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Abstract
We are concerned with the following nonlinear problem:
–div(w(x)|∇u|p(x)–2∇u) + |u|p(x)–2u =μg(x)|u|p(x)–2u + f (λ, x,u,∇u) in �, ∂u

∂n = 0 on ∂�,
which is subject to a Neumann boundary condition, provided that μ is not an
eigenvalue of the p(x)-Laplacian. The aim of this paper is to study the structure of the
set of solutions for the degenerate p(x)-Laplacian Neumann problems by applying a
bifurcation result for nonlinear operator equations.
MSC: 35B32; 35D30; 35J70; 47J10; 47J15

Keywords: p(x)-Laplacian; weighted variable exponent Lebesgue-Sobolev spaces;
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1 Introduction
In recent years, there has been much interest in studying differential equations and varia-
tional problems involving p(x)-growth conditions since they can model physical phenom-
ena which arise in the study of elastic mechanics, electro-rheological fluid dynamics and
image processing, etc. We refer the readers to [–] and references therein. In the case of
p(x) a constant, called the p-Laplacian, there are a lot of papers, for instance, [–] and
references therein.
In the present paper, we are concernedwith the existence of an unbounded branch of the

set of solutions for the p(x)-Laplacian problem with degeneracy subject to the Neumann
boundary condition

⎧⎨
⎩–div(w(x)|∇u|p(x)–∇u) + |u|p(x)–u = μg(x)|u|p(x)–u + f (λ,x,u,∇u) in �,

∂u
∂n =  on ∂�,

(B)

when μ is not an eigenvalue of the divergence form

⎧⎨
⎩–div(w(x)|∇u|p(x)–∇u) + |u|p(x)–u = μg(x)|u|p(x)–u in �,

∂u
∂n =  on ∂�,

(E)

where � is a bounded domain in R
N with the Lipschitz boundary ∂�, ∂u

∂n denotes the
outer normal derivative of u with respect to ∂�, the variable exponent p : � → (,∞) is a
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continuous function, g ∈ L∞(�), w is a weighted function in � and f :�×R → R satisfies
a Carathéodory condition.
Since the inceptive study of bifurcation theory by Krasnoselskii [], Rabinowitz []

claimed that the bifurcation occurring in the Krasnoselskii theorem is actually a global
phenomenon. As regards the p-Laplacian and generalized operators, the nonlinear eigen-
value and bifurcation problems have been widely studied by many researchers in various
approaches in the spirit of Rabinowitz []; see also [–, , ].
The authors in [, ] obtained the bifurcation phenomenon for the nonlinear Dirichlet

problem which bifurcates from the first eigenvalue of the p-Laplacian. As in [, ], Khalil
and Ouanan [] got the result for the nonlinear Neumann problem of the form

–div
(|∇u|p–∇u

)
= λm(x)|u|p–u + f (λ,x,u) in �, (A)

which is based on the fact [] that the first eigenvalue of the p-Laplacian is simple and
isolated under suitable conditions on m.
Whilemany researchers considered global branches bifurcating from the first eigenvalue

of the p-Laplacian, Väth [] came at it from another viewpoint to establish the existence
of a global branch of solutions for the p-Laplacian with Dirichlet boundary condition by
applying nonlinear spectral theory for homogeneous operators. From this point of view,
for the case that p(x) is a constant function, the existence of a global branch of solutions
for the problem (B) was attained in [] (for generalization to equations involving nonho-
mogeneous operators, see also []) when μ is not eigenvalue of (E).
Compared to the p-Laplacian equation, an analysis for the p(x)-Laplacian equation has

to be carried out more carefully because it has complicated nonlinearities (it is nonhomo-
geneous) and includes a weighted function. As mentioned before, the fact that the princi-
pal eigenvalue for nonlinear eigenvalue problems related to the p-Laplacian under either
Dirichlet boundary condition or Neumann boundary condition is isolated plays a key role
in obtaining the bifurcation result from the principal eigenvalue of the p-Laplacian. How-
ever, unlike the p-Laplacian case, under some conditions on p(x), the first eigenvalue for
the p(x)-Laplacian Neumann problems is not isolated (see []), that is, the infimum of
all eigenvalues of the problem might be zero (see [] for Dirichlet boundary condition).
Thus we cannot investigate the existence of global branches bifurcating from the prin-
cipal eigenvalue of the p(x)-Laplacian. For this reason, the global behavior of solutions
for nonlinear problems involving the p(x)-Laplacian had been considered in []. To the
best of our knowledge, there are no papers concerned with the bifurcation theory for the
p(x)-Laplacian Neumann problems with weighted functions.
This paper is organized as follows.We first state some basic results for theweighted vari-

able exponent Lebesgue-Sobolev spaceswhichwere given in []. Nextwe give someprop-
erties of the corresponding integral operators. Finally we show the existence of a global
bifurcation for a Neumann problem involving the p(x)-Laplacian by using a bifurcation
result in an abstract setting.

