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Abstract

We study the Cauchy problem of the nonlinear fourth-order Schrédinger equation
with mass-critical nonlinearity and derivative: iu; + AUy + bu’Ty + clulBu=0,x € R,
t € R, where g, b, and c are real numbers. We obtain the local well-posedness for the
Cauchy problem with low regularity initial value data by the Fourier restriction norm
method.
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1 Introduction
In [1], Fibich et al. discussed the following fourth-order Schrédinger equation:

iy +al’u+clulu=0, xeR,teR, @)
ulx,0) =ug(x), xeR" '

They gave the sufficient conditions of the existence of solutions in the space H2(R"). For
the case o = %, the mass is still invariant under the scaling u(x, t) Aa u(3, xi‘*)‘ We call
this case mass-critical.

Meanwhile, in [1], Fibich et al. mentioned the physical motivation of (1.1). With non-
paraxial effects, one obtained the perturbed nonlinear Schrédinger equation:

iug(x,y,8) + Au+eA%u
+e(ulu+ |ul*u + |ul>Au+uVu-Vi+uVu-Vu) =0, (1.2)

u(*,,0) = uo(x, ).
Furthermore, with vectorial effects, one obtained the following equation:

ing (2,9, 8) + Au+ eA2u + e(|ulu + |ul*u + |u? Au+uVu - Vi + uVu - Vi)
+ (|t )t + ()00 + |1 thy + UPThgy) = O, (1.3)
u(x, y,0) = ug(x,y).

Evidently, the nonlinearities with derivatives appear. It is well known that nonlinearities
with derivatives bring about more difficulties to solve the problem for us. Especially, there
are so many nonlinearities with derivatives in (1.2) and (1.3).
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So, in this paper we will study the following nonlinear fourth-order Schrédinger equa-
tion with mass-critical nonlinearity and two-order derivative in one dimension:

ity + alN’u + bl + clul®u=0, xeRteR, 14)
u(x,0) = up(x), x€R,

where u(x,t) are complex-valued function, u(x,t) is the complex conjugate quantity of
u(x,t). a, b, and ¢ are real numbers. We are interested in obtaining the well-posedness
for the Cauchy problem of (1.1) with initial value data under low regularity (which means
uo(x) € H*(R), s < 2). Tao et al. obtained the global well-posedness for the Schrodinger
equations with derivative ((|«|?«),) by the I-method (see [2, 3]). Bourgain obtained the
well-posedness for the nonlinear Schrodinger equation (|u|”u) by the Fourier restriction
norm method (see [4]). The character of (1.4) lies in the coexistence of the mass-critical
nonlinearity and the two-order derivative. We will discuss the local well-posedness for the
fourth-order Schrédinger equation by the Fourier restriction norm method.

For the complicated case, we will discuss it in another paper.

First, we introduce the following notations. We define the Sobolev norms H* by

Wil = [P [ 12 = 1€ F O] 2

where (-) =(1+]-]), and f denotes the Fourier transformation of f(x).
We also define the spaces X;;(R x R) (see [5]) on R x R by

el == €[ - ag*) a6, D) 2,

where #1(&, T) denotes the Fourier transformation of u(x, £).
We denote by U(t) (¢ € R) the fundamental solution operator of the fourth-order

Schrédinger equation, i.e.,
UBp() = F7 (" ¢(¢))  forp € S'(R),

where ¢ denotes the Fourier transformation of ¢, and F! represents the inverse Fourier
transformation.

We use C to denote various constants which may be different from in particular cases
of use throughout.

The main result of this paper is the following theorem.

Theorem 1.1 Let s > %, % <b< %. Then the system (1.4) is locally solvable in H*(R), i.e.,
for any uy(x) € H*(R), there exists a corresponding T > 0 such that the system (1.4) has a

unique solution in the class
C([0, T H (R)) N Xyp.

Moreover, the mapping uo(x) — u(x,t) is Lipschitz continuous from H*(R) to C([0,T];
H*(R)).
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In [6], Cui et al. obtained the local well-posedness with the initial condition satisfying
uo(x) € H*(R), s > 0 for b =0 in (1.4).
Thus from the above theorem, we can see the following result.

