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Abstract
In this paper, we prove the existence of global strong solutions to the Cauchy
problem of 2D incompressible magnetohydrodynamics (MHD) flows. Here, we
emphasize that the initial density ρ0 is permitted to contain vacuum states, and the
initial velocity u0 and magnetic fields H0 can be arbitrarily large.
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1 Introduction
The mathematical model of magnetohydrodynamics (MHD) is used to simulate the mo-
tion of a conducting fluid under the effect of the electromagnetic field and has a very wide
range of applications in astrophysics, plasma, and so on. The governing equations of non-
homogeneous MHD can be stated as follows [, ]:

ρt + div(ρu) = , ()

(ρu)t + div(ρu⊗ u) –μ�u +∇P = (B · ∇)B, ()

Bt + (u · ∇B) – (B · ∇)u = ν�B, ()

divu = , divB =  ()

with t ≥  and x = (x,x) ∈R
. The unknown functions ρ , u, P, andB denote the fluid den-

sity, velocity, pressure, and magnetic field, respectively. The constant μ >  is the viscosity
coefficient. The constant ν >  is the resistivity coefficient, which is inversely proportional
to the electrical conductivity constant and acts as the magnetic diffusivity of magnetic
fields. Without loss of generality, we set μ = ν =  throughout the paper. In this paper, we
assume the state equation P = P(ρ) = aργ (a > , γ > ) and study the Cauchy problem.
Without loss of generality, we assume that a = . In this paper, we consider the Cauchy
problem for ()-() with (ρ,u,B) with given initial data ρ, B, and u, as

ρ(x, ) = ρ(x), ρu(x, ) = ρu(x), B(x, ) = B(x), x ∈R
 ()
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and far-field behavior

(ρ,u,B)(x, t)→ (ρ̃, , ) (in some weak sense), as |x| → ∞, ()

where ρ̃ is some fixed positive constant.
The global well-posedness and dynamical behaviors of MHD system are rather difficult

to investigate because of the strong coupling and interplay interaction between the fluid
motion and the magnetic fields. Recently, there is much more important progress on the
mathematical analysis of these topics for the (nonhomogeneous or homogeneous) MHD
system (see, for example, [–]). Here, we only mention some of them. Kawashima []
obtained the global existence of smooth solutions in the two-dimensional case when the
initial data are a small perturbation of some given constant state. Li-Xu-Zhang showed in
[] the global well-posedness and large-time behavior of classical solutions to the Cauchy
problem of compressibleMHD for regular initial data with small energy but possibly large
oscillations. In [, ], Hoff and Tsyganov obtained the global existence and uniqueness
of weak solutions with small initial energy. Umeda-Kawashima-Shizuta [] studied the
global existence and time decay rate of smooth solutions to the linearized two-dimensional
compressible MHD equations. The optimal decay estimates of classical solutions to the
compressible MHD system were obtained by Zhang-Zhao [] when the initial data are
close to a nonvacuum equilibrium. Hu-Wang [, ] and Fan-Yu [] proved the global ex-
istence of renormalized solutions to the compressible MHD equations for general large
initial data. When the viscosity and resistivity go to zero, Zhang [] showed that the
solution of the Cauchy problem for the nonhomogeneous incompressible MHD system
converges to the solution of the ideal MHD system and the convergence rate was also
obtained. Craig-Huang-Wang [] obtained the global existence and uniqueness of strong
solutions for initial data with small Ḣ 

 -norm in the bounded or unbounded domain inR.
In [], Huang-Wang considered the global strong solutions to ()-() in the bounded

domain with suitable boundary conditions on u and B. Their arguments actually depend
on the size of the domain, and so they cannot be applied to the Cauchy problem directly.
Then one natural question may be raised: whether the global strong solutions exist in the
whole spaceR. Here, wewant to answer the question. Ourmain result is stated as follows.

Theorem . Assume that the initial data ρ, u, and B satisfy

⎧⎪⎪⎨
⎪⎪⎩

ρ ≥ , (ρ – ρ̃,u,B) ∈H(R),

divu = divB = ,

–�u +∇P – B · ∇B = ρ


 g,

()

where (∇P, g) ∈ L(R). Then for any given  < T < ∞, there exists a unique global strong
solution (ρ,u,P,B) of ()-() such that

⎧⎪⎪⎨
⎪⎪⎩

ρ ∈ C([,T];H(R)), (u,B) ∈ C([,T];H(R)),

P ∈ C([,T];H(R))∩ L(,T ;H(R)), (ut ,Bt) ∈ L(,T ;H(R)),

(ρt ,
√

ρut ,Bt) ∈ L∞(,T ;L(R)).

