∥∥∥∥
m∑
j=

rj(y)Tj(h)uj

∥∥∥∥∥
E

dy ≤ C
∫

�

∥∥∥∥∥
m∑
j=

rj(y)uj

∥∥∥∥∥
E

dy

for all T(h),T(h), . . . ,Tm(h) ∈ �h and u,u, . . . ,um ∈ E, m ∈ N. It is implied that
suph∈Q R(�h)≤ C.
The ψ-positive operator A is said to be R-positive in a Banach space E if the set LA =

{ξ (A + ξ )– : ξ ∈ Sψ }, ≤ ψ < π is R-bounded.
The operator A(t) is said to be ψ-positive in E uniformly with respect to t with bound

M >  if D(A(t)) is independent on t, D(A(t)) is dense in E and ‖(A(t) + λ)–‖ ≤ M
+|λ| for all

λ ∈ Sψ , ≤ ψ < π , whereM does not depend on t and λ.
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Let E and E be two Banach spaces and E continuously and densely embedded into E.
Let � be a domain in Rn and m is a positive integer. Wm,p(�;E,E) denotes the space of
all functions u ∈ Lp(�;E) that have generalized derivatives ∂mu

∂xmk
∈ Lp(�;E) with the norm

‖u‖Wm,p(�;E,E) = ‖u‖Lp(�;E) +
n∑
k=

∥∥∥∥∂mu
∂xmk

∥∥∥∥
Lp(�;E)

<∞.

For n = , � = (a,b), a,b ∈ R the spaceWm,p(�;E,E) will be denoted byWm,p(a,b;E,E).
For E = E the spaceWm,p(�;E,E) is denoted byWm,p(�;E).
Let Ls,p(�;E), –∞ < s < ∞, denote the E-valued Liouville space of order s such that

L,p(�;E) = Lp(�;E). It is known that if E is a UMD space, then Lm,p(�;E) =Wm,p(�;E)
for positive integer m (see, e.g., [, §].
Let Ls,p(�;E,E) denote a Liouville-Lions type space, i.e.,

Ls,p(�;E,E) =
{
u ∈ Ls,p(�;E)∩ Lq(�;E),

‖u‖Ls,p(�;E,E) = ‖u‖Lp(�;E) + ‖u‖Ls,p(�;E) < ∞}
.

Lqσ (�;E) denote the E-valued solenoidal space, i.e., the closure of (C∞
σ (�;E))n in

(Lq(�;E))n, where

C∞
σ (�;E) =

{
u ∈ C∞

 (�;E),divu = 
}
.

Sometimes we use one and the same symbol C without distinction in order to denote
positive constants which may differ from each other even in a single context. When we
want to specify the dependence of such a constant on a parameter, say α, we write Cα .
The embedding theorems in vector-valued spaces play a key role in the theory of DOEs.

For estimating lower order derivatives we use the following embedding theorems from
[].

Theorem A Suppose the following conditions are satisfied:
() E is a UMD space and A is an R-positive operator in E;
() α = (α,α, . . . ,αn) andm is a positive integer such that κ =

∑n
k=

|α|
m ≤ ,

 ≤ μ ≤  –κ,  < p < ∞,  < h≤ h, h is a fixed positive number;
() � ⊂ Rn is a region such that there exists a bounded linear extension operator from

Wm,p(�;E(A),E) toWm,p(Rn;E(A),E).
Then the embedding DαWm,p(�;E(A),E) ⊂ Lp(�;E(A–κ–μ)) is continuous and for all

u ∈ Wm,p(�;E(A),E) the following uniform estimate holds:

∥∥Dαu
∥∥
Lp(�;E(A–κ–μ)) ≤ hμ‖u‖Wm,p(�;E(A),E) + h–(–μ)‖u‖Lp(�;E).

Remark . If� ⊂ Rn is a region satisfying the strong l-horn condition (see [, §]), E = R,
A = I , then for p ∈ (,∞) there exists a bounded linear extension operator fromWm,p(�) =
Wm,p(�;R,R) toWm,p(Rn) =Wm,p(Rn;R,R).

http://www.boundaryvalueproblems.com/content/2014/1/86
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TheoremA Suppose all conditions of Theorem A are satisfied and  < μ ≤  –κ.More-
over, let � be a bounded region and A– ∈ σ∞(E). Then the embedding

DαWm,p(�;E(A),E
) ⊂ Lp

(
�;E

(
A–κ–μ

))
is compact.

Theorem A Suppose all conditions of Theorem A satisfied and  < μ ≤  –κ. Then the
embedding

DαWm,p(�;E(A),E
) ⊂ Lp

(
�;

(
E(A),E

)
κ,p

)
is continuous and there exists a positive constant Cμ such that for all u ∈ Wl

p(�;E(A),E)
the uniform estimate holds

∥∥Dαu
∥∥
Lp(�;(E(A),E)κ,p)

≤ Cμ

[
hμ‖u‖Wm,p(�;E(A),E) + h–(–μ)‖u‖Lp(�;E)

]
.

