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Abstract
We study the Cauchy problem of the nonlinear fourth-order Schrödinger equation
with mass-critical nonlinearity and derivative: iut + auxxxx + bu2uxx + c|u|8u = 0, x ∈ R,
t ∈ R, where a, b, and c are real numbers. We obtain the local well-posedness for the
Cauchy problem with low regularity initial value data by the Fourier restriction norm
method.
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1 Introduction
In [], Fibich et al. discussed the following fourth-order Schrödinger equation:

{
iut + a�u + c|u|αu = , x ∈ Rn, t ∈ R,
u(x, ) = u(x), x ∈ Rn.

(.)

They gave the sufficient conditions of the existence of solutions in the space H(Rn). For
the case α = 

n , the mass is still invariant under the scaling u(x, t) �→ λ– 
α u( x

λ
, t

λ
). We call

this case mass-critical.
Meanwhile, in [], Fibich et al. mentioned the physical motivation of (.). With non-

paraxial effects, one obtained the perturbed nonlinear Schrödinger equation:

⎧⎪⎨
⎪⎩
iut(x, y, t) +�u + ε�u

+ ε(|u|u + |u|u + |u|�u + u∇u · ∇ū + ū∇u · ∇u) = ,
u(x, y, ) = u(x, y).

(.)

Furthermore, with vectorial effects, one obtained the following equation:

⎧⎪⎨
⎪⎩
iut(x, y, t) +�u + ε�u + ε(|u|u + |u|u + |u|�u + u∇u · ∇ū + ū∇u · ∇u)

+ ε(|ux|u + (ux)ū + |u|uxx + uūxx) = ,
u(x, y, ) = u(x, y).

(.)

Evidently, the nonlinearities with derivatives appear. It is well known that nonlinearities
with derivatives bring about more difficulties to solve the problem for us. Especially, there
are so many nonlinearities with derivatives in (.) and (.).
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So, in this paper we will study the following nonlinear fourth-order Schrödinger equa-
tion with mass-critical nonlinearity and two-order derivative in one dimension:

{
iut + a�u + buuxx + c|u|u = , x ∈ R, t ∈ R,
u(x, ) = u(x), x ∈ R,

(.)

where u(x, t) are complex-valued function, ū(x, t) is the complex conjugate quantity of
u(x, t). a, b, and c are real numbers. We are interested in obtaining the well-posedness
for the Cauchy problem of (.) with initial value data under low regularity (which means
u(x) ∈ Hs(R), s < ). Tao et al. obtained the global well-posedness for the Schrödinger
equations with derivative ((|u|u)x) by the I-method (see [, ]). Bourgain obtained the
well-posedness for the nonlinear Schrödinger equation (|u|pu) by the Fourier restriction
norm method (see []). The character of (.) lies in the coexistence of the mass-critical
nonlinearity and the two-order derivative.Wewill discuss the local well-posedness for the
fourth-order Schrödinger equation by the Fourier restriction norm method.
For the complicated case, we will discuss it in another paper.
First, we introduce the following notations. We define the Sobolev norms Hs by

‖f ‖Hs :=
∥∥〈Dx〉sf

∥∥
Lx

=
∥∥〈ξ〉sf̂ (ξ )∥∥Lξ

,

where 〈 · 〉 = ( + | · |), and f̂ denotes the Fourier transformation of f (x).
We also define the spaces Xs,b(R× R) (see []) on R× R by

‖u‖Xs,b :=
∥∥〈ξ〉s〈τ – aξ〉bû(ξ , τ )∥∥Lτ Lξ

,

where û(ξ , τ ) denotes the Fourier transformation of u(x, t).
We denote by U(t) (t ∈ R) the fundamental solution operator of the fourth-order

Schrödinger equation, i.e.,

U(t)ϕ(x) = F–(eiatξ ϕ̂(ξ )) for ϕ ∈ S′(R),

where ϕ̂ denotes the Fourier transformation of ϕ, and F– represents the inverse Fourier
transformation.
We use C to denote various constants which may be different from in particular cases

of use throughout.
The main result of this paper is the following theorem.

Theorem . Let s ≥ 
 ,


 < b < 

 . Then the system (.) is locally solvable in Hs(R), i.e.,
for any u(x) ∈ Hs(R), there exists a corresponding T >  such that the system (.) has a
unique solution in the class

C
(
[,T];Hs(R)

) ∩Xs,b.