()
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The proof of Theorem . is mainly based on a critical Sobolev inequality of logarith-
mic type which was recently proved by Huang-Wang [] and is originally due to Brezis-
Wainger []. The main difficulty compared with [] is that we should bound all the
desired estimates without the restriction on the size of the domain, especially that the
Poincaré inequality is not the same from the bounded domain to the whole spaces.
For convenience, we explain the notions used throughout this paper. Set

∫
f dx�

∫
R

f dx.

The standard homogeneous and inhomogeneous Sobolev spaces are defined as follows:

⎧⎨
⎩
Lr = Lr(R), Dk,r(R) = {v ∈ Lloc(R

)|∇kv ∈ Lr(R)},
D =D,, Wk,r =Wk,r(R), Hk =Wk,,

for  ≤ r ≤ ∞ and k ≥ .
The paper is organized as follows. In Section , we state some well-known inequalities

and basic facts which will be used frequently later. The proof of Theorem . will be cast
in Section .

2 Preliminaries
In this section, we list some useful lemmas which will be frequently used in the next sec-
tions. We start from the local existence of strong solutions, which is similar to [] or [].

Lemma . Assume that the conditions of Theorem . hold. Then there exists a positive
time T such that the Cauchy problem ()-() admits a unique strong solution on R

 ×
[,T].

Next is the well-known Gagliardo-Nirenberg inequality (see []).

Lemma . For f ∈H(R), we have for any  ≤ p < ∞

‖f ‖pLp ≤ C(p)‖f ‖L‖∇f ‖p–L , ()

where C(p) is a positive constant depending only on p. In addition, if f ∈W ,p(R)∩H(R)
with p > , then there exists a universal positive constant C such that

‖f ‖L∞ ≤ C‖f ‖W ,p(R) ≤ C‖f ‖H(R). ()

Next, we list the Poincaré type inequality, which yields ‖v‖L(R) even when the vacuum
states appear.

Lemma . Assume that ρ – ρ̃ ∈ L(R)∩ L∞(R) with ρ(x)≥ , ∇v ∈ L(R) and √
ρv ∈

L(R). Then

‖v‖L ≤ C
(‖√ρv‖L + ‖∇v‖L

)
, ()

where C depends only on ρ̃ , ‖ρ – ρ̃‖L , and ‖ρ – ρ̃‖L∞ .
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Proof The proof of this lemma can easily be deduced by (), Hölder’s inequality and the
following equality:

ρ̃

∫
|v| dx =

∫
ρ|v| dx –

∫
(ρ – ρ̃)|v| dx,

so the details are omitted here. �

In the following, in order to improve the regularity of the velocity, we need to use the
estimates of the Stokes equations. We refer the reader to [, ] for details.

Lemma . Consider the following stationary Stokes equations:

–�U +∇P = f , divU = , in R
.

Then for any f ∈ Wm,p (p > ), there exists a positive constant C, depending only on m and
p, such that

∥∥∇U
∥∥
Wm,p + ‖∇P‖Wm,p ≤ C‖f ‖Wm,p . ()

To improve the regularity of the magnetic fields, we need the following result on the
elliptic system.

Lemma . Assume that B ∈H is a weak solution of the Poisson equations

�B = g, in R
,

where g ∈ Lq ( < q < ∞). Then we have

‖B‖W,q ≤ C‖g‖Lq , ()

with some constant C depending only on q.

To bound the L-norm of the gradient of the velocity, we will apply a critical Sobolev
inequality of logarithmic type which was proved by Huang-Wang []. This is the key tool
for the proof of Theorem ..

Lemma . For q >  and  ≤ s < t < ∞, assume that f ∈ L(s, t;H) ∩ L(s, t;W ,q). Then
there exists a positive constant C(q), independent of s and t, such that

‖f ‖L(s,t;L∞) ≤ C
(
 + ‖f ‖L(s,t;H)

(
ln+ ‖f ‖L(s,t;W ,q)

) 

)
. ()

3 Proof of Theorem 1.1
This section is devoted to obtaining the proof of Theorem .. According to Lemma ., a
local strong solution of the Cauchy problem ()-() exists. Suppose T∗ is the first blowup
time of the strong solution (ρ,u,P,B) to the Cauchy problem, it suffices to prove there

http://www.boundaryvalueproblems.com/content/2014/1/94
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actually exists a generic positive constant M ( <M < ∞), depending only on the initial
data (ρ,u,B) and T∗, such that

� � sup
≤t≤T

(‖ρ – ρ̃‖H +
∥∥(u,B)∥∥

H + ‖√ρut‖L
)

+
∫ T



(∥∥(u,B)∥∥
H + ‖ut‖H + ‖Ht‖H

)
dt ≤M, ()

where  < T < T∗. Then due to the local existence theorem (Lemma .), it can easily be
shown that the strong solution can be extended beyond T∗. This conclusion contradicts
the assumption on T∗. Thus, the strong solution exists globally on R

 × [,T] for any
 < T <∞. Hence the proof of Theorem . is therefore completed.
The proof of () is based on a series of lemmas. For simplicity, throughout the remain-

der of this paper, we denote by C a generic constant which depends only on the initial data
and T∗ and may change from line to line.
First, the L∞-norm of the density can be obtained easily by using the method of charac-

teristics, we list the following lemma without proof.