From [, Theorem .] we obtain the following.

Theorem A Let E be a Banach space, A be a ϕ-positive operator in E with bound M,
 ≤ ϕ < π . Let m be a positive integer,  < p < ∞ and α ∈ ( 

p ,

p +m). Then, for λ ∈ Sϕ ,

an operator –A


λ generates a semigroup e–xA



λ which is holomorphic for x > . Moreover,

there exists a positive constant C (depending only on M, ϕ,m, α and p) such that for every
u ∈ (E,E(Am)) α

m– 
mp ,p

and λ ∈ Sϕ ,

∫ ∞



∥∥Aα
λe

–xA


λ u

∥∥p dx≤ C
[‖u‖p(E,E(Am)) α

m – 
mp ,p

+ |λ|αp– 
 ‖u‖pE

]
.

3 The stationary Stokes systemwith variable coefficients
In this section, we derive the maximal regularity properties of the stationary abstract
Stokes problem (.)-(.).
First at all, we consider the BVP for the variable coefficient differential operator equation

(DOE)

n∑
k=

ak(x)
∂u
∂xk

+
(
A(x) + λ

)
u +

n∑
k=

Ak(x)
∂u
∂xk

= f (x), x ∈G,

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , k = , , . . . ,n, j = , ,

(.)

where A(x) and Ak(x) are linear operators in a Banach space E, ak are complex-valued
functions, and λ is a complex parameter.
Maximal regularity properties for DOEs studied, e.g., in [, , , , –]. Nonlocal

BVPs for PDE were studied in [].
Let ωki = ωki(x), i = , , be roots of the equations

ak(x)ω = , k = , , . . . ,n.

http://www.boundaryvalueproblems.com/content/2014/1/86
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Let αkj = αkjmk and βkj = βkjmk and

ηk(x) =

∣∣∣∣∣αk(–ωk)mk βkω
mk
k

αk(–ωk)mk βkω
mk
k

∣∣∣∣∣ .
Condition . Assume:
() E is a UMD space and A(x) is a uniformly R-positive operator in E for ϕ ∈ [,π );
() ak(x) ∈ C(Ḡ), ak(Gi) = ak(Gib), ak �= , ak ∈ S(ϕ)∩C/R– for all x ∈ G, ϕ + ϕ < π ;
() A(x)A–(x̄) ∈ C(Ḡ;B(E)), A(Gi) = A(Gib), Ai(x)A–(  –ν)(x) ∈ C(m)(Ḡ;B(E)),  < ν < 

 ;
() |αkjmj | + |βkjmj | > , ηk(x) �= , k, i = , , . . . ,n, j = , , p ∈ (,∞).

Remark . Let ak = –bk(x), where bk are real-valued positive functions and. Then Con-
dition . is satisfied.

Remark . The conditions ak(Gi) = ak(Gib), A(Gi) = A(Gib) are given due to the non-
locality of the boundary conditions. For local boundary conditions these assumptions are
not required.

From [, Theorem .] we have the following.

Theorem . Suppose Condition . is satisfied. Then problem (.) has a unique solu-
tion u ∈ W ,p(G;E(A),E) for f ∈ Lp(G;E) and for sufficiently large λ ∈ Sϕ . Moreover, the
following coercive uniform estimate holds:

n∑
k=

∑
i=

|λ|– i


∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Lq(G;E)

+ ‖Au‖Lq(G;E) ≤ C‖f ‖Lq(G;E).

Consider the differential operator Q = Qq in Lq(G;E) generated by problem (.)-(.),
i.e.,

D(Q) =W ,q(G;E(A),E,Lkj), Qu =
n∑
k=

ak(x)
∂u
∂x

+A(x) +
n∑
k=

Ak(x)
∂u
∂xk

.

Let Bq = B(Lq(G;E)). From Theorem . we obtain the following.

Result . For λ ∈ Sψ ,κ there is a resolvent (Q + λ)– and the following uniform coercive
estimate holds:

n∑
k=

∑
i=

|λ|– i


∥∥∥∥ ∂ i

∂xik
(Q + λ)–

∥∥∥∥
Bq

+
∥∥A(Q + λ)–

∥∥
Bq

≤ C.

Let E be a Banach space andXq = Xq(G) = (Lq(G;E))n denote the class of E-valued system
of function f = (f(x), f(x), . . . , fn(x)) with norm

‖f ‖Xq =
( n∑

i=

‖fi‖qLq(G;E)
) 

q

, q ∈ (,∞),

http://www.boundaryvalueproblems.com/content/2014/1/86
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Xqσ = Lqσ (G;E) denote the E-valued solenoidal space and A be a positive operator in E.
The spaces (Ls,q(G;E))n, (Ls,q(G;E(A),E))n will be denoted by Xs

q(G) and Xs
q(G,A).