Remark 1.1 When mass-critical nonlinearity and nonlinearity with derivative appear
at the same time, nonlinearity with second-order derivative plays more important role.
This property is consistent with the classical Schrodinger equation which has both mass-

critical nonlinearity and first-order derivative nonlinearity.
2 The preliminary estimates

Definition 2.1 For two integers 8 < g < 0o and 2 < r < 00, we say that (g, r) is an admis-
sible pair if the following condition is satisfied:

2 1 ( 2)
Z-o—(1-2).
qg 4 r
We have the following Strichartz estimate (see [6]): For any admissible pair (g, r)
” U(t)p(x) HL;L? = Cligllz2- (2.1)
Lemma 2.1 Assume that (q,r) is an admissible pair. Let b > % We have
llell r 2 < Cllullop- (2:2)
Forany f € L*L?, we have
_1
||Dx4Fb ”L%Lfo =< C”f”L%Lg’ (2.3)
3
| D2 Eo| o2 < CIlfNli2125 (2.4)
where Ey(£,7) = —L&)

T (+lr-agtt”

Proof Firstly, we prove the inequality (2.2).
For any u(x,t) € S(R?), we have

u(x,t) = C/ et / eixs’i£“54ﬁ(é,k +at*)dé d) = Cf e U () uy (x) dA,
R R R

where iL; (£) = (€, A + a&®).
Noting that b > %, using the Strichartz estimate, we obtain

|| u(x, t)

s =€ /R |t ()

L di=C fR )], d

=C| <A>%<§)||L§L% = Cllullos-
Next we prove (2.3), we only need to prove that for b > % we have

”Fb(x’ ) ”L;‘ngo = CW”LZH%. (2.5)

§
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[U@®] a1 < Cliglly Vo e HER). (2.6)

Changing the variable to = A + a&*, we obtain

e tx5+tr) f(%- T
Fb(x: / / (1+|T—ﬂ$4|) dgdl’

_ it ' ixt +iate® 1
_/_OO e (/OO F(&0+at )ds>(l+m)b di. (2.7)

From (2.6) and (2.7), we can obtain

1

||Fb(x; t) ” 400 = /+Oo eit)\ 7d)"
Laly —00 Ao @+ AP

/+00 eixéJrz‘até‘}f(%_’)L +6Z£:4) ds

o]

e ¢]

+00 1
4
N —

<CIfll 1
L%H; ’

so that (2.5) holds.
Similarly, (2.4) follows from the following inequality:

3
|2 U@ ] 2 = Cllells2-

This inequality has been proved in Theorem 4.1 of [7]. We omit its detailed proof here.

O

Lemma 2.2 Ifb> %%for 2 <r <10. Then we have

1o llyy < Cllf||LgL§’ (2.8)
where Fj,(x,t) is as same as in Lemma 2.1.
Proof Noting that (10,10) is an admissible pair, so we have

“ Ut)p(x) ”L,‘PL}O < Cllell2w- (2.9)
Therefore, using (2.7), Minkowski’s inequality, (2.9), and taking b > %, we can obtain

o0 da
IEolloo =< C / W a v as) | s = Wiz (210)

By interpolation [8] between (2.10) and the following relation:

1ol 22 = W llz225

r=2

we immediately obtain for all b > % ~

IEpllzzer < Cllf||LgL§- u
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We take a function ¢ € Cj°(R) with ¥ =1 on [-1,1] and supp ¢ C [-2,2]. We denote
Ys(-) = ¥ (871()).
Similar to the proof of Lemma 3.2 in [9] (or see [10, Lemmas 3.1-3.3], [11, Lemma 2.3],

[12, Lemma 2.7]), we have the following estimates.

Lemma 2.3 Foranyreals, 0<§<1, —<b<1 and—<b1<b2<1 We have

lvs@u@w |, < 87 Iwollue,

1
5=b
=< Cs2 ”fllxx,b—l’
Xsb

”1//5(1,‘)/(; Uit-1)f(r)dr

[vs®Fly,, | = C8" ™ IIFllx,, -
s,b1—1 2

Lemma 2.4 [12] Iff, i, f», and f belong to a Schwartz space on R, then we have
[ [ Fwehmaie e - [ [ findd,
Iy JTg RJR

where

Me={umn) eRn+n+n=t), Ti={¢.6.&)eRa+6H+E=£],

dé =dt d'Cl d‘L’z d‘L’g d%‘ d%‘l d%‘z dsg

Lemma 2.5 Lets % % <b< 16, b > <. Then we have
o1 tatzusllx,,, , < Cllunllx,, llu2llx,,, lusllx,, - (2.11)

