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Abstract
This paper deals with the Cauchy problem for a generalized Camassa-Holm equation
with high-order nonlinearities,

ut – uxxt + kux + aumux = (n + 2)unuxuxx + un+1uxxx ,

where k,a ∈R andm,n ∈ Z
+. This equation is a generalization of the famous

equation of Camassa-Holm and the Novikov equation. The local well-posedness of
strong solutions for this equation in Sobolev space Hs(R) with s > 3

2 is obtained, and
persistence properties of the strong solutions are studied. Furthermore, under
appropriate hypotheses, the existence of its weak solutions in low order Sobolev
space Hs(R) with 1 < s≤ 3

2 is established.

Keywords: persistence properties; local well-posedness; weak solution

1 Introduction
This work is concerned with the following one-dimensional nonlinear dispersive PDE:

{
ut – uxxt + kux + aumux = (n + )unuxuxx + un+uxxx, t > ,x ∈R,
u(x, ) = u(x), x ∈R,

(.)

where k,a ∈ R and m,n ∈ Z
+.

Obviously, if n = ,m = , a = , equation (.) becomes the Camassa-Holm equation,

ut – uxxt + kux + uux – uxuxx – uuxxx = , (.)

where the variable u(t,x) represents the fluid velocity at time t and in the spatial direc-
tion x, and k is a nonnegative parameter related to the critical shallow water speed [].
The Camassa-Holm equation (.) is also a model for the propagation of axially symmet-
ric waves in hyperelastic rods (cf. []). It is well known that equation (.) has also a bi-
Hamiltonian structure [, ] and is completely integrable (see [, ] and the in-depth dis-
cussion in [, ]). In [], Qiao has shown that the Camassa-Holm spectral problem yields
two different integrable hierarchies of nonlinear evolution equations, one is of negative or-
der CH hierachy while the other one is of positive order CH hierarchy. Its solitary waves
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are smooth if k >  and peaked in the limiting case c =  (cf. []). The orbital stability of
the peaked solitons is proved in [], and the stability of the smooth solitons is considered
in []. It is worth pointing out that solutions of this type are not mere abstractions: the
peakons replicate a feature that is characteristic for the waves of great height - waves of
largest amplitude that are exact solutions of the governing equations for irrotational water
waves (cf. [–]). The explicit interaction of the peaked solitons is given in [] and all
possible explicit single soliton solutions are shown in []. The Cauchy problem for the
Camassa-Holm equation (.) has been studied extensively. It has been shown that this
problem is locally well-posed for initial data u ∈ Hs(R) with s > 

 [–]. Moreover, it
has global strong solutions and also admits finite time blow-up solutions [, , , ].
On the other hand, it also has global weak solutions in H(R) [–]. The advantage of
theCamassa-Holm equation in comparisonwith theKdV equation (.) lies in the fact that
the Camassa-Holm equation has peaked solitons and models the peculiar wave breaking
phenomena [, ].
For n = ,m ∈ Z

+, a ∈R, equation (.) becomes a generalized Camassa-Holm equation,

ut – uxxt + kux + aumux = uxuxx + uuxxx, (.)

Wazwaz [, ] studied the solitary wave solutions for the generalized Camassa-Holm
equation (.) with m = , a = , and the peakon wave solutions for this equation were
studied in [–], and the periodic blow-up solutions and limit forms for (.) were ob-
tained in []. In [, ], the authors have given the traveling waves solution, peaked
solitary wave solutions for (.).
On the other hand, taking m = , a = , k =  in (.) we found the Novikov equation

[]:

ut – uxxt + uux = uuxuxx + uuxxx, t > ,x ∈R, (.)

The Novikov equation (.) possesses a matrix Lax pair, many conserved densities, a bi-
Hamiltonian structure as well as peakon solutions []. These apparently exotic waves
replicate a feature that is characteristic of the waves of great height-waves of largest am-
plitude that are exact solutions of the governing equations for water waves, as far as the de-
tails are concerned [, , ]. The Novikov equation possesses the explicit formulas for
multipeakon solutions []. It has been shown that the Cauchy problem for the Novikov
equation is locally well-posed in the Besov spaces and in Sobolev spaces and possesses the
persistence properties [, ]. In [, ], the authors showed that the data-to-solution
map for equation (.) is not uniformly continuous on bounded subsets of Hs for s > /.
Analogous to the Camassa-Holm equation, the Novikov equation shows the blow-up phe-
nomenon [] and has global weak solutions []. Recently, Zhao andZhou [] discussed
the symbolic analysis and exact traveling wave solutions of a modified Novikov equation,
which is new in that it has a nonlinear term uux instead of uux.
Other integrable CH-type equations with cubic nonlinearity have been discovered:

{
mt + (u – ux)mx + uxm + γux = , m = u – uxx, t > ,x ∈R,
u(,x) = u(x), x ∈R,

(.)
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where γ is a constant. equation (.) was independently proposed by Fokas [], by
Fuchssteiner [], and Olver and Rosenau [] as a new generalization of integrable sys-
tem by using the general method of tri-Hamiltonian duality to the bi-Hamiltonian rep-
resentation of the modified Korteweg-de Vries equation. Later, it was obtained by Qiao
[, ] from the two-dimensional Euler equations, where the variables u(t,x) andm(t,x)
represent, respectively, the velocity of the fluid and its potential density. Ivanov and Lyons
[] obtain a class of soliton solutions of the integrable hierarchy which has been put for-
ward in a series of woks by Qiao [, ]. It was shown that equation (.) admits the
Lax-pair and the Cauchy problem (.) may be solved by the inverse scattering transform
method. The formation of singularities and the existence of peaked traveling-wave solu-
tions for equation (.) was investigated in []. The well-posedness, blow-upmechanism,
and persistence properties are given in []. It was also found that equation (.) is related
to the short-pulse equation derived by Schäfer and Wayne [].
Applying the method of pseudoparabolic regularization, Lai and Wu [] investigated

the local well-posedness and existence of weak solutions for the following generalized
Camassa-Holm equation with dissipative term:

ut – uxxt + kux + aumux =
(
n

un–ux + unuxx

)
x
+ β∂x

[
(ux)N–], (.)

wherem,n,N ∈ Z
+, and a, k, β are constants. Hakkaev and Kirchev [] studied the local

well-posedness and orbital stability of solitary wave solution for equation (.) with a =
(m+)(m+)

 , n =m and β = .
Motivated by the results mentioned above, the goal of this paper is to establish the well-

posedness of strong solutions and weak solutions for problem (.). First, we use Kato’s
theorem to obtain the existence and uniqueness of strong solutions for equation (.).