2 Preliminaries
In this section, we state some elementary properties for the (weighted) variable exponent
Lebesgue-Sobolev spaces which will be used in the next sections. The basic properties
of the variable exponent Lebesgue-Sobolev spaces, that is, when w(x) ≡  can be found
from [].

http://www.boundaryvalueproblems.com/content/2014/1/92


Hwang et al. Boundary Value Problems 2014, 2014:92 Page 3 of 16
http://www.boundaryvalueproblems.com/content/2014/1/92

To make a self-contained paper, we recall some definitions and basic properties of the
weighted variable exponent Lebesgue spaces Lp(x)(w,�) and the weighted variable expo-
nent Lebesgue-Sobolev spacesW ,p(x)(w,�).
Set

C+(�) =
{
h ∈ C(�) :min

x∈�

h(x) > 
}
.

For any h ∈ C+(�) we define

h+ = sup
x∈�

h(x) and h– = inf
x∈�

h(x).

Letw is ameasurable positive and a.e. finite function in�. For any p ∈ C+(�), we introduce
the weighted variable exponent Lebesgue space

Lp(x)(w,�) :=
{
u : u is a measurable real-valued function,

∫
�

w(x)
∣∣u(x)∣∣p(x) dx <∞

}
,

endowed with the Luxemburg norm

‖u‖Lp(x)(w,�) = inf

{
λ >  :

∫
�

w(x)
∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 
}
.

The weighted variable exponent Sobolev space X :=W ,p(x)(w,�) is defined by

X =
{
u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(w,�)

}
,

where the norm is

‖u‖X = ‖u‖Lp(x)(�) + ‖∇u‖Lp(x)(w,�). (.)

It is significant that smooth functions are not dense in W ,p(x)(�) without additional as-
sumptions on the exponent p(x). This feature was observed by Zhikov [] in connection
with the Lavrentiev phenomenon.However, if the exponent p(x) is log-Hölder continuous,
i.e., there is a constant C such that

∣∣p(x) – p(y)
∣∣ ≤ C

– log |x – y| (.)

for every x, y ∈ � with |x– y| ≤ /, then smooth functions are dense in variable exponent
Sobolev spaces and there is no confusion in defining the Sobolev space with zero bound-
ary values, W ,p(x)

 (�), as the completion of C∞
 (�) with respect to the norm ‖u‖W ,p(x)(�)

(see []).

Lemma . ([]) The space Lp(x)(�) is a separable, uniformly convex Banach space,
and its conjugate space is Lp′(x)(�) where /p(x) + /p′(x) = . For any u ∈ Lp(x)(�) and
v ∈ Lp′(x)(�), we have

∣∣∣∣
∫

�

uvdx
∣∣∣∣ ≤

(

p–

+


(p′)–

)
‖u‖Lp(x)(�)‖v‖Lp′(x)(�) ≤ ‖u‖Lp(x)(�)‖v‖Lp′(x)(�).

http://www.boundaryvalueproblems.com/content/2014/1/92
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Lemma . ([]) Denote

ρ(u) =
∫

�

w(x)|u|p(x) dx, for all u ∈ Lp(x)(w,�).

Then
() ρ(u) >  (= ; < ) if and only if ‖u‖Lp(x)(w,�) >  (= ; < ), respectively;
() if ‖u‖Lp(x)(w,�) > , then ‖u‖p–Lp(x)(w,�) ≤ ρ(u)≤ ‖u‖p+Lp(x)(w,�);
() if ‖u‖Lp(x)(w,�) < , then ‖u‖p+Lp(x)(w,�) ≤ ρ(u) ≤ ‖u‖p–Lp(x)(w,�).

Lemma . ([]) Let q ∈ L∞(�) be such that  ≤ p(x)q(x) ≤ ∞ for almost all x ∈ �. If
u ∈ Lq(x)(�) with u 
= , then
() if ‖u‖Lp(x)q(x)(w,�) > , then ‖u‖q–Lp(x)q(x)(w,�) ≤ ‖|u|q(x)‖Lp(x)(w,�) ≤ ‖u‖q+Lp(x)q(x)(w,�);
() if ‖u‖Lp(x)q(x)(w,�) < , then ‖u‖q+Lp(x)q(x)(w,�) ≤ ‖|u|q(x)‖Lp(x)(w,�) ≤ ‖u‖q–Lp(x)q(x)(w,�).

We assume that w is a measurable positive and a.e. finite function in � satisfying that
(w) w ∈ Lloc(�) and w–/(p(x)–) ∈ Lloc(�);
(w) w–s(x) ∈ L(�) with s(x) ∈ ( N

p(x) ,∞)∩ [ 
p(x)– ,∞).

The reasons that we assume (w) and (w) can be found in [].

Lemma . ([]) Let p ∈ C+(�) and (w) hold. Then X is a reflexive and separable Ba-
nach space.

For p, s ∈ C+(�), let us denote

ps(x) :=
p(x)s(x)
 + s(x)

< p(x),

where s(x) is given in (w) and

p∗
s (x) :=

⎧⎨
⎩

p(x)s(x)N
(s(x)+)N–p(x)s(x) if N > ps(x),

+∞ if N ≤ ps(x),
(.)

for almost all x ∈ �.
We shall frequently make use of the following (compact) imbedding theorem for the

weighted variable exponent Lebesgue-Sobolev space in the next sections.