Moreover, the mapping u(x) → u(x, t) is Lipschitz continuous from Hs(R) to C([,T];
Hs(R)).
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In [], Cui et al. obtained the local well-posedness with the initial condition satisfying
u(x) ∈ Hs(R), s ≥  for b =  in (.).
Thus from the above theorem, we can see the following result.

Remark . When mass-critical nonlinearity and nonlinearity with derivative appear
at the same time, nonlinearity with second-order derivative plays more important role.
This property is consistent with the classical Schrödinger equation which has both mass-
critical nonlinearity and first-order derivative nonlinearity.

2 The preliminary estimates
Definition . For two integers  ≤ q ≤ ∞ and  ≤ r < ∞, we say that (q, r) is an admis-
sible pair if the following condition is satisfied:


q
=



(
 –


r

)
.

We have the following Strichartz estimate (see []): For any admissible pair (q, r)

∥∥U(t)ϕ(x)
∥∥
LrxL

q
t
≤ C‖ϕ‖L . (.)

Lemma . Assume that (q, r) is an admissible pair. Let b > 
 .We have

‖u‖LrxLqt ≤ C‖u‖,b. (.)

For any f ∈ LτLξ , we have

∥∥D– 


x Fb
∥∥
LxL∞

t
≤ C‖f ‖Lτ Lξ , (.)

∥∥D 

x Fb

∥∥
L∞
x Lt

≤ C‖f ‖Lτ Lξ , (.)

where F̂b(ξ , τ ) = f (ξ ,τ )
(+|τ–aξ|)b .

Proof Firstly, we prove the inequality (.).
For any u(x, t) ∈ S(R), we have

u(x, t) = C
∫
R
eitλ

∫
R
eixξ–itaξ


û
(
ξ ,λ + aξ)dξ dλ = C

∫
R
eitλU(t)uλ(x)dλ,

where ûλ(ξ ) = û(ξ ,λ + aξ).
Noting that b > 

 , using the Strichartz estimate, we obtain

∥∥u(x, t)∥∥LrxL
q
t
≤ C

∫
R

∥∥U(t)uλ(x)
∥∥
LrxL

q
t
dλ ≤ C

∫
R

∥∥uλ(x)
∥∥
Lx
dλ

≤ C
∥∥〈λ〉bûλ(ξ )

∥∥
Lξ L


τ
= C‖u‖,b.

Next we prove (.), we only need to prove that for b > 
 we have

∥∥Fb(x, t)∥∥LxL∞
t

≤ C‖f ‖
Lτ Ḣ



ξ

. (.)
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∥∥U(t)ϕ
∥∥
LxL∞

t
≤ C‖ϕ‖

Ḣ



∀ϕ ∈ Ḣ

 (R). (.)

Changing the variable to τ = λ + aξ, we obtain

Fb(x, t) =
∫ +∞

–∞

∫ +∞

–∞
ei(xξ+tτ )

f (ξ , τ )
( + |τ – aξ|)b dξ dτ

=
∫ +∞

–∞
eitλ

(∫ +∞

–∞
eixξ+iatξ


f
(
ξ ,λ + aξ)dξ

)


( + |λ|)b dλ. (.)

From (.) and (.), we can obtain

∥∥Fb(x, t)∥∥LxL∞
t

≤
∫ +∞

–∞
eitλ

∥∥∥∥
∫ +∞

–∞
eixξ+iatξ


f
(
ξ ,λ + aξ)dξ

∥∥∥∥
LxL∞

t


( + |λ|)b dλ

≤ C
∫ +∞

–∞

∥∥f (ξ ,λ + aξ)∥∥
Ḣ



ξ


( + |λ|)b dλ

≤ C‖f ‖
Lτ Ḣ



ξ

,

so that (.) holds.
Similarly, (.) follows from the following inequality:

∥∥D 

x U(t)ϕ

∥∥
L∞
x Lt

≤ C‖ϕ‖L .

This inequality has been proved in Theorem . of []. We omit its detailed proof here.
�

Lemma . If b > 

r–
r for  ≤ r ≤ . Then we have

‖Fb‖LrxLrt ≤ C‖f ‖Lτ Lξ , (.)

where Fb(x, t) is as same as in Lemma ..

Proof Noting that (, ) is an admissible pair, so we have

∥∥U(t)ϕ(x)
∥∥
Lx Lt

≤ C‖ϕ‖L(R). (.)