Theorem . Let u ∈ Hs(R) with s > /. Then there exists a maximal T = T(‖u‖Hs(R)),
and a unique solution u(x, t) to the problem (.) such that

u = u(·,u) ∈ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)
.

Moreover, the solution depends continuously on the initial data, i.e. the mapping

u → u(·,u) :Hs(R)→ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)

is continuous.

In [, , ], the spatial decay rates for the strong solution to the Camassa-Holm
Novikov equation were established provided that the corresponding initial datum decays
at infinity. This kind of property is so-called the persistence property. Similarly, for equa-
tion (.), we also have the following persistence properties for the strong solution.

Theorem . Assume that u ∈ C([,T);Hs(R)) with s > / satisfies

∣∣u(x)∣∣, ∣∣ux(x)∣∣ ∼O
(
e–θx) as x ↑ ∞(

respectively,
∣∣u(x)∣∣, ∣∣ux(x)∣∣ ∼O

(
( + x)–α

)
as x ↑ ∞)
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for some θ ∈ (, ) (respectively, α ≥ max{ 
m+ ,


n }), then the corresponding strong solution

u ∈ C([,T);Hs(R)) to equation (.) satisfies for some T > 

∣∣u(x, t)∣∣, ∣∣ux(x, t)∣∣ ∼O
(
e–θx) as x ↑ ∞(

respectively,
∣∣u(x)∣∣ ∼O

(
( + x)–α

)
as x ↑ ∞)

uniformly in the time interval [,T].

Theorem . Assume that k = ,m = n, and u ∈ C([,T);Hs(R)) with s > / satisfies

∣∣u(x)∣∣ ∼O
(
e–x

)
,

∣∣ux(x)∣∣ ∼O
(
e–θx) as x ↑ ∞(

respectively,
∣∣u(x)∣∣ ∼O

(
( + x)–α

)
,
∣∣ux(x)∣∣ ∼O

(
( + x)–β

)
as x ↑ ∞)

for some θ ∈ (/(m+), ) (respectively, α ≥ 
m+ , β ∈ ( α

m+ ,α)), then the corresponding strong
solution u ∈ C([,T);Hs(R)) to equation (.) satisfies for some T > 

∣∣u(x, t)∣∣ ∼O
(
e–x

)
as x ↑ ∞(

respectively,
∣∣u(x)∣∣ ∼O

(
( + x)–α

)
as x ↑ ∞)

uniformly in the time interval [,T].

Remark . The notations mean that

∣∣f (x)∣∣ ∼O
(
e–θx) as x ↑ ∞ if lim

x→∞
f (x)
e–θx = L.

Finally, we have the following theorem for the existence of a weak solution for equation
(.).

Theorem . Suppose that u(x) ∈ Hs(R) with  < s ≤ 
 and ‖ux‖L∞(R) < ∞. Then there

exists a life span T >  such that problem (.) has aweak solution u(x, t) ∈ L([,T],Hs(R))
in the sense of a distribution and ux ∈ L∞([,T]×R).

The plan of this paper is as follows. In the next section, the local well-posedness and
persistence properties of strong solutions for the problem (.) are established, and The-
orems .-. are proved. The existence of weak solutions for the problem (.) is proved
in Section , and this proves Theorem ..

2 Well-posedness and persistence properties of strong solutions
Notation The space of all infinitely differentiable functions f (x, t) with compact support
in R × [, +∞) is denoted by C∞

 . Let p be any constant with  ≤ p < ∞ and denote Lp =
Lp(R) to be the space of all measurable functions f such that ‖f ‖pLp =

∫
R

|f (x)|p dx < ∞.
The space L∞ = L∞(R) with the standard norm ‖f ‖L∞ = infm(e)= supx∈R/e |f (x)|. For any
real number s, let Hs =Hs(R) denote the Sobolev space with the norm defined by

‖f ‖Hs =
(∫

R

(
 + |ξ |)s∣∣f̂ (ξ , t)∣∣ dξ

) 

< ∞,

http://www.boundaryvalueproblems.com/content/2014/1/9
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where f̂ (ξ , t) =
∫
R
e–ixξ f (x, t)dx. Let C([,T];Hs(R)) denote the class of continuous func-

tions from [,T] to Hs(R) and � = ( – ∂
x )


 .

Proof of Theorem . To prove well-posedness we apply Kato’s semigroup approach [].
For this, we rewrite the Cauchy problemof equation (.) as follows for the transport equa-
tion:{

ut + um+ux + F(u) = ,
u(x, ) = u(x),

(.)

where F(u) := P ∗ E(u). E(u) = kux + aumux – un+ux + n+
 ∂x(unux) +

n
u

n–ux and P(x) =

e

–|x|. Let A(u) := um+∂x, Y = Hs, X = Hs– and Q = � = ( – ∂
x )


 . Following closely the

considerations made in [, , ], we obtain the statement of Theorem .. �

Proof of Theorem . We introduce the notationM = supt∈[,T] ‖u(t)‖Hs . The first step we
will give estimates on ‖u(x, t)‖L∞ . Integrating the both sides with respect to x variable by
multiplying the first equation of (.) by up– with p ∈ Z

+, we get

∫
R

up–ut dx +
∫
R

up–
(
un+ux

)
dx +

∫
R

up–
(
P ∗ E(u)

)
dx = . (.)

Note that the estimates∫
R

up–ut dx =

p

d
dt

∥∥u(x, t)∥∥p
Lp =

∥∥u(x, t)∥∥p–
Lp

d
dt

∥∥u(x, t)∥∥Lp ,

and ∣∣∣∣∫
R

up–
(
un+ux

)
dx

∣∣∣∣ ≤ ∥∥ux(x, t)∥∥L∞
∥∥u(x, t)∥∥p+n

Lp

are true. Moreover, using Hölder’s inequality

∣∣∣∣∫
R

up–
(
P ∗ E(u)

)
dx

∣∣∣∣ ≤ ∥∥u(x, t)∥∥p–
Lp

∥∥P ∗ E(u)
∥∥
Lp .