Proof By the definition of X;; and duality, the inequality (2.11) is reduced to the following

estimate:

£)%i1&31 % (v, €)fi (11, £1)fa (12, £2)f5 (T3, 63) A
= /r, /F; Y€1) (01)P (52)5(02) Y (£3)% (03)Y

<C
= ”f”L%Lg ”fl”L%ngl ”fZ”L%zLéZ |Vé||L%3L§3’
for all f € L%, where

o:r—a§4, alztl—aé'f, 0’22'(2—61524, 03=1:3+a§§*,

fitma) = @) in,  fHlr&)=(E) ) h,  An,E) = (&) (o) i

Let f:{)(.[j, %_1) __S5GE) i@ j=1,2, 3 (.53’%-3) __ B3k _ f3(13,¥3)'

(1+\r/v—aéj4\)p ()P 7 (+|3+akg))P (03)P
Without loss of generality, we can assume thatf >0,f;>0forj=1,2,3.
We split the domain of integration into two cases |£| > 3 and |£] < 3.
Case I. Assume that || < 3.
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Noting that s > - by Lemma 2.4, the Holder inequality, and Lemma 2.1, we obtain

f, 'ffl T1y51ﬁ(f2,§2)|§'3|2ﬁ(73,§3)
/\ /lir Te

)= b|$1|4 (o1) h/|$2|4 (02)8 (03)?

<C//|F0| |Dx 4F;, |D;1F§/|~|D,?F§,|dxdt

3
IDiF

4
LyLy

=< CI[fIILng ”fl”L%ngl ”fZ”LZ ”f?»”ﬁ 2 ¢

3 7E3

< CliFoli 22 | Dx 451, | pa00 |1 Dx 4F§,

“ 13012

Case II. Assume that || > 3.
Subcase 1. Assume that |€3] < 1. Then we have |&| < 3max(|&], |&]).

Noting that 1 — b > %, by Lemma 2.4, the Holder inequality, and Lemma 2.2, we obtain

16’

/\ <C/ f S)ﬁ(ThSl)fz(Tz,Sz)ﬁs(T?nE?,

0)1-0(01)¥ (02)?' {03)"'
scf/m,m-!#,
RJR

1
< CllFi-s 2,8 Fy

dxdt

|Ey

|Ey

F)

/

Ly} ”

= CHf“Lngufl”L%ngl ”f2||L2 12 ”f%”]} 2 -

Tl T3hEg

LiL}

Subcase 2. Assume that |£3] > 1. We split this domain of integration in several pieces.
1° Assume that [§] < 3max(|&, 621, |§3]) = 31&1].

Similar to the proof of subcase 1, noting that s > 1 ,1-b> =, by Lemma 2.4, the Holder

%
inequality, and Lemma 2.2, we obtain

/\ _ C/ (1, E0)fa (T2, £2)f3 (3, 3) A6

(0)1=b(01)? (02)V (03)¥'

= C”f||L2L2”f1”L2 L ”f2||L2

TZS

522, 22

2° Assume that |£] < 3max(|& ], 621, §3]) = 3|2

In this case, the proof is similar to that of the above case, so here we omit the detailed
proof.

3° Assume that |£] < 3max(|& ], 6], [§3]) = 3|&3].

In this case, we easily get

[E] ~ |&3]. (2.12)
By a straightforward calculation, we can obtain

4amax(lol, o1l |02l los]) > |o| + |o] + |o2] + |o3] > |0 — 01 — 03 — 03]
=2|al|E&; + E16||26] + 3E1&, + 25 + &3
> C(£) (&) (2.13)

Page 6 of 11
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30'Assumethat lo| = max(|o |, |o1], |o2l,|o3]), so (o) > C(£)* holds.