Therefore, using (.), Minkowski’s inequality, (.), and taking b > 
 , we can obtain

‖Fb‖Lx Lt
≤ C

∫ +∞

–∞

∥∥f (ξ ,λ + aξ)∥∥
Lξ

dλ

( + |λ|)b ≤ C‖f ‖Lτ Lξ . (.)

By interpolation [] between (.) and the following relation:

‖F‖LxLt = ‖f ‖Lτ Lξ ,

we immediately obtain for all b > 

r–
r

‖Fb‖LrxLrt ≤ C‖f ‖Lτ Lξ . �
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We take a function ψ ∈ C∞
 (R) with ψ =  on [–, ] and suppψ ⊂ [–, ]. We denote

ψδ(·) = ψ(δ–(·)).
Similar to the proof of Lemma . in [] (or see [, Lemmas .-.], [, Lemma .],

[, Lemma .]), we have the following estimates.

Lemma . For any real s,  < δ < , 
 < b < , and 

 < b < b < .We have

∥∥ψδ(t)U(t)w
∥∥
Xs,b

≤ Cδ

 –b‖w‖Hs ,∥∥∥∥ψδ(t)

∫ t


U(t – τ )f (τ )dτ

∥∥∥∥
Xs,b

≤ Cδ

 –b‖f ‖Xs,b– ,

∥∥ψδ(t)F
∥∥
Xs,b–

≤ Cδb–b‖F‖Xs,b– .

Lemma . [] If f , f, f, and f belong to a Schwartz space on R, then we have

∫
�τ

∫
�ξ

ˆ̄f (τ , ξ )f̂(τ, ξ)f̂(τ, ξ)f̂(τ, ξ)dδ =
∫
R

∫
R
f̄ fff dxdt,

where

�τ =
{
(τ, τ, τ) ∈ R; τ + τ + τ = τ

}
, �ξ =

{
(ξ, ξ, ξ) ∈ R; ξ + ξ + ξ = ξ

}
,

dδ = dτ dτ dτ dτ dξ dξ dξ dξ.

Lemma . Let s ≥ 
 ,


 < b < 

 , b
′ > 

 . Then we have

‖uuūxx‖Xs,b– ≤ C‖u‖Xs,b′ ‖u‖Xs,b′ ‖u‖Xs,b′ . (.)

Proof By the definition of Xs,b and duality, the inequality (.) is reduced to the following
estimate:

∧
=

∫
�τ

∫
�ξ

〈ξ〉si|ξ| f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉–b〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ ,

for all f̄ ∈ L, where

σ = τ – aξ, σ = τ – aξ
 , σ = τ – aξ

 , σ = τ + aξ
 ,

f(τ, ξ) = 〈ξ〉s〈σ〉b′
û, f(τ, ξ) = 〈ξ〉s〈σ〉b′

û, f(τ, ξ) = 〈ξ〉s〈σ〉b′ ˆ̄u.

Let F̂ j
ρ(τj, ξj) =

fj(τj ,ξj)
(+|τj–aξj |)ρ = fj(τj ,ξj)

〈σj〉ρ , j = , , F̂
ρ (τ, ξ) =

f(τ,ξ)
(+|τ+aξ |)ρ = f(τ,ξ)

〈σ〉ρ .

Without loss of generality, we can assume that f̄ ≥ , fj ≥  for j = , , .
We split the domain of integration into two cases |ξ | ≥  and |ξ | ≤ .
Case I. Assume that |ξ | ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/90
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Noting that s ≥ 
 , by Lemma ., the Hölder inequality, and Lemma ., we obtain

∧
≤

∫
�τ

∫
�ξ

f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|  f(τ, ξ)dδ

〈σ 〉–b|ξ|  〈σ〉b′ |ξ|  〈σ〉b′ 〈σ〉b′

≤ C
∫
R

∫
R
|F̄| ·

∣∣D– 


x F
b′
∣∣ · ∣∣D– 


x F

b′
∣∣ · ∣∣D 


x F

b′
∣∣dxdt

≤ C‖F‖LxLt
∥∥D– 


x F

b′
∥∥
LxL∞

t

∥∥D– 


x F
b′
∥∥
LxL∞

t

∥∥D 

x F

b′
∥∥
L∞
x Lt

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ .

Case II. Assume that |ξ | ≥ .
Subcase . Assume that |ξ| ≤ . Then we have |ξ | ≤ max(|ξ|, |ξ|).
Noting that  – b > 

 , by Lemma ., the Hölder inequality, and Lemma ., we obtain

∧
≤ C

∫
�τ

∫
�ξ

f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉–b〈σ〉b′ 〈σ〉b′ 〈σ〉b′

≤ C
∫
R

∫
R
|F̄–b| ·

∣∣F
b′
∣∣ · ∣∣F

b′
∣∣ · ∣∣F

b′
∣∣dxdt

≤ C‖F–b‖LxLt
∥∥F

b′
∥∥
LxLt

∥∥F
b′
∥∥
LxLt

∥∥F
b′
∥∥
LxLt

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ .

Subcase . Assume that |ξ| ≥ . We split this domain of integration in several pieces.
◦ Assume that |ξ | ≤ max(|ξ|, |ξ|, |ξ|) = |ξ|.
Similar to the proof of subcase , noting that s ≥ 

 ,  – b > 
 , by Lemma ., the Hölder

inequality, and Lemma ., we obtain

∧
≤ C

∫
�τ

∫
�ξ

f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉–b〈σ〉b′ 〈σ〉b′ 〈σ〉b′

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ .

◦ Assume that |ξ | ≤ max(|ξ|, |ξ|, |ξ|) = |ξ|.
In this case, the proof is similar to that of the above case, so here we omit the detailed

proof.
◦ Assume that |ξ | ≤ max(|ξ|, |ξ|, |ξ|) = |ξ|.
In this case, we easily get

|ξ | ∼ |ξ|. (.)

By a straightforward calculation, we can obtain

max
(|σ |, |σ|, |σ|, |σ|

) ≥ |σ | + |σ | + |σ| + |σ| ≥ |σ – σ – σ – σ|
= |a||ξξ + ξξ|

∣∣ξ 
 + ξξ + ξ 

 + ξξ
∣∣

≥ C〈ξ〉〈ξ〉. (.)

http://www.boundaryvalueproblems.com/content/2014/1/90
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.: Assume that |σ | =max(|σ |, |σ|, |σ|, |σ|), so 〈σ 〉 ≥ C〈ξ〉 holds.
Noting that b < 

 , by Lemma ., the Hölder inequality, and Lemma ., we obtain

∧
=

∫
�τ

∫
�ξ

〈ξ〉si|ξ| f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉–b〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤ C
∫

�τ

∫
�ξ

〈ξ〉sf̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|f(τ, ξ)dδ

〈ξ〉(–b)〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤ C
∫

�τ

∫
�ξ

〈ξ〉sf̄ (τ , ξ )|ξ|  f(τ, ξ)|ξ|  f(τ, ξ)|ξ|  |ξ|  f(τ, ξ)dδ

〈ξ〉(–b)〈ξ〉s|ξ|  〈σ〉b′ |ξ|  〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤ C
∫

�τ

∫
�ξ

f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|  f(τ, ξ)dδ

|ξ|  〈σ〉b′ |ξ|  〈σ〉b′ 〈σ〉b′

≤ C
∫
R

∫
R
|F| ·

∣∣D– 


x F
b′
∣∣ · ∣∣D– 


x F

b′
∣∣ · ∣∣D 


x F

b′
∣∣dxdt

≤ C‖F‖LxLt
∥∥D– 


x F

b′
∥∥
LxL∞

t

∥∥D– 


x F
b′
∥∥
LxL∞

t

∥∥D 

x F

b′
∥∥
L∞
x Lt

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ .

.: Assume that |σ| =max(|σ |, |σ|, |σ|, |σ|). By (.) and (.), we immediately ob-
tain 〈σ〉 ≥ C〈ξ〉.
Noting that 

 < b < 
 , b

′ > 
 , by Lemma ., the Hölder inequality, and Lemma ., we

obtain

∧
=

∫
�τ

∫
�ξ

〈ξ〉si|ξ| f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉–b〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤
∫

�τ

∫
�ξ

〈ξ〉sf̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|f(τ, ξ)dδ

〈σ 〉b′ 〈ξ〉s〈σ〉–b〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉–b

≤ C
∫

�τ

∫
�ξ

〈ξ〉sf̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|f(τ, ξ)dδ

〈σ 〉b′ 〈ξ〉s〈ξ〉(–b)〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤ C
∫

�τ

∫
�ξ

|ξ |  〈ξ〉sf̄ (τ , ξ )f(τ, ξ)|ξ|  f(τ, ξ)|ξ|ξ|  f(τ, ξ)dδ

|ξ |  〈σ 〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s|ξ|  〈σ〉b′ 〈ξ〉s|ξ|  〈σ〉b′