From equation (.) we can obtain

d
dt

∥∥u(x, t)∥∥Lp ≤ ∥∥ux(x, t)∥∥L∞
∥∥u(x, t)∥∥n+

Lp +
∥∥P ∗ E(u)

∥∥
Lp .

Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L∞ ∩L. From the above inequality we deduce
that

d
dt

∥∥u(x, t)∥∥L∞ ≤Mn+∥∥u(x, t)∥∥L∞ +
∥∥P ∗ E(u)

∥∥
L∞ ,

where we use

∥∥ux(x, t)∥∥L∞
∥∥u(x, t)∥∥n

L∞ ≤ ∥∥ux(x, t)∥∥
H


 +

∥∥u(x, t)∥∥n

H

 +

≤ ∥∥u(x, t)∥∥n+
Hs ≤Mn+.
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Because of Gronwall’s inequality, we get

∥∥u(x, t)∥∥L∞ ≤ exp
(
Mn+t

)(∥∥u(x)∥∥L∞ +
∫ t



∥∥(
P ∗ E(u)

)
(x, τ )

∥∥
L∞ dτ

)
.

Next, we will give estimates on ‖ux(x, t)‖L∞ . Differentiating (.) with respect to the
x-variable produces the equation

uxt + un+uxx + (n + )unux + ∂x
(
P ∗ E(u)

)
= . (.)

Multiplying this equation by (ux)p– with p ∈ Z
+, integrating the result in the x-variable,

and using integration by parts:∫
R

(ux)p–uxt dx =

p

d
dt

∥∥ux(x, t)∥∥p
Lp =

∥∥ux(x, t)∥∥p–
Lp

d
dt

∥∥ux(x, t)∥∥Lp ,∣∣∣∣∫
R

(ux)p–
(
unux

)
dx

∣∣∣∣ ≤ ∥∥u(x, t)∥∥n
L∞

∥∥ux(x, t)∥∥L∞
∥∥ux(x, t)∥∥p

Lp ,∣∣∣∣∫
R

(ux)p–
(
un+uxx

)
dx

∣∣∣∣ = ∣∣∣∣n + 
p

∫
R

unup+x dx
∣∣∣∣

≤ n + 
p

∥∥u(x, t)∥∥n
L∞

∥∥ux(x, t)∥∥L∞
∥∥ux(x, t)∥∥p

Lp .

From the above inequalities, we also can get the following inequality:

d
dt

∥∥ux(x, t)∥∥Lp ≤
(
n +  +

n + 
p

)
Mn+∥∥ux(x, t)∥∥Lp +

∥∥∂x
(
P ∗ E(u)

)∥∥
Lp ,

where we use ‖ux(x, t)‖L∞‖u(t)‖nL∞ ≤Mn+. Then passing to the limit in this inequality and
using Gronwall’s inequality one can obtain

∥∥ux(x, t)∥∥L∞ ≤ exp
(
(n + )Mn+t

)(∥∥ux(x)∥∥L∞ +
∫ t



∥∥∂x
(
P ∗ E(u)

)
(x, τ )

∥∥
L∞ dτ

)
.

We shall now repeat the arguments using the weight

ϕN (x) =

⎧⎪⎨⎪⎩
, x≤ ,
eθx,  < x <N ,
eθx, x≥N ,

where N ∈ Z. Observe that for all N we have

 ≤ ϕ′
N (x)≤ ϕN (x), for all x ∈ R. (.)

Using the notation E(u), from (.) we get

∂t(uϕN ) +
(
un+ϕN

)
ux + ϕN

(
P ∗ E(u)

)
= ,

and from (.), we also obtain

∂t(ϕN∂xu) + un+ϕN∂
x u + (n + )un(ϕN∂xu)∂xu + ϕN∂x

(
P ∗ E(u)

)
= .

http://www.boundaryvalueproblems.com/content/2014/1/9
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We need to eliminate the second derivatives in the second term in the above equality.
Thus, combining integration by parts and equation (.) we find∣∣∣∣∫

R

un+ϕN∂
x u(∂xuϕN )p–

∣∣∣∣
=

∣∣∣∣∫
R

un+(∂xuϕN )p–
(
∂x(ϕN∂xu) – ∂xuϕ′

N
)
dx

∣∣∣∣
=

∣∣∣∣∫
R


p

un+∂x
(
(∂xuϕN )p

)
– un+(∂xuϕN )p–∂xuϕ′

N dx
∣∣∣∣

≤ (‖u‖L∞ + ‖∂xu‖L∞
)‖u‖nL∞‖∂xuϕN‖pLp .

Hence, as in the weightless case, we have

‖uϕN‖L∞ + ‖∂xuϕN‖L∞

≤ exp
(
(n + )Mn+t

)(∥∥u(x)ϕN
∥∥
L∞ +

∥∥ux(x)ϕN
∥∥
L∞

)
+ exp

(
(n + )Mn+t

)∫ t



(∥∥ϕN∂x
(
E(u)

)∥∥
L∞ +

∥∥ϕN
(
E(u)

)∥∥
L∞

)
dτ .

A simple calculation shows that there exists C > , depending only on θ ∈ (, ) such that
for any N ∈ Z

+,

ϕN

∫
R


ϕN (y)

dy≤ C =


 – θ
.

Thus, we have

∣∣ϕN
(
 – ∂

x
)–(un–∂

x u
)∣∣ = 



∣∣∣∣ϕN

∫
R

e–|x–y|(un–∂
x u

)
(y)dy

∣∣∣∣
=



∣∣∣∣ϕN

∫
R

e–|x–y| 
ϕN (y)

(ϕN∂xu)
(
un–∂

x u
)
(y)dy

∣∣∣∣
≤ 



(
ϕN

∫
R

e–|x–y| 
ϕN (y)

dy
)

‖ϕN∂xu‖L∞
∥∥un–∂

x u
∥∥
L∞

≤ c‖ϕN∂xu‖L∞
∥∥un–∂

x u
∥∥
L∞ ,

and

∣∣ϕN
(
 – ∂

x
)–

∂x
(
un–∂

x u
)∣∣ = 



∣∣∣∣ϕN

∫
R

sgn(x – y)e–|x–y|(un–∂
x u

)
(y)dy

∣∣∣∣
≤ c‖ϕN∂xu‖L∞

∥∥un–∂
x u

∥∥
L∞ .