Lemma . ([]) Let � ⊂ R
N be an open, bounded set with Lipschitz boundary and p ∈

C+(�)with  < p– ≤ p+ <∞ satisfy the log-Hölder continuity condition (.). If assumptions
(w) and (w) hold and r ∈ L∞(�) with r– >  satisfies  < r(x) ≤ p∗

s (x) for all x ∈ �, then
we have

X ↪→ Lr(x)(�)

and the imbedding is compact if infx∈�(p∗
s (x) – r(x)) > .

http://www.boundaryvalueproblems.com/content/2014/1/92
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3 Properties of the integral operators
In this section, we give the definitions and some properties of the integral operators cor-
responding to the problem (B), by applying the basic properties of the spaces Lp(x)(w,�)
and X which are given in the previous section.
Throughout this paper, let p ∈ C+(�) satisfy the log-Hölder continuity condition (.).

We define an operator J : X → X∗ by

〈
J(u),ϕ

〉
=

∫
�

〈
w(x)

∣∣∇u(x)
∣∣p(x)–∇u(x),∇ϕ(x)

〉
dx +

∫
�

∣∣u(x)∣∣p(x)–u(x)ϕ(x)dx, (.)

for any ϕ ∈ X where 〈· , ·〉 denotes the pairing of X and its dual X∗ and the Euclidean scalar
product on R

N , respectively.
The following estimate, which can be found in [], plays a key role in obtaining the

homeomorphism of the operator J .

Lemma . For any u, v ∈R
N , the following inequalities hold:

〈|u|p–u – |v|p–v,u – v
〉 ≥

{
(p – )(|u| + |v|)p–|u – v| if  < p <  and (u, v) 
= (, ),
–p|u – v|p if p ≥ .

From Lemma ., we can obtain the following topological result, which will be needed
in the main result. Compared to the case of p(x) being constant (see []), the following
result is hard to prove because it has complicated nonlinearities.

Theorem . Let (w) and (w) be satisfied. The operator J : X → X∗ is homeomorphism
onto X∗ with a bounded inverse.

Proof Let � : X → Lp′(x)(�) and � : X → Lp′(x)(�,RN)
be operators defined by

�(u)(x) :=
∣∣u(x)∣∣p(x)–u(x) and �(u)(x) := w


p′(x) (x)

∣∣∇u(x)
∣∣p(x)–∇u(x).

Then the operators �, � are bounded and continuous. In fact, for any u ∈ X, let un → u
in X as n → ∞. Then there exist a subsequence (unk ) and functions v, wj in Lp(x)(w,�)
for j = i, . . . ,N such that unk (x) → u(x) as k → ∞, |unk (x)| ≤ v(x) and |(∂unk /∂xj)(x)| ≤
wj(x) for all k ∈ N and for almost all x ∈ �. Without loss of generality, we assume that
‖�i(unk ) –�i(u)‖Lp′(x)(�) <  for i = , . Then we have

∥∥�(unk ) –�(u)
∥∥(p′)+
Lp′(x)(�) ≤

∫
�

∣∣∣∣unk (x)∣∣p(x)–unk (x) – ∣∣u(x)∣∣p(x)–u(x)∣∣p′(x) dx (.)

and

∥∥�(unk ) –�(u)
∥∥(p′)+
Lp′(x)(�,RN )

≤
∫

�

∣∣w 
p′(x)

∣∣∇unk (x)
∣∣p(x)–∇unk (x) –w


p′(x)

∣∣∇u(x)
∣∣p(x)–∇u(x)

∣∣p′(x) dx, (.)

and the integrands at the right-hand sides in (.) and (.) are dominated by some inte-
grable functions. Since unk → u in X as k → ∞, we can deduce that |unk (x)|p(x)–unk (x) →

http://www.boundaryvalueproblems.com/content/2014/1/92
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|u(x)|p(x)–u(x) and w


p′(x) (x)|∇unk (x)|p(x)–∇unk (x) → w


p′(x) (x)|∇u(x)|p(x)–∇u(x) as k →
∞ for almost all x ∈ �. Therefore, the Lebesgue dominated convergence theorem tells
us that �(unk ) → �(u) in Lp′(x)(�) and �(unk ) → �(u) in Lp′(x)(�,RN ) as k → ∞, that
is, �, � are continuous on X. Also it is easy to show that these operators are bounded
on X.
Using the continuity for the operators � and � on X, we finally show that J is contin-

uous on X. From Hölder’s inequality, we have

∣∣〈J(un) – J(u),ϕ
〉∣∣

=
∣∣∣∣
∫

�

(|un|p(x)–un – |u|p(x)–u)
ϕ dx

∣∣∣∣
+

∣∣∣∣
∫

�

〈
w


p′(x) |∇un|p(x)–∇un –w


p′(x) |∇u|p(x)–∇u,∇ϕ

〉
dx

∣∣∣∣
≤ 

∥∥|un|p(x)–un – |u|p(x)–u∥∥
Lp′(x)(�)‖ϕ‖Lp(x)(�)