≤ C
∫

�τ

∫
�ξ

|ξ |  f̄ (τ , ξ )f(τ, ξ)|ξ|  f(τ, ξ)|ξ|  f(τ, ξ)dδ

〈σ 〉b′ |ξ|  〈σ〉b′ |ξ|  〈σ〉b′

≤ C
∫
R

∫
R

∣∣D 

x Fb′

∣∣ · ∣∣F

∣∣ · ∣∣D– 


x F

b′
∣∣ · ∣∣D– 


x F

b′
∣∣dxdt

≤ C
∥∥D 


x Fb′

∥∥
L∞
x Lt

∥∥F

∥∥
LxLt

∥∥D– 


x F
b′
∥∥
LxL∞

t

∥∥D– 


x F
b′
∥∥
LxL∞

t

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ .

.: Assume that |σ| =max(|σ |, |σ|, |σ|, |σ|).
The proof is similar to that of the case ., so here omit the detailed proof.
.: Assume that |σ| =max(|σ |, |σ|, |σ|, |σ|). By (.) and (.), we immediately ob-

tain 〈σ〉 ≥ C〈ξ〉.

http://www.boundaryvalueproblems.com/content/2014/1/90
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Noting that 
 < b < 

 , b
′ > 

 , by Lemma ., the Hölder inequality, and Lemma ., we
obtain

∧
=

∫
�τ

∫
�ξ

〈ξ〉si|ξ| f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉–b〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′

≤
∫

�τ

∫
�ξ

〈ξ〉sf̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|f(τ, ξ)dδ

〈σ 〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉–b

≤ C
∫

�τ

∫
�ξ

〈ξ〉sf̄ (τ , ξ )f(τ, ξ)f(τ, ξ)|ξ|f(τ, ξ)dδ

〈σ 〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈σ〉b′ 〈ξ〉s〈ξ〉(–b)

≤ C
∫

�τ

∫
�ξ

〈|ξ |  ξ〉sf̄ (τ , ξ )|ξ|  f(τ, ξ)|ξ|  f(τ, ξ)|ξ|f(τ, ξ)dδ

|ξ |  〈σ 〉b′ |ξ|  〈ξ〉s〈σ〉b′ |ξ|  〈ξ〉s〈σ〉b′ 〈ξ〉s〈ξ〉(–b)

≤ C
∫

�τ

∫
�ξ

|ξ |  f̄ (τ , ξ )f(τ, ξ)f(τ, ξ)f(τ, ξ)dδ

〈σ 〉b′ |ξ|  〈σ〉b′ |ξ|  〈σ〉b′

≤ C
∫
R

∫
R

∣∣D 

x Fb′

∣∣ · ∣∣D– 


x F
b′
∣∣ · ∣∣D– 


x F

b′
∣∣ · ∣∣F


∣∣dxdt

≤ C
∥∥D 


x Fb′

∥∥
L∞
x Lt

∥∥D– 


x F
b′
∥∥
LxL∞

t

∥∥D– 


x F
b′
∥∥
LxL∞

t

∥∥F

∥∥
LxLt

≤ C‖f ‖Lτ Lξ ‖f‖LτLξ ‖f‖LτLξ ‖f‖LτLξ . �

Lemma . Let s ≥ 
 ,


 < b < 

 . Then we have the following inequality:

∥∥∥∥∥
∏
j=

uj

∥∥∥∥∥
Xs,b–

≤ C
∏
j=

‖uj‖Xs,b . (.)

Proof Firstly, we prove (.) holds for s = .
By the definition, the Hölder inequality, and the Sobolev inequality, we have

‖u‖,b– = sup
‖v‖,–b≤

∣∣〈u, v〉∣∣ ≤ sup
‖v‖,–b≤

‖u‖
LxL


–b
t

‖v‖
LxL


b–
t

≤ C sup
‖v‖,–b≤

‖u‖
LxL


–b
t

‖v‖LxẆ –b,
t

≤ C sup
‖v‖,–b≤

‖u‖
LxL


–b
t

‖v‖,–b

≤ C‖u‖
LxL


–b
t

. (.)

That means∥∥∥∥∥
∏
j=

uj

∥∥∥∥∥
,b–

≤ C

∥∥∥∥∥
∏
j=

uj

∥∥∥∥∥
LxL


–b
t

. (.)