Consider the problem

n∑
k=

ak(x)
∂u
∂xk

+
(
A(x) + λ

)
u +

n∑
k=

Ak(x)
∂u
∂xk

= f (x), x ∈G,

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk) + βkji
∂ iu
∂xik

(Gkb)
]
= , k = , , . . . ,n, j = , ,

(.)

where f = (f(x), f(x), . . . , fn(x)), A(x) and Ak(x) are linear operators in a Banach space E, ak
are complex-valued functions, and λ is a complex parameter. FromTheorem . we obtain
the following result.

Result . Suppose Condition . is satisfied. Then problem (.) has a unique solution
u ∈ X

q (G,A) for f ∈ Xq and for sufficiently large λ ∈ Sϕ . Moreover, the following coercive
uniform estimate holds:

n∑
k=

∑
i=

|λ|– i


∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Xq

+ ‖Au‖Xq ≤ C‖f ‖Xq .

Consider the differential operator B = Bq in Xq generated by problem (.), for λ = , i.e.,

D(B) = X
q (G,A), Bu =

n∑
k=

ak(x)
∂u
∂x

+A(x) +
n∑
k=

Ak(x)
∂u
∂xk

.

From Result . we obtain the following uniform coercive estimate:

n∑
k=

∑
i=

|λ|– i


∥∥∥∥ ∂ i

∂xik
(B + λ)–

∥∥∥∥
B(Xq)

+
∥∥A(B + λ)–

∥∥
B(Xq)

≤ C. (.)

Consider the space

Yq(A) =
{
u ∈ Xq

(
E(A)

)
,divu ∈ Lq(G;E)

}
,

‖u‖Yq(A) =
(‖u‖qXq(E(A)) + ‖divu‖qLq(G;E)

) 
q .

Yq becomes a Banach space with this norm.
It is known that (see, e.g., [, ]) the vector field u ∈ (Lq(G))n has aHelmholtz decomposi-

tion. In the following theoremwe generalize this result for the E-valued function spaceXq.

Theorem . Let E be an UMD space and q ∈ (,∞). Then u ∈ Xq has a Helmholtz de-
composition, i.e., there exists a linear bounded projection operator Pq from Xq onto Xqσ

with null space N(Pq) = {∇ϕ ∈ Xq : ϕ ∈ Lqloc(G;E)}. In particular, all u ∈ Xq have a unique
decomposition u = u +∇ϕ with u ∈ Xqσ , u = Pqu so that

‖∇ϕ‖Xq + ‖u‖Xq ≤ C‖u‖Xq . (.)

Moreover, (Xqσ )∗ = Xq′σ , where 
q +


q′ = .

http://www.boundaryvalueproblems.com/content/2014/1/86
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For proving Theorem . we need some lemmas.
Consider the equation

–�u +A(x)u = f (x), x ∈G. (.)

Lemma . Let E be an UMD space, A a R-positive operator in E and q ∈ (,∞). Then, for
f ∈ X–

q , problem (.) has a unique solution u ∈ X
q(A) and the following coercive estimate

holds:

‖u‖X
q(G) + ‖Au‖Xq(G) ≤ C‖f ‖X–

q (G). (.)

Proof Consider the problem

–�u +Au = f̃ (x), x ∈ Rn, (.)

where f̃ (x) is an extension of the function f (x) on Rn. Then, by using the Fourier in-
version formula, operator-valued multiplier theorems in Lq spaces, and by reasoning as
in [, Theorem .] we see that problem (.) has a unique solution ũ ∈ X

q(Rn,A) for
f ∈ X–

q (Rn;E) and the following coercive estimate holds:

‖ũ‖X
q(Rn) + ‖Aũ‖Xq(Rn) ≤ C‖f̃ ‖X–

q (Rn).

This fact implies that the function u which is a restriction of ũ on G is a solution of
problem (.). The estimate (.) is obtained from the above estimate.
Let ν = (ν,ν, . . . ,νn) be a unit normal to the boundary � of the domain G and fν is a

normal component of f = (f, f, . . . , fn) ∈ Xq(G) on �, i.e.,

fν =

( n∑
k=

νkfk

)∣∣∣∣
�

.

Here and hereafter E∗ will denoted the conjugate of E, and (, ·) (resp. 〈, ·〉) denotes the
duality pairing of functions on G (resp. �). �

By reasoning as in [, Lemma ] we get the following.

Lemma . C∞
 (G;E) is dense in Yq(A).