+ 
∥∥w 

p′ |∇un|p(x)–∇un –w


p′(x) |∇u|p(x)–∇u
∥∥
Lp′(x)(�,RN )‖∇ϕ‖Lp(x)(�)

for all ϕ ∈ X. Hence we get

∥∥J(un) – J(u)
∥∥
X∗ = sup

‖ϕ‖X≤

∣∣〈J(un) – J(u),ϕ
〉∣∣

≤ 
{∥∥|un|p(x)–un – |u|p(x)–u∥∥

Lp′(x)(�)

+
∥∥w 

p′ |∇un|p(x)–∇un –w


p′(x) |∇u|p(x)–∇u
∥∥
Lp′(x)(�,RN )

}
, (.)

and the right-hand side in (.) converges to zero as n → . Therefore the operator J is
continuous on X.
For any u in X with ‖u‖X > , it follows that

〈
J(u),u

〉 ≥ C‖u‖p–X

for some positive constant C. Thus we get

〈J(u),u〉
‖u‖X → ∞

as ‖u‖X → ∞ and therefore the operator J is coercive on X.
Denote

� =
{
x ∈ � :  < p(x) < 

}
, � =

{
x ∈ � : p(x) ≥ 

}
.

Set

p = inf
x∈�

p(x), p = sup
x∈�

p(x)

and

p = inf
x∈�

p(x), p = sup
x∈�

p(x).

http://www.boundaryvalueproblems.com/content/2014/1/92
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(Of course, if both the sets � and � are nonempty, then p = p =  by the continuity of
p(x).) It is clear that

〈
J(u) – J(v),u – v

〉
=

∫
�

〈
w|∇u|p(x)–∇u –w|∇v|p(x)–∇v,∇u –∇v

〉
dx

+
∫

�

(|u|p(x)–u – |v|p(x)–v)(u – v)dx

=
∫

�

〈
w|∇u|p(x)–∇u –w|∇v|p(x)–∇v,∇u –∇v

〉
dx

+
∫

�

(|u|p(x)–u – |v|p(x)–v)(u – v)dx

+
∫

�

〈
w|∇u|p(x)–∇u –w|∇v|p(x)–∇v,∇u –∇v

〉
dx

+
∫

�

(|u|p(x)–u – |v|p(x)–v)(u – v)dx. (.)

By using Lemma. and (.), we find that J is strictlymonotone onX. The Browder-Minty
theorem hence implies that the inverse operator J– : X∗ → X exists and is bounded; see
Theorem .A in [].
Next we will show that J– is continuous on X∗. Assume that u and v are any elements

in X with ‖u – v‖X < . According to Lemma ., we have

〈|∇u|p(x)–∇u – |∇v|p(x)–∇v,∇u –∇v
〉 ≥ C|∇u –∇v|p(x)

and

〈|u|p(x)–u – |v|p(x)–v,u – v
〉 ≥ C|u – v|p(x)

for almost all x ∈ � and for some positive constants C and C. Integrating the above
inequalities over � and using Lemma ., we assert that

〈
J(u) – J(v),u – v

〉
=

∫
�

〈
w|∇u|p(x)–∇u –w|∇v|p(x)–∇v,∇u –∇v

〉
dx

+
∫

�

(|u|p(x)–u – |v|p(x)–v)(u – v)dx

≥ C‖∇u –∇v‖pLp(x)(�)
+C‖u – v‖pLp(x)(�)

≥ C
(‖∇u –∇v‖Lp(x)(�) + ‖u – v‖Lp(x)(�)

)p (.)

for some positive constantsC,C, andC. For almost all x ∈ �, the following inequalities
hold:

mp(x)–
 |∇u –∇v| ≤ |∇u –∇v|p(x) (.)

and

mp(x)–
 |u – v| ≤ |u – v|p(x), (.)

http://www.boundaryvalueproblems.com/content/2014/1/92
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where we put � := {x ∈ � : (u(x), v(x)) 
= (, )} and use the shortcuts

m(x) =
∣∣∇u(x)

∣∣ + ∣∣∇v(x)
∣∣ and m(x) =

∣∣u(x)∣∣ + ∣∣v(x)∣∣.
Hence using Lemma ., we assert that

〈
J(u) – J(v),u – v

〉
=

∫
�

〈
w|∇u|p(x)–∇u –w|∇v|p(x)–∇v,∇u –∇v

〉
dx

+
∫

�

(|u|p(x)–u – |v|p(x)–v)(u – v)dx

≥ C

∫
�

mp(x)–
 |∇u –∇v| +mp(x)–

 |u – v| dx

for some positive constant C. From Hölder’s and Minkowski’s inequalities, and the in-
equality

a

q′ r


q + b


q′ s


q ≥ (a + b)


q′ (r + s)


q (.)