Using the same method, we can estimate the other terms:

∣∣ϕN
(
 – ∂

x
)–(kux + aumux – un+ux

)∣∣ ≤ c
(
 + ‖u‖mL∞ + ‖u‖n+L∞

)‖ϕN∂xu‖L∞ ,∣∣ϕN
(
 – ∂

x
)–

∂x
(
kux + aumux – un+ux

)∣∣
=

∣∣∣∣ϕN
(
 – ∂

x
)–

∂
x

(
ku +

a
m + 

um+ –


n + 
un+

)∣∣∣∣

http://www.boundaryvalueproblems.com/content/2014/1/9
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≤
∣∣∣∣ϕN

(
ku +

a
m + 

um+ –


n + 
un+

)∣∣∣∣
+

∣∣∣∣ϕN
(
 – ∂

x
)–(ku +

a
m + 

um+ –


n + 
un+

)∣∣∣∣
≤ c

(
 + ‖u‖mL∞ + ‖u‖n+L∞

)‖ϕNu‖L∞ ,

and

∣∣ϕN
(
 – ∂

x
)–

∂x
(
unux

)∣∣ ≤ c‖ϕNu‖L∞
∥∥un–∂

x u
∥∥
L∞ ,∣∣ϕN

(
 – ∂

x
)–

∂
x
(
unux

)∣∣ ≤ ∣∣ϕNunux
∣∣ + ∣∣ϕN

(
 – ∂

x
)–(unux)∣∣

≤ c‖ϕNu‖L∞
∥∥un–∂

x u
∥∥
L∞ .

Thus, it follows that there exists a constant C >  which depends only on M, m, n, k, a,
and T , such that

‖uϕN‖L∞ + ‖∂xuϕN‖L∞

≤ C
(‖uϕN‖L∞ + ‖uxϕN‖L∞

)
+C

∫ t



((
 + ‖u‖mL∞ + ‖u‖n+L∞ +

∥∥un–∂
x u

∥∥
L∞

)(‖ϕN∂xu‖L∞ + ‖ϕNu‖L∞
))
dτ

≤ C
(‖uϕN‖L∞ + ‖uxϕN‖L∞

)
+C

∫ t



(‖ϕN∂xu‖L∞ + ‖ϕNu‖L∞
)
dτ .

Hence, for any n ∈ Z and any t ∈ [,T] we have

‖uϕN‖L∞ + ‖∂xuϕN‖L∞ ≤ C
(‖uϕN‖L∞ + ‖uxϕN‖L∞

)
≤ C

(∥∥umax
(
, eθx)∥∥

L∞ +
∥∥uxmax

(
, eθx)∥∥

L∞
)
.

Finally, taking the limit as N goes to infinity we find that for any t ∈ [,T],

∥∥ueθx∥∥
L∞ +

∥∥∂xueθx∥∥
L∞ ≤ C

(∥∥umax
(
, eθx)∥∥

L∞ +
∥∥uxmax

(
, eθx)∥∥

L∞
)
,

which completes the proof of Theorem .. �

Next, we give a simple proof for Theorem ..

Proof of Theorem . We should use Theorem . to prove this theorem.
For any t ∈ [,T], integrating equation (.) over the time interval [, t] we get

u(x, t) – u(x, ) +
∫ t



(
un+ux

)
(x, τ )dτ +

∫ t



(
P ∗ E(u)

)
(x, τ )dτ = . (.)

From Theorem ., it follows that

∫ t



(
un+ux

)
(x, τ )dτ ∼O

(
e–(n+)αx

)
as x ↑ ∞

http://www.boundaryvalueproblems.com/content/2014/1/9
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and so∫ t



(
un+ux

)
(x, τ )dτ ∼O

(
e–x

)
as x ↑ ∞.

We shall show that the last term in equation (.) is O(e–x); thus we have

∫ t



(
P ∗ E(u)

)
(x, τ )dτ = P(x) ∗

∫ t



(
E(u)

)
(x, τ )dτ

.= P(x) ∗ ρ(x).

From the given condition and Theorem .. we know ρ(x)∼O(e–x) as x ↑ ∞. Since

P(x) ∗ ρ(x) =



∫
R

e–|x–y|ρ(y)dy =


e–x

∫ x

–∞
eyρ(y)dy +



ex

∫ ∞

x
e–yρ(y)dy

we have

e–x
∫ x

–∞
eyρ(y)dy =O()e–x

∫ x

–∞
ey dy∼O()e–x ∼O

(
e–x

)
as x ↑ ∞,

ex
∫ ∞

x
e–y|ρ(y)dy =O()ex

∫ ∞

x
e–y dy∼O()e–x ∼O

(
e–x

)
as x ↑ ∞.

Thus∫ t



(
P ∗ E(u)

)
(x, τ )dτ ∼O

(
e–x

)
as x ↑ ∞.

From equation (.) and |u(x)| ∼ O(e–x) as x ↑ ∞, we know

∣∣u(x, t)∣∣ ∼O
(
e–x

)
as x ↑ ∞.

By the arbitrariness of t ∈ [,T], we get

∣∣u(x, t)∣∣ ∼O
(
e–x

)
as x ↑ ∞

uniformly in the time interval [,T]. This completes the proof of Theorem .. �

3 Existence of solution of the regularized equation
In order to prove Theorem ., we consider the regularized problem for equation (.) in
the following form:

⎧⎪⎨⎪⎩
ut – uxxt + εuxxxt = ∂x(–ku – a

m+u
m+) + 

n+∂

x (un+)

– n+
 ∂x(unux) –

n
u

n–ux ,
u(x, ) = u(x),

(.)

where  < ε < 
 ,m ≥ , n≥  and a, k are constants. One can easily check that when ε = ,

equation (.) is equivalent to the IVP (.).
Before giving the proof of Theorem ., we give several lemmas.

http://www.boundaryvalueproblems.com/content/2014/1/9
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Lemma . (See []) Let p and q be real numbers such that –p < q ≤ p. Then

‖fg‖Hq ≤ c‖f ‖Hp‖g‖Hq , if p >


,

‖fg‖
Hp+q– 


≤ c‖f ‖Hp‖g‖Hq , if p <



.