Lemma . For every  < T < T∗, we have

 ≤ sup
≤t≤T

‖ρ‖L∞ ≤ ‖ρ‖L∞ . ()

Next, the basic energy inequalities are used.

Lemma . For every  < T < T∗, we have

sup
≤t≤T

(‖√ρu‖L + ‖B‖L
)
+

∫ T



(‖∇u‖L + ‖∇B‖L
)
dt ≤ C. ()

The following estimates are the key estimates in the proof of Theorem ., which de-
pends on the critical Sobolev inequality of logarithmic type (see Lemma .).

Lemma . For every  < T < T∗, we have

sup
≤t≤T

(‖u‖H + ‖B‖H
)
+

∫ T



(‖√ρu̇‖L + ‖Bt‖L
)
dt ≤ C, ()

where ḟ = ft + u · ∇f is the material derivative of f .

Proof First, multiplying () by ut and integrating the resultant equation by parts over R

on x, one deduces that



d
dt

‖∇u‖L +
∥∥ρ


 u̇

∥∥
L =

∫
ρu̇(u · ∇)udx +

∫
(B · ∇)B · ut dx. ()

For the first term on the right-hand side of (), using Young’s inequality and (), one
shows that

∫
ρu̇(u · ∇)u ≤ 


‖√ρu̇‖L +C‖u‖L∞‖∇u‖L .
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Next, the second term can be deduced as follows:

∫
(B · ∇B) · ut = d

dt

∫
(B · ∇)B · udx –

∫
(Bt · ∇)B · udx –

∫
(B · ∇)Bt · udx

= –
d
dt

∫
(B · ∇)u · Bdx +

∫
(Bt · ∇)u · Bdx –

∫
(B · ∇)u · Bt

≤ –
d
dt

∫
(B · ∇)u · Bdx + 


‖Bt‖L +C‖B‖L∞‖∇u‖L .

Then, substituting the above two estimates into (), one obtains



d
dt

‖∇u‖L +
d
dt

∫
(B · ∇)u · Bdx + 


‖√ρu̇‖L

≤ 


‖Bt‖L +C
(‖u‖L∞ + ‖B‖L∞

)‖∇u‖L . ()

Multiplying () by Bt and integrating over R by parts, one deduces that

‖Bt‖L +
d
dt

‖∇B‖L = –
∫

u · ∇B · Bt dx +
∫

B · ∇u · Bt dx

≤ 


‖Bt‖L +C
(‖u‖L∞ + ‖B‖L∞

)(‖∇u‖L + ‖∇B‖L
)
. ()

The term d
dt

∫
(B · ∇)u ·Bdx on the left-hand side of () cannot be determined positive

or negative, thus we have to control it by some appropriate positive terms. Note that it
follows from Gagliardo-Nirenberg inequality that we may deduce

∣∣∣∣
∫
(B · ∇)u · Bdx

∣∣∣∣ ≤ ‖B‖L‖∇u‖L ≤ C‖B‖L‖B‖H‖∇u‖L

≤ 


‖∇u‖L +C‖B‖(‖B‖ + ‖∇B‖).

Then multiplying () by (CC + ), adding it to (), and integrating the resulting equa-
tion over (s, t) on time, we finally deduce that

(‖∇u‖L + ‖∇B‖L
)
(t) +

∫ t

s

(∥∥ρ

 u̇

∥∥
L + ‖Bt‖L

)
dτ

≤ C
(‖∇u‖L + ‖∇B‖L

)
(s) exp

{
C

∫ t

s

(‖u‖L∞ + ‖B‖L∞
)}

dτ . ()

To proceed, we have to estimate ‖u‖L∞ and ‖B‖L∞ . First, due to (), we obtain

‖u‖L ≤ C
(
 + ‖∇u‖L

)
. ()

For convenience, we denote

�(t) = e + sup
≤τ≤t

(∥∥u(τ )∥∥
H +

∥∥B(τ )∥∥
H

)
+

∫ t



(∥∥√
ρu̇(τ )

∥∥
L +

∥∥Bt(τ )
∥∥
L

)
dτ .
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Then, combining (), (), and (), we conclude that

�(t) ≤ C�(s) exp
{
C

∫ t

s

(‖u‖L∞ + ‖B‖L∞
)
dτ

}
. ()

To proceed, we have to get the appropriate bound on ‖u‖L∞ and ‖B‖L∞ . Thus, due to
(), we obtain