for any positive numbers a, b, r, and s, it follows that

∫
�

|∇u –∇v|p(x) dx +
∫

�

|u – v|p(x) dx

=
∫

�

m
p(x)(–p(x))




(
m

p(x)(p(x)–)


 |∇u –∇v|p(x))dx
+

∫
�

m
p(x)(–p(x))




(
m

p(x)(p(x)–)


 |u – v|p(x))dx
≤ 

∥∥mp(x)(–p(x))



∥∥
L


–p(x) (�)

∥∥mp(x)(p(x)–)


 |∇u –∇v|p(x)∥∥
L


p(x) (�)

+ 
∥∥mp(x)(–p(x))




∥∥
L


–p(x) (�)

∥∥mp(x)(p(x)–)


 |u – v|p(x)∥∥
L


p(x) (�)

. (.)

Applying Lemma . and Minkowski’s inequality,

∥∥mp(x)(–p(x))



∥∥
L


–p(x) (�)

≤ ‖m‖α

Lp(x)(�)

≤ ∥∥|∇u| + |∇v|∥∥α

Lp(x)(�)

≤ (‖∇u‖Lp(x)(�) + ‖∇v‖Lp(x)(�)
)α

for any u, v ∈ X where α is either p( – p)/ or p( – p)/. In a similar way,

∥∥mp(x)(–p(x))



∥∥
L


–p(x) (�)

≤ (‖u‖Lp(x)(�) + ‖v‖Lp(x)(�)
)β

http://www.boundaryvalueproblems.com/content/2014/1/92
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for any u, v ∈ X where β is either p( – p)/ or p( – p)/. It follows from (.)-(.)
and Lemma . that

(‖∇u–∇v‖Lp(x)(�) + ‖u – v‖Lp(x)(�)
)p

≤ p
(∫

�

|∇u –∇v|p(x) dx +
∫

�

|u – v|p(x) dx
)

≤ p
(

(‖∇u‖Lp(x)(�) + ‖∇v‖Lp(x)(�)

)α

(∫
�

mp(x)–
 |∇u –∇v| dx

) p


+ 
(‖u‖Lp(x)(�) + ‖v‖Lp(x)(�)

)β

(∫
�

mp(x)–
 |u – v| dx

) p


)

≤ p
((‖∇u‖Lp(x)(�) + ‖∇v‖Lp(x)(�)

) α
–p +

(‖u‖Lp(x)(�) + ‖v‖Lp(x)(�)
) β
–p

) –p


×
(∫

�

mp(x)–
 |∇u –∇v| dx +

∫
�

mp(x)–
 |u – v| dx

) p


≤ p
((‖u‖X + ‖v‖X

) α
–p +

(‖u‖X + ‖v‖X
) β
–p

) –p


×
(∫

�

mp(x)–
 |∇u –∇v| dx +

∫
�

mp(x)–
 |u – v| dx

) p


≤ C
(‖u‖X + ‖v‖X

)γ ×
(∫

�

mp(x)–
 |∇u –∇v| dx +

∫
�

mp(x)–
 |u – v| dx

) p

,

where γ is either p( – p)/ or p( – p)/ and C is positive constant. So

〈
J(u) – J(v),u – v

〉
≥ C

(‖u‖X + ‖v‖X
) –γ

p
(‖∇u –∇v‖Lp(x)(�) + ‖u – v‖Lp(x)(�)

) p
p (.)

for some positive constant C. Consequently, it follows from (.) and (.) that

〈
J(u) – J(v),u – v

〉
≥ C

(‖u‖X + ‖v‖X
) –γ

p
(‖∇u –∇v‖Lp(x)(�) + ‖u – v‖Lp(x)(�)

) p
p

+C
(‖∇u –∇v‖Lp(x)(�) + ‖u – v‖Lp(x)(�)

)p
≥ Cmin

{
C

(‖u‖X + ‖v‖X
) –γ

p ,C
}(‖∇u –∇v‖Lp(x)(�) + ‖u – v‖Lp(x)(�)

)δ

= Cmin
{
C

(‖u‖X + ‖v‖X
) –γ

p ,C
}‖u – v‖δ

X (.)

for some positive constants C and C where δ = max {p/p,p}. For each h ∈ X∗, let
(hn) be any sequence in X∗ that converges to h in X∗. Set un = J–(hn) and u = J–(h) with
‖un – u‖X < . We obtain from (.)

‖un – u‖X ≤ C– 
δ

 min
{
C

(‖un‖X + ‖u‖X
) –γ

p ,C
}– 

δ
∥∥J(un) – J(u)

∥∥ 
δ

X∗ .
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Since {un : n ∈ N} is bounded in X and J(un) → J(u) in X∗ as n → ∞, it follows that (un)
converges to u in X. Thus, J– is continuous at each h ∈ X∗. This completes the proof.