Again using theHölder inequality, the Sobolev inequality in the variable x, and Lemma .,
we obtain∥∥∥∥∥

∏
j=

uj

∥∥∥∥∥
LxL


–b
t

≤
∏
j=

‖uj‖
L
pj
x L

qj
t

≤ C
∏
j=

‖uj‖Ẇ sj ,pj
x L

qj
t

≤ C
∏
j=

‖uj‖sj ,b, (.)

where
∑

j=

qj
= 

 – b,
∑

j=

pj
= 

 ,

pj
– 

pj
= sj,

∑
j= sj = b – , (qj,pj) is admissible pair.
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Combining (.) and (.), we obtain

∥∥∥∥∥
∏
j=

uj

∥∥∥∥∥
,b–

≤ C
∏
j=

‖uj‖sj ,b. (.)

Secondly, using the Leibniz rule for fractional power, in a similar way, we obtain

∥∥∥∥∥Ds
x

( ∏
j=

uj

)∥∥∥∥∥
,b–

≤ C
∑
k=

∏
j=

‖uj‖
L
pkj
x L

qkj
t

≤ C
∑
k=

∏
j=

‖uj‖
Ẇ

skj ,p
k
j

x L
qkj
t

≤ C
∑
k=

∏
j=

‖uj‖skj ,b, (.)

where
∑

j=

qkj

= 
 – b,

∑
j=


pkj

= 
 ,


pkj

– 
pkj

= sj,
∑

j= s
k
j = s + b – , (qkj ,pkj ) is admissible

pair for k = , . . . , .
Taking skk = s, pkk = ∞, qkk = ; and for some k �= k, skk = b – , pkk =


b– , q

k
k =


–b ;

skj = , pkj = , qkj =

 , for j �= k,k in (.), noting s ≥ 

 and 
 < b < 

 , we obtain

∥∥∥∥∥Ds
x

( ∏
j=

uj

)∥∥∥∥∥
,b–

≤ C
∑
k=

‖uk‖s,b‖uk‖b–,b
∏

j=,j �=k,k
‖uj‖,b

≤ C
∑
k=

‖uk‖s,b‖uk‖s,b
∏

j=,j �=k,k
‖uj‖,b

≤ C
∏
j=

‖uj‖s,b, (.)

which completes the proof. �

3 Proof of main result
Proof of Theorem . We will prove Theorem . by using the Banach fixed point theorem.
Let T < δ. We rewrite (.) in integral form:

u(t) =U(t)u –
∫ t


U

(
t – t′

)(
buūxx + c|u|u)(

t′
)
dt′. (.)

We denote

Z =
{
u ∈ Xs,b : ‖u‖Xs,b ≤ C‖u‖Hs

}
,

and define a mapping S as follows: For u ∈ Xs,b,

Su(t) = ψ(t)U(t)u –ψ(t)
∫ t


U

(
t – t′

)
ψδ

(
t′
)[
buūxx + c|u|u](

t′
)
dt′.

In the sequel we will prove that S is well defined and it is a contraction map on Z.

http://www.boundaryvalueproblems.com/content/2014/1/90
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By Lemma . and Lemmas .-., for 
 < b < b′ < 

 , we obtain

‖Su‖Xs,b ≤ C‖u‖Hs +Cδ
b′–b(‖u‖Xs,b + ‖u‖Xs,b

)
≤ C‖u‖Hs +Cδ

b′–b(C
‖u‖Hs + C

‖u‖Hs
)
.

If we take δ such that Cδ
b′–b(C

‖u‖Hs + C
‖u‖Hs ) < , then SZ ⊂ Z.

Similarly, for u,u ⊂ Z, in an analogous way to the above, we can obtain

‖Su – Su‖Xs,b ≤ Cδ
b′–b(‖u‖Xs,b + ‖u‖Xs,b + ‖u‖Xs,b + ‖u‖Xs,b

)‖u – u‖Xs,b
≤ Cδ

b′–b(C
‖u‖Hs + C

‖u‖Hs
)‖u – u‖Xs,b .

Furthermore, if we take δ such that Cδ
b′–b(C

‖u‖Hs +C
‖u‖Hs ) <  then S is a con-

traction mapping of Z into itself. The desired result immediately follows from Banach’s
fixed point theorem. That means that there is a unique solution which solves the Cauchy
problem (.) for T < δ. The Lipschitz continuousness from Hs(R) to C([,T];Hs(R)) is
easily obtained from the above proof process. �
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