Proposition . There exists a unique bounded linear operator u → uν from Yq(A), q ∈
(,∞) onto

Wq(�) =W–/q,q(�, (E(
A∗),E∗)

q,/q′ ,E∗)

such that

(uν ,υ|�) = (divu,υ) + (u,∇υ), υ ∈ W ,q′(
G,E(A),E

)

http://www.boundaryvalueproblems.com/content/2014/1/86
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and the following estimate holds:

‖uν‖Wq(�) ≤ C
(‖u‖Xq + ‖divu‖Lq(G;E)

)
, (.)

where


q
+


q′ = .

Proof For u ∈ Yq(A) consider the linear form

Tu(υ) = (divu,�) + (u,∇�), � ∈Wq′ ,(G,E(A),E)
, �ν = υ. (.)

By virtue of the trace theorem inW ,q(,a;E(A),E), the interpolation of intersection and
dual spaces (see, e.g., [, §.., .., ..]) and by a localization argumentwe obtain the
result that the operator � → �ν is a bounded linear and surjective fromW ,q′ (G;E(A),E)
onto

Z(�) =W –/q′ ,q′(
�,

(
E(A),E

)
q′ ,/q′ ,E

)
.

Hence, we can find for each υ ∈ Z(�) an element � ∈W ,q′ (G;E(A),E) so that

�ν = υ,‖�‖W ,q′ (G;E(A),E) ≤ C‖υ‖Z(�).

Therefore, from (.) we get

∣∣Tu(υ)
∣∣ ≤ (‖u‖Xq + ‖divu‖Lq(G;E)

)‖�‖W ,q′ (G;E(A),E)

≤ C
(‖u‖Xq + ‖divu‖Lq(G;E)

)‖υ‖Z(�).

This implies the existence of an element

uν ∈ (
Z(�)

)∗ =W–/q,q(�, (E(
A∗),E∗)

q,/q′ ,E∗)

such that

〈uν ,υ〉 = Tu(υ) for υ ∈ Z(�)

and

‖uν‖(Z(�))∗ ≤ C
(‖u‖Xq + ‖divu‖Lq(G;E)

)
.

Thus, we have proved the existence of the operator u → uν . The uniqueness follows
from Lemma .. �

Proposition . implies the following.
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Result . Assume the conditions of Proposition . are satisfied. Then

Xqσ ⊂ Xqν = {u ∈ Xq,divu = ,uν = }

and Xqν is a closed subspace of Xq.
Let f ∈ Xq and f = (f(x), f(x), . . . , fn(x)). Consider the following problem:

–�u +Au = div f (x), x ∈G,

∂u
∂xk

(Gk) = fk(Gk),
∂u
∂xk

(Gkb) = fk(Gkb), k = , , . . . ,n. (.)

Lemma . Let E be an UMD space, A a R-positive operator in E and q ∈ (,∞). Then, for
f ∈ Xq, problem (.) has a unique solution u ∈W ,q(G;E(A),E) and the coercive estimate
holds

‖u‖W ,q(G;E) + ‖Au‖Lq(G;E) ≤ C‖div f ‖W–,q(G;E) + ‖fν‖Wq(�). (.)

Proof Consider the equation

–�υ +Aυ = div f (x), x ∈G. (.)

By Lemma ., problem (.) has a unique solution υ ∈ L,q(G;E(A),E) for f ∈ Xq and
the following estimate holds:

‖υ‖L,q(G;E) + ‖Aυ‖Lq(G;E) ≤ C‖div f ‖L–,q(G;E). (.)

Consider now the BVP

–�w +Aw = , x ∈G,

∂w
∂xk

(Gk) = fk(Gk) –
∂υ

∂xk
(Gk), (.)

∂w
∂xk

(Gkb) = fk(Gkb) –
∂υ

∂xk
(Gkb), k = , , . . . ,n.

By using Theorem ., Result ., and Proposition . we conclude that problem (.)
for f ∈ Xq has a unique solution w ∈ W ,q(G;E(A),E) and the following coercive estimate
holds:

‖w‖W ,q(G;E) +
∥∥A 

w
∥∥
Lq(G;E) ≤ C‖fν‖Wq(�). (.)

Thenwe conclude that problem (.) has a unique solution ϕ(x) = υ(x)+w(x) and (.),
(.) imply the estimate (.). �

Result . For the case of A = κ >  we obtain from (.), (.), and (.) that the prob-
lem

(–� +κ)w = , x ∈ G,

http://www.boundaryvalueproblems.com/content/2014/1/86
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∂w
∂xk

(Gk) = fk(Gk) –
∂υ

∂xk
(Gk), (.)

∂w
∂xk

(Gkb) = fk(Gkb) –
∂υ

∂xk
(Gkb), k = , , . . . ,n

has a unique solution w ∈ W ,q(G;E) for f ∈ Xq and the following estimate holds:

‖w‖W ,q(G;E) ≤ C
∥∥∥∥fν – ∂υ

∂ν

∥∥∥∥
W–/q,q(�,E∗)

. (.)