�

From now on we deal with the properties for the superposition operator induced by
the function f in (B). We assume that the variable exponents are subject to the following
restrictions:

⎧⎨
⎩q(x) ∈ ( p(x)s(x)N

p(x)s(x)N–s(x)N–N+p(x)s(x) ,∞) if N > ps(x),

q(x) ∈ (,∞) arbitrary if N ≤ ps(x)

for almost all x ∈ �. Assume that:
(F) f :R× � ×R×R

N →R satisfies the Carathéodory condition in the sense that
f (λ, · ,u, v) is measurable for all (λ,u, v) ∈R×R×R

N and f (· ,x, · , ·) is continuous
for almost all x ∈ �.

(F) For each bounded interval I ⊂R, there are a function aI ∈ Lq(x)(�) and a
nonnegative constant bI such that

∣∣f (λ,x,u, v)∣∣ ≤ aI(x) + bI
(|u| p(x)q(x) + |v| ps(x)q(x)

)

for almost all x ∈ � and all (λ,u, v) ∈ I ×R×R
N .

(F) f satisfies the following inequality:

∣∣f (λ,x,u, v) – f (λ,x,u, v)
∣∣ ≤ C(λ,λ)

(
aλ,λ (x) + |u| p(x)q(x) + |v| ps(x)q(x)

)
,

where ‖aλ,λ‖Lq(x)(�) ≤  and limλ→λ C(λ,λ) =  for each λ ∈R.
(F) There exist a function a ∈ Lp′(x)(�) and a locally bounded function b : [,∞)→ R

with limr→∞ b(r)/r =  such that

∣∣f (,x,u, v)∣∣ ≤ a(x) +
[
b
(|u| + |v|)] (p––)s–

s–+

for almost all x ∈ � and all (u, v) ∈R×R
N .

Under assumptions (F) and (F), we can define an operator F :R×X → X∗ by

〈
F(λ,u),ϕ

〉
=

∫
�

f
(
λ,x,u(x),∇u(x)

)
ϕ(x)dx (.)

and an operator G : X → X∗ by

〈
G(u),ϕ

〉
=

∫
�

g(x)
∣∣u(x)∣∣p(x)–u(x)ϕ(x)dx (.)

for any ϕ ∈ X.
For our aim, we need some properties of the operators F and G. In contrast with [],

we give a direct proofs for the continuity and compactness of F and G without using a
continuity result on superposition operators.

http://www.boundaryvalueproblems.com/content/2014/1/92
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Theorem . If (w), (w), and (F)-(F) hold, then the operator F : R × X → X∗ is con-
tinuous and compact. Also the operator G : X → X∗ is continuous and compact.

Proof Let � :R×X → Lq(x)(�) be an operator defined by

�(λ,u)(x) := f
(
λ,x,u(x),∇u(x)

)
.

Then for fixed λ ∈ R, the operator �(λ, ·) : X → Lq(x)(�) is bounded and continuous. In
fact, for any u ∈ X, let un → u in X as n → ∞. Then there exist a subsequence (unk ) and
functions v, wj in Lq(x)(�) for j = i, . . . ,N such that unk (x) → u(x) and ∇unk (x) → ∇u(x)
as k → ∞, and |unk (x)| ≤ v(x) and |(∂unk /∂xj)(x)| ≤ wj(x) for all k ∈ N and for almost
all x ∈ �. Suppose that we can choose K ∈ N such that k ≥ K implies that ‖�(λ,unk ) –
�(λ,u)‖Lq(x)(�) ≤ . For k ≥ K , we have

∥∥�(λ,unk ) –�(λ,u)
∥∥q+
Lq(x)(�) ≤

∫
�

∣∣f (λ,x,unk (x),∇unk (x)
)
– f

(
λ,x,u(x),∇u(x)

)∣∣q(x) dx
and (F) implies that the integrand at the right-hand side is dominated by an inte-
grable function. Since the function f satisfies a Carathéodory condition, we obtain
f (λ,x,unk (x),∇unk (x))→ f (λ,x,u(x),∇u(x)) as k → ∞ for almost all x ∈ �. Therefore, the
Lebesgue dominated convergence theorem tells us that �(λ,unk )→ �(λ,u) in Lq(x)(�) as
k → ∞. We conclude that �(λ,un) → �(λ,u) in Lq(x)(�) as n → ∞ and thus �(λ, ·) is
continuous on X. The boundedness of �(λ, ·) follows from (F), Minkowski’s inequality,
and the imbedding X ↪→W ,ps(x)(w,�) continuously (see Theorem . in []) as follows:

∥∥�(λ,u)
∥∥
Lq(x)(�) ≤  + ‖aI‖Lq(x)(�) +

∥∥|u| p(x)q(x) + |∇u| ps(x)q(x)
∥∥
Lq(x)(�)

≤  + ‖aI‖Lq(x)(�) +
∥∥|u| p(x)q(x)

∥∥
Lq(x)(�) +

∥∥|∇u| ps(x)q(x)
∥∥
Lq(x)(�)

≤  + ‖aI‖Lq(x)(�) + ‖u‖
p+
q–
Lp(x)(�) + ‖∇u‖

(ps)+
q–

Lps(x)(�)

≤  + ‖aI‖Lq(x)(�) + ‖u‖
p+
q–
X + d‖u‖

(ps)+
q–

X (.)