Lemma . Let u(x) ∈ Hs(R) with s > /. Then the Cauchy problem (.) has a unique
solution u(x, t) ∈ C([,T];Hs(R)) where T >  depends on ‖u‖Hs(R). If s ≥ , the solution
u(x, t) ∈ C([,T];Hs(R)) exists for all time. In particular, when s ≥ , the corresponding
solution is a classical globally defined solution of problem (.).

Proof First, we note that, for any  < ε < 
 and any s, the integral operator

D =
(
 – ∂

x + ε∂
x
)– :Hs →Hs+

defines a bounded linear operator on the indicated Sobolev spaces.
To prove the existence of a solution to the problem (.), we apply the operator D to

both sides of equation (.) and then integrate the resulting equations with regard to t.
This leads to the following equations:

u(x, t) = u(x) +
∫ t


D

[
∂x

(
–ku –

a
m + 

um+
)
+


n + 

∂
x
(
un+

)
–
n + 


∂x
(
unux

)
–
n

un–ux

]
dτ . (.)

Suppose thatA is the operator in the right-hand side of equation (.). For fixed t ∈ [,T],
we get

∥∥∥∥∫ t


D

[
∂x

(
–ku –

a
m + 

um+
)
+ ∂

x
(
un+ux

)
–
n + 


∂x
(
unux

)
–
n

un–ux

]
dτ

–
∫ t


D

[
∂x

(
–kv –

a
m + 

vm+
)
+ ∂

x
(
vn+vx

)
–
n + 


∂x
(
vnvx

)
–
n

vn–vx

]
dτ

∥∥∥∥
Hs

≤ CT
(
sup

≤t≤T
‖u – v‖Hs + sup

≤t≤T

∥∥um+ – vm+∥∥
Hs + sup

≤t≤T

∥∥un+ – vn+
∥∥
Hs

+ sup
≤t≤T

∥∥D∂x
[
unux – vnvx

]∥∥
Hs + sup

≤t≤T

∥∥D[
un–ux – vn–vx

]∥∥
Hs

)
.

Since Hs is an algebra for s ≥ 
 , we have the inequalities

∥∥um+ – vm+∥∥
Hs =

∥∥∥∥∥(u – v)
m∑
j=

(
um–jvj

)∥∥∥∥∥
Hs

≤ C

(
‖u – v‖Hs

m∑
j=

‖u‖m–j
Hs ‖v‖jHs

)
.

http://www.boundaryvalueproblems.com/content/2014/1/9
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Since s > /, by Lemma ., we get

∥∥D∂x
[
unux – vnvx

]∥∥
Hs

=


n + 
∥∥D∂x

[
∂x

(
un+

)
∂xu – ∂x

(
vn+

)
∂xv

]∥∥
Hs

≤ C
(∥∥D∂x

[
∂x

(
un+

)
∂x(u – v)

]∥∥
Hs +

∥∥D∂x
[
∂x

(
un+ – vn+

)
∂xv

]∥∥
Hs

)
≤ C

(∥∥∂x
(
un+

)
∂x(u – v)

∥∥
Hs– +

∥∥∂x
(
un+ – vn+

)
∂xv

∥∥
Hs–

)
≤ C

(∥∥un+∥∥Hs‖u – v‖Hs +
∥∥un+ – vn+

∥∥
Hs‖v‖Hs

)
≤ C

(
‖u‖n+Hs ‖u – v‖Hs +

(
‖u – v‖Hs

n∑
j=

‖u‖n–jHs ‖v‖jHs

)
‖v‖Hs

)
,

and

∥∥D[
un–ux – vn–vx

]∥∥
Hs

≤ ∥∥D[
un–

(
ux – vx

)]∥∥
Hs +

∥∥D[(
un– – vn–

)
vx

]∥∥
Hs

≤ C
[∥∥un–(ux – vx

)∥∥
Hs– +

∥∥(
un– – vn–

)
vx

∥∥
Hs–

]
≤ C

[∥∥un–∥∥Hs–

∥∥ux – vx
∥∥
Hs– +

∥∥un– – vn–
∥∥
Hs–

∥∥vx∥∥Hs–
]

≤ C

[
‖u‖n–Hs ‖u – v‖Hs

∑
j=

‖u‖–jHs ‖v‖jHs +

(
‖u – v‖Hs

n–∑
j=

‖u‖n––jHs ‖v‖jHs

)
‖v‖Hs

]
,

where C, C only depend on n. Suppose that both u and v are in the closed ball BR() of
radius R about the zero function in C([,T];Hs(R)); by the above inequalities, we obtain

‖Au –Av‖C([,T];Hs) ≤ θ‖u – v‖C([,T];Hs),

where θ = TC(Rm + Rn+) and C only depend on a, k, m, n. Choosing T sufficiently small
such that θ < , we know that A is a contraction. Applying the above inequality yields

‖Au‖C([,T];Hs) ≤ ‖u‖Hs + θ‖u‖C([,T];Hs).

Taking T sufficiently small so that θR+ ‖u‖Hs < R, we deduce that Amaps BR() to itself.
It follows from the contraction-mapping principle that the mapping A has a unique fixed
point u in BR().
For s ≥ ,multiplying the first equation of the system (.) by u, integratingwith respect

to x, one derives

d
dt

∫
R

(
u + ux + εuxx

)
dx =

∫
R

u
(
–kux – aumux + (n + )unuxuxx + un+uxxx

)
dx

=
∫
R

(
(n + )un+uxuxx + un+uxxx

)
dx = ,

from which we have the conservation law∫
R

(
u + ux + εuxx

)
dx =

∫
R

(
u + ux + εuxx

)
dx. (.)

http://www.boundaryvalueproblems.com/content/2014/1/9
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The global existence result follows from the integral from equation (.) and equation
(.). �

Now we study the norms of solutions of equation (.) using energy estimates. First,
recall the following two lemmas.

Lemma . (See []) If r > , then Hr ∩ L∞ is an algebra, and

‖fg‖Hr ≤ c
(‖f ‖L∞‖g‖Hr + ‖g‖L∞‖h‖Hr

)
,

here c is a constant depending only on r.

Lemma . (See []) If r > , then∥∥[
�r , f

]
g
∥∥
L ≤ c

(‖∂xf ‖L∞
∥∥�r–g

∥∥
L +

∥∥�rf
∥∥
L‖g‖L∞

)
,

where [A,B] denotes the commutator of the linear operators A and B, and c is a constant
depending only on r.