Noting that b < ==, by Lemma 2.4, the Holder inequality, and Lemma 2.1, we obtain

16’

£)%1&31 % (v, €)fi (11, 1) (T2, £2)fs (13, &3) A
A= ./r, /rg PP (gD (1) (E2)% (02) Y (£3)% (03)”

< C/ / Sf T, E)i(11, &) (12, £) 183 3 (13, &3) dS
re Jr H1-b) (£1)5 (01) (€)% (02)? (£3)° (03) '

<C/ / sf(T 5)|‘§1|4ﬁ(ﬁ,§1)|§2|4f2(72»§2)|§3| |§3|2ﬁs(73»§3)d5
e Jre 40-B) ()3 |£) | (01) |E5| T (£2)° (02) (E3)* (073

<C/ / f, S)ﬁ(f1,§1yz(fz,§2)|§3|2f3(13;§3)d5
e JTg 16117 (01)? |£2] (02)? (073

gc//u-u-\D;@F;,|~|D;IF,§,
RJR

_1 _1 3
= Cl\Foll ez | Dx " Ey || yayoe | Dy | a0 [ DE By

: \D,?Fg,wxdt

IeL?

=< C”f“LszHfl”LZ 2 ”f2||L2 2 ”fB”LZ 2 -

TIE Tty T3%e3

3.1: Assume that |o1| = max(|o |, |o1],|02], |o3]). By (2.10) and (2.11), we immediately ob-
tain (1) > C(g3)*.

Noting that s<b<,b > by Lemma 2.4, the Holder inequality, and Lemma 2.1, we

16 J
obtain

£)%1l&3 1 (7, £)fi (11, &) (10, &2)f (13, &3) dS
/\ /r, ./rg Y=b(£1)5(01)P (62)%(02)? (&3)% (03)?

/ / sffé i (t1, &)/ (12, €2) 183 f3 (13, &3) dS
r, Jre

)5 (01)17 (£2)5(02) ¥ (£3)% (073) 1

< C/ / Sf(T é)fl(ﬁ:Sl)ﬁ(fz»§2)|§3|2f3(fs,§3)d5
r, Jre £3)40-D)(£,)5(02)? (£3)% (03)7

—c / |5|z<s>7(r,s>ﬁ<n,sl)|sz|%ﬁ(rz,sz)|ss|253|%fs(rg,sg)da
N Lo 612 (0)Y (81)5(01) (£2) 1621 % ()Y (&)%) 853 (073)Y

_c / £17/(x,8) 1(r1,51)|s2|%fz(m,sznsﬂ%fs(ra,sa)da

V6,7 (02)P 65| (03)
<C//|D Ey|-

£ Dyt |D;ipg,
3 _1
5C”D??Fh/”LgoLfHF(%HL%L%“D?CALFZ’{

dxdt

|D B |

LELY® LY

<C .
= ”f“L%Lg: ”fl ”L%1L§2=1 ”f2||L%2L€2:2 ”fS”L%Sng

3.2: Assume that |03| = max(|o|, |o1], |o2], |03]).

The proof is similar to that of the case 3.1, so here omit the detailed proof.

3.3: Assume that |o3| = max(|o|, |01, |02], |os]). By (2.10) and (2.11), we immediately ob-
tain (03) > C(&)*.
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Noting that s<b<
obtain

16, b>3, 1 by Lemma 2.4, the Holder inequality, and Lemma 2.1, we

£)%il&s | (1, €)fi (11, 61)fo(12, £2)f3 (73, 63) 4O
A= /r, -/Fg V1B (E1)S(01)P (52)5(02) Y (£3)% (03)¥

/ / F (T, 6)f (11, 60)f (12, £2) 163123 (13, &3) dS
reJre {0 (E) (1) (52)5(02)Y (83)5 o3) 1P

<C/ / (EVF (T, e (T, &)f (T2, £2) 163 £ (13, &3) dS
re  {(0)Y (&) (01)Y (52)%(02)? (&3)* (&3)40-D)

<C/ / (1§12 E iz, $)|§1|4f1(71;§1)|§2|4ﬁ r2,§2)|$3|2ﬁ(r3,§3)d8
re e 813 (o) |15 ()5 (01)Y |6l (E2)* 02)Y (E)(E2) 0

< C/ / |€|2f(f E( T1,€1)f2(fz,€2) 3(13,&3)dd
Iy JTg

h/|$1| {o1) b/lézl‘* (02)?
5C//|DZP,,,
RJR

\DSEL| Dy B3| - |E3 | dudt

3 1 1
3 ~1pl ~1p2 3
= C”Dx Fy “LgOL% HDx £y LA “Dx Fy HL;‘;L,?O ||F0 ||L,%L?
= C”f“L%Lg:”fl”L%ngl ”f2||L%2L§2 ”f?:”L%SLgs' O
Lemma 2.6 Lets % % <b< g. Then we have the following inequality:
9
[ < C T, (2.14)
=t lXgpa J=1