for all u ∈ X and for some positive constant d.
Minkowski’s inequality and (.) imply in view of (F) that

∥∥�(λ,u) –�(λ,u)
∥∥
Lq(x)(�) ≤ C(λ,λ)

(
 + ‖aλ,λ‖Lq(x)(�) + ‖u‖

p+
q–
X + d‖u‖

(ps)+
q–

X
)

≤ C(λ,λ)
(
 + ‖u‖

p+
q–
X + d‖u‖

(ps)+
q–

X
)

for all λ,λ ∈ R and for all u ∈ X. This shows that for any bounded subset B⊆ X, the family
{�(· ,u) : u ∈ B} is equicontinuous at each λ ∈ R. Hence it follows from the continuity of
�(λ, ·) that � is continuous on R×X, on observing the following relation:

∥∥�(λ,u)–�(λ, v)
∥∥
Lq(x)(�) ≤

∥∥�(λ,u)–�(λ,u)
∥∥
Lq(x)(�) +

∥∥�(λ,u)–�(λ, v)
∥∥
Lq(x)(�).

Moreover,� is bounded. Indeed, if B ⊆ X and ⊆R are bounded, we have to verify that
�( ×B) is bounded.Wemay assume that  is compact. By the equicontinuity and the

http://www.boundaryvalueproblems.com/content/2014/1/92
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compactness of , we can find finitely many numbers λ, . . . ,λm ∈  such that for every
λ ∈  there is an integer k ∈ {, . . . ,m} with

∥∥�(λ,u) –�(λk ,u)
∥∥
Lq(x)(�) ≤  for all u ∈ B.

Since�({λk}×B) is bounded for each k ∈ {, . . . ,m}, Minkowski’s inequality hence implies
that �( × B) is bounded.
Recall that the embedding I : X ↪→ Lq′(x)(�) is continuous and compact (see e.g. []) and

so the adjoint operator I∗ : Lq(x)(�)→ X∗ given by

(
I∗v

)
(u) :=

∫
�

vudx

is also compact. As F can be written as a composition of I∗ with � , we conclude that F is
continuous and compact on R × X. The operator G is continuous and compact because
G can be regarded as a special case of F . This completes the proof. �

The analog of the following result can be found in []. However, our growth condition
described in assumption (F) is slightly different from that of [].

Lemma . Let assumptions (w), (w), (F) and (F) be fulfilled. Then the operator
F(, ·) : X → X∗ has the following property:

lim‖u‖X→∞
‖F(,u)‖X∗

‖u‖p––X
= .

Proof Let  < ε < . Choose a positive constant R such that |b(r)| ≤ εr for all r ≥ R. Since b
is locally bounded, there is a nonnegative constantCR such that |b(r)| ≤ CR for all r ∈ [,R].
Let u ∈ X with ‖u‖X > . Set �R = {x ∈ � : |u(x)|+ |∇u(x)| ≤ R}. Without loss of generality,
we may suppose that

∫
�

b
(|u| + |∇u|)(ps)– dx >  and

∫
�

|u|(ps)– + |∇u|(ps)– dx > .

By assumption (F), Lemma . and the continuous imbedding X ↪→ W ,ps(x)(�) ↪→
W ,(ps)– (�), we obtain that

∥∥f (,x,u(x),∇u(x)
)∥∥

Lp′(x)(�)

≤ ∥∥a + b
(|u| + |∇u|) (p––)s–

s–+
∥∥
Lp′(x)(�)

≤ ‖a‖Lp′(x)(�) +
∥∥b(|u| + |∇u|) (p––)s–

s–+
∥∥
L(p′)+ (�)

≤ ‖a‖Lp′(x)(�) +
(∫

�

∣∣b(∣∣u(x)∣∣ + ∣∣∇u(x)
∣∣)∣∣(ps)– dx) 

(p′)+

≤ ‖a‖Lp′(x)(�) +
(∫

�R

(CR)(ps)– dx
) p––

p–

+
(∫

�\�R

ε(ps)–
(∣∣u(x)∣∣ + ∣∣∇u(x)

∣∣)(ps)– dx)
p––
p–

http://www.boundaryvalueproblems.com/content/2014/1/92
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≤ ‖a‖Lp′(x)(�) +
(
C(ps)–
R meas(�R)

) p––
p–

+ 
(p––)s–
+s– ε

(p––)(ps)–
p–

(∫
�

∣∣u(x)∣∣(ps)– + ∣∣∇u(x)
∣∣(ps)– dx)

p––
p–

≤ ‖a‖Lp′(x)(�) +
(
C(ps)–
R meas(�R)

) p––
p– + 

(p––)s–
+s– ε

(p––)(ps)–
p– c‖u‖

(p––)s–
+s–

W ,(ps)– (�)

≤ ‖a‖Lp′(x)(�) +
(
C(ps)–
R meas(�R)

) p––
p– + 

(p––)s–
+s– ε

(p––)(ps)–
p– cd‖u‖

(p––)s–
+s–

X

≤ ‖a‖Lp′(x)(�) +
(
C(ps)–
R meas(�R)