Theorem . Suppose that, for some s ≥ , the functions u(t,x) are a solution of equation
(.) corresponding to the initial data u ∈Hs(R). Then the following inequality holds:

‖u‖H ≤ c
∫
R

(
u + ux + εuxx

)
dx = c

∫
R

(
u + ux + εuxx

)
dx. (.)

For any real number q ∈ (, s – ], there exists a constant c depending only on q such that∫
R

(
�q+u

) dx
≤

∫
R

[(
�q+u

) + ε
(
�q+uxx

)]dx + c
∫ t


‖u‖Hq‖u‖n–L∞ ‖ux‖L∞ dτ

+ c
∫ t


‖ux‖L∞

(‖u‖Hq
(‖u‖m–

L∞ + ‖u‖nL∞
)
+ ‖u‖nL∞‖u‖Hq+

)
dτ . (.)

For q ∈ [, s – ], there is a constant c independent of ε such that

( – ε)‖ut‖Hq ≤ c‖u‖Hq+
(
 +

(‖u‖m–
L∞ + ‖u‖nL∞

)‖u‖H + ‖u‖n–L∞ ‖ux‖L∞
)
. (.)

Proof Using ‖u‖H ≤ c
∫
R
(u + ux)dx and (.) derives (.).

Since ∂
x = –� +  and the Parseval equality gives rise to∫

R

(
�qu

)
�q∂

x f dx = –
∫
R

(
�q+u

)
�q+f dx +

∫
R

(
�qu

)
�qf dx.

For any q ∈ (, s–], applying (�qu)�q to both sides of the first equation of (.), respec-
tively, and integrating with regard to x again,using integration by parts, one obtains



d
dt

∫
R

((
�qu

) + (
�qux

) + ε
(
�quxx

))dx
= –a

∫
R

(
�qu

)
�q(umux)dx

http://www.boundaryvalueproblems.com/content/2014/1/9
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–
∫
R

(
�q+u

)
�q+(un+ux)dx + n + 



∫
R

(
�qux

)
�q(unux)dx

+
∫
R

(
�qu

)
�q(un+ux)dx – n



∫
R

(
�qu

)
�q(un–ux)dx. (.)

We will estimate the terms on the right-hand side of (.) separately. For the first term, by
using the Cauchy-Schwartz inequality and Lemmas . and ., we have∫

R

(
�qu

)
�q(umux)dx = ∫

R

(
�qu

)[
�q(umux) – um�qux

]
dx +

∫
R

(
�qu

)
um�qux dx

≤ c‖u‖Hq
(
m‖u‖m–

L∞ ‖ux‖L∞‖u‖Hq + ‖u‖m–
L∞ ‖ux‖L∞‖u‖Hq

)
+
m


‖u‖m–
L∞ ‖ux‖L∞

∥∥�qu
∥∥
L

≤ c‖u‖m–
L∞ ‖ux‖L∞‖u‖Hq . (.)

Using the above estimate to the second term on the right-hand side of equation (.) yields∫
R

(
�q+u

)
�q+(un+ux)dx = c‖u‖nL∞‖ux‖L∞‖u‖Hq+ . (.)

For the fourth term on the right-hand side of equation (.), using the Cauchy-Schwartz
inequality and Lemma ., we obtain∫

R

(
�qux

)
�q(unux)dx ≤ ∥∥�qux

∥∥
L

∥∥�q(unux)∥∥L

≤ c‖u‖Hq+
(∥∥unux∥∥L∞‖ux‖Hq + ‖ux‖L∞

∥∥unux∥∥Hq
)

≤ c‖u‖nL∞‖ux‖L∞‖u‖Hq+ . (.)

For the last term on the right-hand side of equation (.), using Lemma . repeatedly
results in∫

R

(
�qu

)
�q(un–ux)dx ≤ ‖u‖Hq

∥∥un–ux∥∥Hq ≤ ‖u‖Hq‖u‖n–L∞ ‖ux‖L∞ . (.)

It follows from equations (.)-(.) that there exists a constant c depending only on a,
m, n, s such that



d
dt

∫
R

((
�qu

) + (
�qux

) + ε
(
�quxx

))dx
≤ c‖ux‖L∞

(‖u‖Hq
(‖u‖m–

L∞ + ‖u‖nL∞
)
+ ‖u‖nL∞‖u‖Hq+

)
+ ‖u‖Hq‖u‖n–L∞ ‖ux‖L∞ .

Integrating both sides of the above inequality with respect to t results in inequality (.).
To estimate the norm of ut , we apply the operator ( – ∂

x )– to both sides of the first
equation of the system (.) to obtain the equation

( – ε)ut – εuxxt =
(
 – ∂

x
)–[–εut – ∂x

(
ku +

a
m + 

um+
)

+


n + 
∂
x
(
un+

)
–
n + 


∂x
(
unux

)
–
n

un–ux

]
. (.)
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Applying (�qut)�q to both sides of equation (.) for q ∈ (, s – ] gives rise to

( – ε)
∫
R

(
�qut

) dx + ε

∫
R

(
�quxt

) dx
=

∫
R

(
�qut

)
�q–

[
–εut +


n + 

∂
x
(
un+

)
– ∂x

(
ku +

a
m + 

um+
)
–
n + 


∂x
(
unux

)
–
n

un–ux

]
dx. (.)

For the right-hand of equation (.), we have∫
R

(
�qut

)
�q–(–εut – kux)dx ≤ ε‖ut‖Hq + k‖ut‖Hq‖u‖Hq , (.)

and ∫
R

(
�qut

)(
 – ∂

x
)–

�q∂x

(
–

a
m + 

um+ –
n + 


unux

)
dx

≤ c‖ut‖Hq

{∫
R

(
 + ξ )q–[∫

R

(
–

a
m + 

ûm(ξ – η)̂u(η)

–
n + 


ûnux(ξ – η)ûx(η)
)
dη

]} 


≤ c‖ut‖Hq‖u‖H‖u‖Hq+
(‖u‖m–

L∞ + ‖u‖nL∞
)
. (.)

Since∫
R

(
�qut

)(
 – ∂

x
)–

�q∂
x
(
un+ux

)
dx

= –
∫
R

(
�qut

)
�q(un+ux)dx + ∫

R

(
�qut

)(
 – ∂

x
)–

�q(un+ux)dx. (.)