Result . For the case of A = κ >  we obtain from Lemma . and from (.), (.) that
the problem

(–� +κ)υ = div f (x), x ∈G (.)

has a unique solution υ ∈W ,q(G;E) for f ∈ Xq and the following estimate holds:

‖υ‖W ,q(G;E) ≤ C‖div f ‖X–
q
. (.)

By (.), div(f –∇υ) = . So, by (.) and Proposition . we get

‖w‖W ,q(G;E) ≤ C‖f ‖Xq . (.)

From Results ., ., and estimate (.) we obtain

Result . The problem

(–� +κ)w = div f (x), x ∈G,

∂w
∂xk

(Gk) = fk(Gk) –
∂υ

∂xk
(Gk), (.)

∂w
∂xk

(Gkb) = fk(Gkb) –
∂υ

∂xk
(Gkb), k = , , . . . ,n

has a unique solution u = w + υ ∈W ,q(G;E) for f ∈ Xq and the estimate holds

‖u‖W ,q(G;E) ≤ C‖f ‖Xq . (.)

Consider the operator P = Pq defined by

D(P) = Xq, Pf = f – grad(υ +w),

where w and υ are solutions of problems (.), (.), respectively. It is clear that we have
the following.

Lemma . Let E be an UMD space and q ∈ (,∞). Then PqXq is a closed subspace of Xq.

Lemma . Let E be an UMD space and q ∈ (,∞). Then the operator Pq is a bounded
linear operator in Xq and Pf = f if div f (x) = .

http://www.boundaryvalueproblems.com/content/2014/1/86
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Proof The linearity of the operator P is clear by construction. Moreover, by Result . we
have

‖Pf ‖Xq ≤ ‖f ‖Xq + ‖gradu‖Xq ≤ C‖f ‖Xq . (.)

If div f (x) =  then by Result . we get υ = . Moreover, by the estimate (.) we obtain
w = , i.e., Pf = f . �

Lemma . Assume E is an UMD space and q ∈ (,∞).Then the conjugate of Pq is defined
as P∗

q = Pq′ , 
q +


q′ =  and is bounded linear in (Lq′ (G;E∗))n.

Proof It is known (see, e.g., [, ]) that the dual space of Lq(G;E) is Lq′ (G;E∗). Since
C∞
 (G;E∗) is dense in Lq′ (G;E∗) we have only to show P∗

qϕ = Pq′ϕ for any ϕ ∈ (C∞
 (G;E∗))n.

But this is deriving by reasoning as in [, Lemma ]. Moreover, by Lemma . the dual
operator P∗

q is a bounded linear in Lq′ (G;E∗). �

Let

Wq =
{∇ϕ : ϕ ∈Wq,(G;E)

}
,

(PqXq)⊥ =
{
f ∈ (

Lq
′(
G;E∗))n, 〈f , υ〉 =  for any υ ∈ PqXq

}
.

From Lemmas ., . we obtain the following.

Result . Assume E is an UMD space and q ∈ (,∞). Then any element f ∈ Xq uniquely
can be expressed as a sum of elements of PqXq andWq.

In a similar way as Lemmas ,  of [] we obtain, respectively, the following.

Lemma . Assume E is an UMD space and q ∈ (,∞). Then

(PqXq)⊥ =Wq′ ,

q
+


q′ = .

Lemma . Assume E is an UMD space and q ∈ (,∞). Then

X⊥
qσ =Wq′ ,


q
+


q′ = .

Now we are ready to prove Theorem ..

Proof of Theorem . From Lemmas ., . we get Xqσ = (PqXq)⊥. Then, by construction
of Pq, we have Xq = Xqσ ⊕ Wq. By Lemmas ., ., we obtain the estimate (.). More-
over, by Lemma .,Wq is a close subspace of Xq. Then it is known that the dual space of
the quotient space Xq/Wq is W⊥

q . In view of first assertion we have Xq/Wq = Xqσ and by
Lemma . we obtain the second assertion. �

http://www.boundaryvalueproblems.com/content/2014/1/86
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Theorem . Let Condition . hold. Then problem (.)-(.) has a unique solution u ∈
X
q for f ∈ Xq, ϕ ∈ W ,q(G;E), λ ∈ Sψ ,κ , and the following coercive uniform estimate holds:

n∑
k=

∑
i=

λ– i


∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Xq

+ ‖Au‖Xq + ‖∇ϕ‖Xq ≤ C‖f ‖Xq . (.)

Proof By virtue of Result ., we find that problem (.) has a unique solution u ∈ X
q (G,A)

for f ∈ Xq and for sufficiently large λ ∈ Sϕ . Moreover, the following coercive uniform esti-
mate holds:

n∑
k=

∑
i=

|λ|– i


∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Xq

+ ‖Au‖Xq ≤ C‖f ‖Xq .