) p––
p– + 

(p––)s–
+s– ε

(p––)(ps)–
p– cd‖u‖p––X ,

where c and d are positive constants. It follows from Hölder’s inequality that

∣∣〈F(,u),ϕ〉∣∣ = ∣∣∣∣
∫

�

f
(
,x,u(x),∇u(x)

)
ϕ(x)dx

∣∣∣∣
≤ 

∥∥f (,x,u(x),∇u(x)
)∥∥

Lp′(x)(�)‖ϕ‖Lp(x)(�)

≤ d
(‖a‖Lp′(x)(�) +

(
C(ps)–
R meas(�R)

) p––
p–

+ 
(p––)s–
+s– ε

(p––)(ps)–
p– cd‖u‖p––X

)‖ϕ‖X

for all u,ϕ ∈ X with ‖u‖X > , where d is a positive constant. Consequently, we get

lim‖u‖X→∞
‖F(,u)‖X∗

‖u‖p––X
= . �

Recall that a real number μ is called an eigenvalue of (E) if the equation

J(u) = μG(u)

has a solution u in X which is different from the origin.
The following lemma is a consequence about nonlinear spectral theory and its proof can

be found in []. For the case that p(x) is a constant, this assertion has been obtained by
using the Furi-Martelli-Vignoli spectrum; see Theorem  of [] or Lemma  of [].

Lemma . Suppose that assumptions (w) and (w) are fulfilled. If μ is not an eigenvalue
of (E), then we have

lim inf‖u‖X→∞
‖J(u) –μG(u)‖X∗

‖u‖p––X
> . (.)

4 Bifurcation result
In this section, we are ready to prove the main result. We give the definition of weak so-
lutions for our problem.

Definition . A weak solution of (B) is a pair (λ,u) in R×X such that

J(u) –μG(u) = F(λ,u) in X∗,

where J , F and G are defined by (.), (.) and (.), respectively.

http://www.boundaryvalueproblems.com/content/2014/1/92
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The following result, taken from Theorem . of [], is a key tool to obtain our bifur-
cation result.

Lemma . Let X be a Banach space and Y be a normed space. Suppose that J : X → Y
is a homeomorphism and G : X → Y is a continuous and compact operator such that the
composition J– ◦ (–G) is odd. Let F :R×X → Y be a continuous and compact operator. If
the set

⋃
t∈[,]

{
u ∈ X : J(u) +G(u) = tF(,u)

}

is bounded, then the set

{
(λ,u) ∈R×X : J(u) +G(u) = F(λ,u)

}
has an unbounded connected set C ⊆ (R \ {})×X such that C intersects {} ×X.

Finally we establish the existence of an unbounded branch of the set of solutions for
Neumann problem (B) thereby using Lemma ..

Theorem. Let conditions (w), (w), and (F)-(F) be satisfied. Ifμ is not an eigenvalue
of (E), then there is an unbounded connected set C ⊆ (R \ {}) × X such that every point
(λ,u) in C is a weak solution of the above problem (B) and C intersects {} ×X.

Proof By Theorem . and Lemma ., J : X → X∗ is a homeomorphism, the operators G
and F are continuous and compact, and J– ◦ (μG) is odd. Since μ is not an eigenvalue of
(E), we get by Lemma .

lim inf‖u‖X→∞
‖J(u) –μG(u)‖X∗

‖u‖p––X
> .

This together with Lemma . implies that for some β > , there is a positive constant
R >  such that

∥∥J(u) –μG(u)
∥∥
X∗ > β‖u‖p––X >

∥∥F(,u)∥∥X∗ ≥ ∥∥tF(,u)∥∥X∗

for all u ∈ X with ‖u‖X ≥ R and for all t ∈ [, ]. Therefore, the set

⋃
t∈[,]

{
u ∈ X : J(u) –μG(u) = tF(,u)

}

is bounded. By Lemma ., the set

{
(λ,u) ∈R×X : J(u) –μG(u) = F(λ,u)

}
contains an unbounded connected set C which C intersects {} × X. This completes the
proof. �

In particular the following example illustrates an application of our bifurcation result.

http://www.boundaryvalueproblems.com/content/2014/1/92
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Example . Suppose that assumptions (w) and (w) are fulfilled and g ∈ L∞(�). If μ

is not an eigenvalue of (E), then there is an unbounded connected set C such that every
point (λ,u) in C is a weak solution of the following nonlinear problem:

⎧⎨
⎩–div(w(x)|∇u|p(x)–∇u) + |u|p(x)–u = μg(x)|u|p(x)–u + λ(a(x) + |u| p(x)q(x) –u) in �,

∂u
∂n =  on ∂�,

where a ∈ Lq(x)(�) and the conjugate function of q(x) is strictly less than p∗
s (x).

Proof Let f (λ,x,u,∇u) = λ(a(x) + |u|p(x)/q(x)–u). Then it is clear that f satisfies conditions
(F)-(F). Therefore, the conclusion follows from Theorem .. �
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