Using Lemma ., ‖unux‖Hq ≤ c‖(un+)x‖Hq ≤ c‖u‖nL∞‖u‖Hq+ and ‖u‖L∞ ≤ c‖u‖H , we
have ∫

R

(
�qut

)
�q(un+ux)dx ≤ c‖ut‖Hq

∥∥un+ux∥∥Hq

≤ c‖ut‖Hq‖u‖nL∞‖u‖Hq+‖u‖H , (.)

and ∫
R

(
�qut

)(
 – ∂

x
)–

�q(un+ux)dx ≤ c‖ut‖Hq‖u‖nL∞‖u‖Hq+‖u‖H . (.)

By the Cauchy-Schwartz inequality and Lemma ., we get∫
R

(
�qut

)(
 – ∂

x
)–

�q(un–ux)dx ≤ c‖ut‖Hq‖ux‖L∞‖u‖n–L∞ ‖u‖Hq+ . (.)

Substituting equations (.)-(.) into equation (.) yields the inequality

( – ε)‖ut‖Hq ≤ c‖u‖Hq+
(
 +

(‖u‖m–
L∞ + ‖u‖nL∞

)‖u‖H + ‖u‖n–L∞ ‖ux‖L∞
)

(.)

with a constant c > . This completes the proof of Theorem .. �
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For a real number s with s > , suppose that the function u(x) is in Hs(R), and let uε

be the convolution uε = φεu of the function φε(x) = ε–

 φ(ε– 

 x) and u be such that the
Fourier transform φ̂ of φ satisfies φ̂ ∈ C∞

 , φ̂(ξ ) ≥  and φ̂(ξ ) =  for any ξ ∈ (–, ). Thus
we have uε(x) ∈ C∞. It follows from Theorem . that for each ε satisfying  < ε < 

 , the
Cauchy problem

⎧⎪⎨⎪⎩
ut – uxxt + εuxxxt = ∂x(–ku – a

m+u
m+) + 

n+∂

x (un+)

– n+
 ∂x(unux) –

n
u

n–ux ,
u(x, ) = uε(x)

(.)

has a unique solution uε ∈ C∞([,Tε),H∞(R)), in which Tε may depend on ε.
For an arbitrary positive Sobolev exponent s > , we give the following lemma.

Lemma . For u ∈ Hs(R) with s >  and uε = φε � u, the following estimates hold for
any ε with  < ε < 

 :

‖uεx‖L∞ ≤ c‖ux‖L∞ , if q ≤ s, (.)

‖uε‖Hq ≤ cε
s–q
 , if q > s, (.)

‖uε – u‖Hq ≤ cε
s–q
 , if q ≤ s, (.)

‖uε – u‖Hs = o(), (.)

where c is a constant independent of ε.

Proof This proof is similar to that of Lemma  in [] and Lemma . in [], we omit it
here. �

Remark . For s ≥ , using ‖uε‖L∞ ≤ c‖uε‖H , ‖uε‖H ≤ c
∫
R
(uε + uεx)dx, equations

(.), (.), and (.), we obtain

‖uε‖L∞ ≤ c‖uε‖H ≤ c
∫
R

(
uε + uεx + uεxx

)
dx

≤ c
(‖uε‖H + ε‖uε‖H

) ≤ c
(
c + cε × ε

s–


) ≤ c, (.)

where c is independent of ε.

Theorem . If u(x) ∈Hs(R) with s ∈ [,  ] such that ‖ux‖L∞(R) < ∞. Let uε be defined
as in the system (.). Then there exist two constants, c and T > , which are independent
of ε, such that uε of problem (.) satisfies ‖uεx‖L∞(R) ≤ c for any t ∈ [,T).

Proof Using the notation u = uε and differentiating equation (.) or equation (.) with
respect to x give rise to

( – ε)uxt – εuxxxt –
n + 


unux +


n + 
∂
x u

n+

= ku +
a

m + 
um+ –


n + 

un+
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–
(
 – ∂

x
)–[

εuxt + ku +
a

m + 
um+ –


n + 

un+

+
n + 


unux +
n

∂x

(
un–ux

)]
.

Letting p >  be an integer and multiplying the above equality by (ux)p+, then integrat-
ing the resulting equation with respect to x, and using


n + 

∫
R

∂
x
(
un+

)
(ux)p+ dx =

∫
R

(
(n + )unux + un+uxx

)
(ux)p+ dx

= (n + )
∫
R

unup+x dx +


p + 

∫
R

un+∂x(ux)p+ dx

=
(n + )(p + )

p + 

∫
R

unup+x dx,

we find the equality

d
dt

 – ε

p + 

∫
R

(ux)p+ dx – ε

∫
R

(ux)p+uxxxt dx +
p – n
p + 

∫
R

unup+x dx

=
∫
R

(ux)p+
(
ku +

a
m + 

um+ –


n + 
un+

)
dx –

∫
R

(ux)p+
(
 – ∂

x
)–

·
[
εuxt + ku +

a
m + 

um+ –


n + 
un+ +

n + 


unux +
n

∂x

(
un–ux

)]
dx. (.)

Applying Hölder’s inequality, we get

 – ε

p + 
d
dt

∫
R

(ux)p+ dx

≤
{
ε

(∫
R

|uxxxt|p+ dx
) 

p+
+ |k|

(∫
R

|u|p+ dx
) 

p+
+

(∫
R

|G|p+ dx
) 

p+

+
a

m + 

(∫
R

∣∣um+∣∣p+ dx) 
p+

+


n + 

(∫
R

∣∣un+∣∣p+ dx) 
p+

}

·
(∫

R

(ux)p+ dx
) p+

p+
+

|p – n|
p + 

‖ux‖L∞‖u‖nL∞

∫
R

|ux|p+ dx,

whereG = (–∂
x )–[εuxt +ku+

a
m+u

m+ – 
n+u

n+ + n+
 unux +

n
∂x(u

n–ux)]. Furthermore

 – ε

p + 
d
dt

(∫
R

(ux)p+ dx
) 

p+

≤ ε

(∫
R

|uxxxt|p+ dx
) 

p+
+ |k|

(∫
R

|u|p+ dx
) 

p+

+
a

m + 

(∫
R

∣∣um+∣∣p+ dx) 
p+

+


n + 

(∫
R

∣∣un+∣∣p+ dx) 
p+

+
(∫

R

|G|p+ dx
) 

p+
+

|p – n|
p + 

‖ux‖L∞‖u‖nL∞

(∫
R

(ux)p+ dx
) 

p+
.
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Since ‖f ‖Lp → ‖f ‖L∞ as p→ ∞ for any f ∈ L∞ ∩L, integrating the above inequality with
respect to t and taking the limit as p→ ∞ result in the estimate

( – ε)‖ux‖L∞ ≤ ‖ux‖L∞ +
∫ t



[
ε‖uxxxt‖L∞ +



‖ux‖L∞‖u‖nL∞‖ux‖L∞

+ c
(‖u‖L∞ +

∥∥um+∥∥
L∞ +

∥∥un+∥∥L∞ + ‖G‖L∞
)]

dτ . (.)