By applying the operator Pq to problem (.)-(.) we get the Stokes problem (.)-(.).
It is clear that

D(Oq) =D(B)∩Xqσ ,

where Oq is the Stokes operator and B is a operator generated by problem (.) for λ = .
Then by Theorem . we obtain the assertion. �

Result . From Result . we find that O =Oq is a positive operator in Xq and –O gen-
erate a bounded holomorphic semigroup S(t) = exp(–Ot) for t > .

In a similar way as in [] we show the following.

Proposition . The following estimate holds:

∥∥OαS(t)
∥∥ ≤ Ct–α

for α ≥  and t > .

Proof From the estimate (.) we see that the operatorO is positive inXq, i.e., for λ ∈ Sψ ,κ ,
 < ψ < π the following estimate holds:

∥∥(O + λ)–
∥∥ ≤M|λ|–,

where the constantM is independent of λ. Then, by using the Danford integral and oper-
ator calculus (see, e.g., in []), we obtain the assertion. �

4 Well-posedness of instationary Stokes problems with variable coefficients
Let

B(p,q) = Lp(,T ;Xq), D(p,q) =
(
X
q (A),Xq

)

p ,p

.

In this section, we will show the well-posedness of problem (.)-(.).

http://www.boundaryvalueproblems.com/content/2014/1/86
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Theorem . Then, for f ∈ B(p,q), ϕ ∈ Lp(,T ;W ,q(G;E)), and a ∈ D(p,q), p,q ∈ (,∞),
there is a unique solution (u,∇ϕ) of problem (.)-(.) and the following estimate holds:

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,q)

+
n∑
k=

∥∥∥∥∂u
∂xk

∥∥∥∥
B(p,q)

+ ‖Au‖B(p,q) + ‖∇ϕ‖B(p,q) ≤ C
(‖f ‖B(p,q) + ‖a‖D(p,q)

)
. (.)

Proof Problem (.)-(.) can be expressed as the following abstract parabolic problem:

du
dt

+Ou = f (t), u() = a. (.)

If we put E = Xq then by Proposition ., operatorO is positive and generates a bounded
holomorphic semigroup in Xq. Moreover, by using [, Theorem .] we see that the op-
erator O is R-positive in E. Since E is a UMD space, in a similar way as in [, Theo-
rem .] we see that for all f ∈ Lp(,T ;E) and a ∈ (D(O),E) 

p ,p
there is a unique solution

u ∈ W ,p(,T ,D(O),E) of problem (.) so that the following estimate holds:

∥∥∥∥dudt
∥∥∥∥
Lp(,T ;E)

+ ‖Ou‖Lp(,T ;E) ≤ C
(‖f ‖Lp(,T ;E) + ‖a‖(D(O),E) 

p ,p

)
. (.)

�

From the estimates (.) and (.) we obtain the assertion.

Remark . There are a lot of positive operators in concrete Banach spaces. Therefore,
putting in (.)-(.) and (.)-(.) concrete Banach spaces instead of E and concrete posi-
tive differential, pseudo differential operators, or finite, infinite matrices, etc. instead of A,
by virtue of Theorem . and Theorem . we can obtain the maximal regularity proper-
ties of different class of stationary and instationary Stokes problems, respectively, which
occur in numerous physics and engineering problems.

Let us now show some application of Theorem . and Theorem ..

5 Application
Consider the stationary Stokes problem

n∑
k=

ak(x)
∂u(x, y)

∂xk
+

∑
|β|≤m

aβ (x, y)Dβ
y u(x, y) +∇ϕ = f (x, y), divu = , (.)

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk, y) + βkji
∂ iu
∂xik

(Gkb, y)
]
= , y ∈ �, j = , , (.)

Bju =
∑

|β|≤mj

bjβ (y)Dβ
y u(x, y)

∣∣∣
y∈∂�

= , x ∈G, j = , , . . . ,m, (.)

where f = (f(x, y, t), f(x, y, t), . . . , fn(x, y, t)) represents a given and

u =
(
u(x, y),u(x, y), . . . ,un(x, y)

)
, ϕ = ϕ(x, y)
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are unknown functions;

x = (x,x, . . . ,xn) ∈G =
n∏
k=

(,bk), y = (y, . . . , yμ) ∈ � ⊂ Rμ,

Gk = (x,x, . . . ,xk–, ,xk+, . . . ,xn), p ∈ (,∞),

Gkb = (x,x, . . . ,xk–,bk ,xk+, . . . ,xn), q ∈ (,∞),mkj ∈ {, },

αkji, βkji are complex numbers, aα , bjβ are complex-valued functions, Dj = –i ∂
∂yj

.
Let �̃ = G × �, p =(p,p). Now Lp(�̃) will denote the space of all p-summable scalar-

valued functions with mixed norm i.e., the space of all measurable functions f defined
on �̃, for which

‖f ‖Lp(�̃) =
(∫

G

(∫
�

∣∣f (x, y)∣∣p dx)
p
p
dy

) 
p
< ∞.