Proof Firstly, we prove (2.14) holds for s = 0
By the definition, the Holder inequality, and the Sobolev inequality, we have

lullop-1= sup |[{w,v)| < sup lull 2 [Vl 2
||V||0,1-1a51i | Ivilo,1-»=<1 1203 Zb 1201
<C sup |u] VIl 2102 <€ sup lull 2 (IVlio1-b
= L2}
IWlopp<l  L3L _5 IVllo1_p<1 Lth
=< C||u|| (2.15)
t3
That means
9 9
Hu, <C Hu; N (2.16)
j=1 llob-1 j=1 12132

Again using the Holder inequality, the Sobolev inequality in the variable x, and Lemma 2.1,

we obtain
9 9 9 9
[Tw) , =TTz e < C[ Tl o, < CT Tl (2.17)
j=r 232 =1 j=1 j=1

where Z.gzl ql/ =2_p, Z?_ L-1 1% - 1% =sj, ngzls, =4b -2, (gj, pj) is admissible pair.

Page 8of 11
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Combining (2.16) and (2.17), we obtain

9

[Tw

j=1

9
<C[ 1wl (2.18)
j=1

0,b-1

Secondly, using the Leibniz rule for fractional power, in a similar way, we obtain

9 9 9 9 9
D;<Huf) ZHH%H TRy | CIWry
j=1 0,b-1 k=1 j= ) =1 j=1
9 9
<CY [Ty (2.19)
k=1 j=1 !

where ng:l =3_p Y7, % =3, - % =5, 2191 s; =s+4b-2, (q],p]) is admissible

2
pair for k = 1, 9.
Taking sﬁ =s, plli = 00, qﬁ = 8; and for some ko # k, sio =4b -2, pfo = ﬁ, q’,io = Sfﬁ;

sllf = O,pllf =14, q]’f = %, for j # k, ko in (2.19), noting s > % and % <b< g, we obtain

9 9 9
D; (]‘[ u,») <CY Nulspllunollav2s [T lllos
j=1 0,b-1 k=1 j=1j#k.ko
9 9
<CY Mulspllunllss [T Nuillos
k=1 j=L,j#kko
9

<C[[1lsp (2:20)
which completes the proof. d

3 Proof of main result

Proof of Theorem 1.1 We will prove Theorem 1.1 by using the Banach fixed point theorem.
Let T < 8. We rewrite (1.4) in integral form:

u(t) = Ut)uy - /Ot ue-r) (buzﬁxx + c|u|8u) (¢)dt. (3.1)
We denote

Z={ueXsp: lulx, <2Colluollu},
and define a mapping S as follows: For u € X,

Su(t) = (&)U (t)uo — ¥ (t) /Ot U(t =) s () [ han + clul®u] () dt'.

In the sequel we will prove that S is well defined and it is a contraction map on Z.

Page 9 of 11


http://www.boundaryvalueproblems.com/content/2014/1/90

Guo et al. Boundary Value Problems 2014, 2014:90 Page 10 of 11
http://www.boundaryvalueproblems.com/content/2014/1/90

By Lemma 2.3 and Lemmas 2.5-2.6, for % <b<b' < %, we obtain

b'-b 3 9
ISulx,, < Colluollses + Cu8” P (lully,, + lul},,)

b-b (933 3 99 9
< Colluollps + C18” 2 (23Cylluoll3s +2°Co lluo 175 )-

If we take § such that C;87~2(23C2 |luo||%;s +2°C8|luo|Ss) < 1, then SZ € Z.
Similarly, for u;,u; C Z, in an analogous way to the above, we can obtain

bv'-b 2 2 8 8
ISt = Sus llx,, < C8" Pl , + lually,, + ealll,, + luallk,, )l - uallix,,

Bob(o2 21 12 . 088, |I8
<2GCy8" (22 CllluolI s + 2° Colluo 1) a1 — s |1 x, -

Furthermore, if we take & such that C;8”~2(23C3 |luo||%s +2°C§ luo|$;s) < 1 then S is a con-
traction mapping of Z into itself. The desired result immediately follows from Banach’s
fixed point theorem. That means that there is a unique solution which solves the Cauchy
problem (1.4) for T < §. The Lipschitz continuousness from H*(R) to C([0, T]; H*(R)) is
easily obtained from the above proof process. g
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