Using the algebraic property of Hs(R) with s > 
 and the inequality (.) leads to

∥∥un+∥∥L∞ ≤ c
∥∥un+∥∥

H

 +

≤ c
∥∥un+∥∥H ≤ c‖u‖n+H ≤ c, (.)

and

‖G‖L∞ ≤ c
(∥∥�–uxt

∥∥
H


 +

+
∥∥�–(unux)∥∥H


 +

+
∥∥�–∂x

(
un–ux

)∥∥
H


 +

)
+ c

≤ c
(‖ut‖L + ∥∥unux∥∥H +

∥∥un–ux∥∥H
)
+ c

≤ c
(‖ut‖L + ∥∥un–ux∥∥L∞‖u‖H +

∥∥un–ux∥∥L∞‖u‖H
)
+ c

≤ c
(‖ut‖L + ‖ux‖L∞ + ‖ux‖L∞

)
+ c,

where c is a constant independent of ε. Using (.), (.), and the above inequality, we
get

∫ t


‖G‖L∞ dτ ≤ ct + c

∫ t



(
 + ‖ux‖L∞ + ‖ux‖L∞

)
dτ , (.)

where c is independent of ε. Furthermore, for any fixed r ∈ (  , ), there exists a constant
cr such that ‖uxxxt‖L∞ ≤ cr‖uxxxt‖Hr ≤ cr‖ut‖Hr+ . By (.) and (.), one has

‖uxxxt‖L∞ ≤ c‖u‖Hr+
(
 + ‖ux‖L∞

)
. (.)

Making use of the Gronwall inequality with equation (.), with q = s + , u = uε , and
equation (.), yields

‖u‖Hr+ ≤
(∫

R

(
�r+u

) + ε
(
�r+uxx

) dx)
× exp

{
c
∫ t



(‖ux‖L∞ + ‖ux‖L∞
)
dτ

}
. (.)

From equations (.)-(.) and (.)-(.), we have

‖uxxxt‖L∞ ≤ cε
s–r–


(
 + ‖ux‖L∞

)
exp

{
c
∫ t



(‖ux‖L∞ + ‖ux‖L∞
)
dτ

}
. (.)
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For ε < 
 , applying equations (.), (.), and (.), we obtain

‖ux‖L∞ ≤ ‖ux‖L∞ + c
∫ t



{
ε

s–r


(
 + ‖ux‖L∞

)
exp

(
c
∫ τ



(‖ux‖L∞ + ‖ux‖L∞
)
dξ

)
+  + ‖ux‖L∞ + ‖ux‖L∞ + ‖ux‖L∞

}
dτ .

It follows from the contraction-mapping principle that there is a T >  such that the equa-
tion

‖W‖L∞ = ‖ux‖L∞ + c
∫ t



{
ε

s–r


(
 + ‖W‖L∞

)
exp

(
c
∫ τ



(‖W‖L∞ + ‖W‖L∞
)
dξ

)
+  + ‖W‖L∞ + ‖W‖L∞ + ‖W‖L∞

}
dτ

has a unique solution W ∈ C[,T]. From the above inequality, we know that the variable
T only depends on c and ‖um ux‖L∞ . Using the theorem present on p. in [] or Theo-
rem II in Section . in [] one derives that there are constants T >  and c >  indepen-
dent of ε such that ‖ux‖L∞ ≤ W (t) for arbitrary t ∈ [,T], which leads to the conclusion
of Theorem .. �

Using equations (.)-(.) in Theorem . and Theorem ., with the notation uε = u
and with Gronwall’s inequality, results in the inequalities

‖uε‖Hq(R) ≤ ‖uε‖Hq+(R) ≤ c exp
{
c
∫ t



(
 + ‖ux‖L∞(R) + ‖ux‖L∞(R)

)
dτ

}
≤ c,

and

‖uεt‖Hr (R) ≤ c
(
 + ‖ux‖L∞(R)

) ≤ c,

where q ∈ (, s], r ∈ (, s – ] and t ∈ [,T). It follows from Aubin’s compactness theorem
that there is a subsequence of {uε}, denoted by {uεn}, such that {uεn} and their tempo-
ral derivatives {uεnt} are weakly convergent to a function u(x, t) and its derivative ut in
L([,T],Hs) and L([,T],Hs–), respectively.Moreover, for any real number R > , {uεn}
is convergent to the function u strongly in the space L([,T],Hq(–R,R)) for q ∈ (, s] and
{uεnt} converges to ut strongly in the space L([,T],Hr(–R,R)) for r ∈ (, s – ]. Thus,
we can prove the existence of a weak solution to equation (.).

Proof of Theorem . From Theorem ., we know that {uεnx}(εn → ) is bounded in
the space L∞. Thus, the sequences uεn , uεnx are weakly convergent to u, ux in the space
L([,T],Hr(–R,R)) for any r ∈ (, s – ], separately. Hence, u satisfies the equation

–
∫ T



∫
R

u(gt – gxxt)dxdt =
∫ T



∫
R

[(
ku +

a
m + 

um+ +
n + 


unux

)
gx

–


n + 
un+gxxx –

n

un–uxg

]
dxdt
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with u(x, ) = u(x) and g ∈ C∞
 . Since X = L([,T] × R) is a separable Banach space

and uεnx is a bounded sequence in the dual space X∗ = L∞([,T] × R) of X, there ex-
ists a subsequence of uεnx, still denoted by uεnx, weakly star convergent to a function v in
L∞([,T]×R). As uεnx weakly converges to ux in L([,T]×R), as a result ux = v almost
everywhere. Thus, we obtain ux ∈ L∞([,T]×R). �
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