Analogously,Wm,p(�̃) denotes the Sobolev space with corresponding mixed norm.
Xp = (Lp(�̃))n denotes the class of vector function

f =
(
f(x), f(x), . . . , fn(x)

)

with norm

‖f ‖Xp =
n∑
i=

‖fi‖Lp(G;E)

and X,m
p = (W ,m,p(�̃))n, whereW ,m,p(�̃) is the anisotropic Sobolev space with mixed

norm.
From Theorem . we obtain the following.

Theorem . Let the following conditions be satisfied:
() � is a domain in Rμ with sufficiently smooth boundary ∂�, aα(x, y) ∈ C(�̄),

aα(Gi, y) = aα(Gib, y) for each |α| = m, y ∈ �, aα ∈ [L∞ + Lrk ](�) for each
|α| = k < m with rk ≥ p, p ∈ (,∞) and m – k > l

rk
, να ∈ L∞;

() bjβ ∈ Cm–mj (∂�) for each j,β ,mj < m, p ∈ (,∞);
() for y ∈ �̄, ξ ∈ Rμ, η ∈ S(ϕ), ϕ ∈ [, π

 ), |ξ | + |η| �=  let

η +
∑

|α|=m
aα(y)ξα �= ;

() for each x ∈ ∂� the local BVPs in local coordinates corresponding to x

η +
∑

|α|=m
aα

(
x, ξ ′,Dμ

)
ϑ(y) = , y > ,

Bjϑ =
∑

|β|=mj

bjβ
(
x, ξ ′,Dμ

)
ϑ(y)

∣∣∣
y=

= hj, j = , , . . . ,m

http://www.boundaryvalueproblems.com/content/2014/1/86
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has a unique solution ϑ ∈ C(R+) for all h = (h,h, . . . ,hm) ∈ Rm and for ξ ′ ∈ Rμ–

with |ξ ′| + |η| �= ;
() ak ∈ C(Ḡ), ak(Gi, y) = ak(Gib, y), ak �= , ak ∈ S(ϕ)∩C/R– for all x ∈G, ϕ + ϕ < π ,

y ∈ �, k, i = , , . . . ,n.
Then, problem (.)-(.) has a unique solution u ∈ X,m

p for f ∈ Xp, ϕ ∈ W ,p(�̃;E),
λ ∈ Sψ ,κ, and the following coercive uniform estimate holds:

n∑
k=

∑
i=

|λ|– i


∥∥∥∥ ∂ iu
∂xik

∥∥∥∥
Xp

+
∑

|α|=m

∥∥Dα
y u

∥∥
Xp

+ ‖∇ϕ‖Xp ≤ C‖f ‖Xp . (.)

Proof Let E = Lp (�). By virtue of [, Theorem ..] Lp (�) is an UMD space. Consider
the operator A which is defined by

D(A) =W m,p (�;Bju = ), Au =
∑

|β|≤m

aβ (y)Dβu(y).

Problem (.)-(.) can be rewritten in the form of (.)-(.) for Ak = , k = , , . . . ,n,
where u(x) = u(x, ·) and f (x) = f (x, ·) are functions with values in E = Lp (�). In view of [,
Theorem .] the problem

ηu(y) +
∑

|β|≤m

aβ (x, y)Dβu(y) = f (y),

Bju =
∑

|β|≤mj

bjβ (y)Dβu(y) = , j = , , . . . ,m
(.)

has a unique solution for f ∈ Lp (�) and arg η ∈ S(ϕ), |η| → ∞, and the operator A is
R-positive in Lp . Hence, all conditions of Theorem . are satisfied, i.e., we obtain the
assertion.
Consider now the instationary Stokes problem

∂u
∂t

+
n∑
k=

ak(x)
∂u
∂xk

+
∑

|β|≤m

aβ (x, y)Dβ
y u +∇ϕ = f (x, y, t), divu = , (.)

mkj∑
i=

[
αkji

∂ iu
∂xik

(Gk, y, t) + βkji
∂ iu
∂xik

(Gkb, y, t)
]
= , j = , , (.)

u(x, y, ) = a(x, y), t ∈ (,T),x ∈ G, y ∈ �, (.)

Bju =
∑

|β|≤mj

bjβ (y)Dβ
y u(x, y, t)

∣∣∣
y∈∂�

= , x ∈G, j = , , . . . ,m, (.)

where f (x, y, t), u = (x, y, t) are data and solution vector-functions, respectively. �

From Theorem . and Theorem . we obtain the following.

Theorem . Assume all conditions of Theorem . are satisfied p,p,q ∈ (,∞). Then,
for f ∈ Lq(,T ;Xp) = B(p,p,q), ϕ ∈ Lq(,T ;W ,p(�̃)), and a ∈ (X,m

p ,Xp) q ,q = D(p,p,q),
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there is a unique solution (u,∇ϕ) of problem (.)-(.) and the following estimate holds:

∥∥∥∥∂u
∂t

∥∥∥∥
B(p,p,q)

+
n∑
k=

∥∥∥∥∂u
∂xk

∥∥∥∥
B(p,p,q)

+
∑

|α|=m

∥∥Dα
y u

∥∥
B(p,p,q)

+ ‖∇ϕ‖B(p,p,q) ≤ C
(‖f ‖B(p,p,q) + ‖a‖D(p,p,q)

)
.

Competing interests
The author declares that they have no competing interests.

Received: 30 September 2013 Accepted: 21 April 2014 Published: 02 May 2014

References
1. Amann, H: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2, 16-98 (2000)
2. Giga, Y, Sohr, H: Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in

exterior domains. J. Funct. Anal. 102, 72-94 (1991)
3. Fujiwara, D, Morimoto, H: An Lr -theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci., Univ. Tokyo,

Sect. 1A, Math. 24, 685-700 (1977)
4. Fujita, H, Kato, T: On the Navier-Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269-315 (1964)
5. Farwing, R, Sohr, H: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains.

J. Math. Soc. Jpn. 46(4), 607-643 (1994)
6. Kato, T: Strong Lp-solutions of the Navier-Stokes equation in Rm , with applications to weak solutions. Math. Z. 187,

471-480 (1984)
7. Ladyzhenskaya, OA: The Mathematical Theory of Viscous Incompressible Flow. Gordon & Breach, New York (1969)
8. Solonnikov, V: Estimates for solutions of nonstationary Navier-Stokes equations. J. Sov. Math. 8, 467-529 (1977)
9. Sobolevskii, PE: Study of Navier-Stokes equations by the methods of the theory of parabolic equations in Banach

spaces. Sov. Math. Dokl. 5, 720-723 (1964)
10. Teman, R: Navier-Stokes Equations. North-Holland, Amsterdam (1984)
11. Shakhmurov, V: Coercive boundary value problems for regular degenerate differential-operator equations. J. Math.

Anal. Appl. 292(2), 605-620 (2004)
12. Denk, R, Hieber, M, Pruss, J: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem.

Am. Math. Soc. 166, 788 (2005)
13. Triebel, H: Interpolation Theory. Function Spaces. Differential Operators. North-Holland, Amsterdam (1978)
14. Ashyralyev, A: On well-posedeness of the nonlocal boundary value problem for elliptic equations. Numer. Funct.

Anal. Optim. 24(1-2), 1-15 (2003)
15. Triebel, H: Fractals and Spectra: Related to Fourier Analysis and Function Spaces. Birkhäuser, Basel (1997)
16. Shakhmurov, VB: Embedding theorems and maximal regular differential operator equations in Banach-valued

function spaces. J. Inequal. Appl. 4, 605-620 (2005)
17. Shakhmurov, VB: Linear and nonlinear abstract equations with parameters. Nonlinear Anal., Real World Appl. 73,

2383-2397 (2010)
18. Amann, H: Linear and Quasi-Linear Equations, vol. 1. Birkhäuser, Basel (1995)
19. Shakhmurov, VB, Shahmurova, A: Nonlinear abstract boundary value problems atmospheric dispersion of pollutants.

Nonlinear Anal., Real World Appl. 11(2), 932-951 (2010)
20. Shakhmurov, VB: Separable anisotropic differential operators and applications. J. Math. Anal. Appl. 327(2), 1182-1201

(2006)
21. Shakhmurov, V: Parameter dependent Stokes problems in vector-valued spaces and applications. Bound. Value Probl.

2013, 172 (2013)
22. Weis, L: Operator-valued Fourier multiplier theorems and maximal Lp regularity. Math. Ann. 319, 735-758 (2001)
23. Yakubov, S, Yakubov, Y: Differential-Operator Equations. Ordinary and Partial Differential Equations. Chapman &

Hall/CRC, Boca Raton (2000)
24. Lunardi, A: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (2003)
25. Skubachevskii, AL: Nonlocal boundary value problems. J. Math. Sci. 155(2), 199-334 (2008)

10.1186/1687-2770-2014-86
Cite this article as: Shakhmurov: Stokes operators with variable coefficients and applications. Boundary Value
Problems 2014, 2014:86

http://www.boundaryvalueproblems.com/content/2014/1/86

	Stokes operators with variable coefﬁcients and applications
	Abstract
	MSC
	Keywords

	Introduction
	Deﬁnitions and background
	The stationary Stokes system with variable coefﬁcients
	Well-posedness of instationary Stokes problems with variable coefﬁcients
	Application
	Competing interests
	References