∥∥∇B
∥∥
L ≤ C

(‖Bt‖L + ‖u‖L∞‖∇B‖L + ‖B‖L∞‖∇u‖L
)

≤ C
(‖Bt‖L + ‖u‖ 


L

∥∥∇u
∥∥ 


L‖∇B‖L + ‖B‖ 


L

∥∥∇B
∥∥ 


L‖∇u‖L

)

≤ 


∥∥∇u
∥∥
L +




∥∥∇B
∥∥
L +C

(‖Bt‖L + ‖∇B‖L + ‖∇u‖L
)
, ()

where we have used () and (). Similarly, we conclude from (), (), and () that

∥∥∇u
∥∥
L ≤ C

(‖ρu̇‖L + ‖B · ∇B‖L
)

≤ C
(‖ρu̇‖L + ‖B‖L∞‖∇B‖L

)

≤ C
(‖ρu̇‖L + ‖B‖ 


L

∥∥∇B
∥∥ 


L‖∇B‖L

)

≤ 


∥∥∇B
∥∥
L +C

(‖ρu̇‖L + ‖∇B‖L
)
. ()

Hence, combining () and (), we obtain

∫ T



(∥∥∇u
∥∥
L +

∥∥∇B
∥∥
L

)
dτ

≤ sup
s≤τ≤t

(‖∇u‖L + ‖∇B‖L
)
C +C

∫ t

s

(‖√ρu̇‖L + ‖Bt‖L
)
dτ . ()

Thus, keeping the definition of �(t) in mind, we conclude from () that

‖u‖L(s,t;L∞) + ‖B‖L(s,t;L∞)

≤ C
[
 +

(‖u‖L(s,t;H) + ‖B‖L(s,t;H)
)][

ln
(
e + ‖u‖L(s,t;W ,)

)
+ ln

(
e + ‖B‖L(s,t;W ,)

)]

≤ C
[
 +

(‖u‖L(s,t;H) + ‖B‖L(s,t;H)
)][

ln
(
e + ‖u‖L(s,t;H)

)
+ ln

(
e + ‖B‖L(s,t;H)

)]

≤ C
[
 +

(‖u‖L(s,t;H) + ‖B‖L(s,t;H)
)]
ln

(
C�(t)

)
.

Substituting the above estimate into (), we conclude that

�(t) ≤ C�(s) exp
{
C

[‖∇u‖L(s,t;L) + ‖∇B‖L(s,t;L)
]
ln

(
C�(t)

)}

≤ C�(s)
[
C�(t)

]C(‖∇u‖
L(s,t;L)

+‖∇B‖
L(s,t;L)

). ()

It follows from the basic energy estimate that one can choose the interval [s,T] small
enough, such that

C
(‖∇u‖L(s,t;L) + ‖∇B‖L(s,t;L)

) ≤ 

.
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Substituting the above estimate into (), we conclude that

�(T) ≤ C�(s)�

 (T),

which implies that

�(T) ≤ C�(s),

from which we complete the proof of this lemma. �

Remark . Due to () and the definition of the material derivative ḟ , we show that

∫ T


‖√ρut‖L dt ≤ C, ()

by the following simple fact, i.e.:

∫ T


‖√ρut‖L dt ≤

∫ T


‖√ρu̇‖L dt +

∫ T


ρ|u||∇u| dxdt

≤
∫ T


‖√ρu̇‖L dt +C

∫ T


‖u‖L‖∇u‖L dt

≤ C +
∫ T


‖u‖L‖∇u‖L

∥∥∇u
∥∥
L dt ≤ C,

where we have used (), (), (), and ().

The following lemma is devoted to improving the time regularity of u and B.

Lemma . For every  < T < T∗, we have

sup
≤t≤T

(‖√ρut‖L + ‖Bt‖L
)
+

∫ T



(‖∇ut‖L + ‖∇Bt‖L
)
dt ≤ C. ()

Proof Differentiating () with respect to t, we obtain

ρutt + ρu · ∇ut +∇Pt –�ut = –ρtut – ρtu · ∇u – ρut · ∇u + Bt · ∇B + B · ∇Bt .

Multiplying the above equation by ut , then integrating the resulting equation over R on
x, we deduce that



d
dt

‖√ρut‖L + ‖∇ut‖L

= –
∫

ρt|ut| dx –
∫

ρtu · ∇u · ut dx –
∫

ρut · ∇u · ut dx

+
∫

Bt · ∇B · ut dx +
∫

B · ∇Bt · ut dx

=
∑
i=

Ii. ()

http://www.boundaryvalueproblems.com/content/2014/1/94
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Now, we estimate each term on the right-hand side of (). First, due to (), we have

I =
∫

div(ρu)|ut| dx = –
∫

ρu · ut · ∇ut

≤ C‖ρ‖ 

L∞‖√ρut‖L‖u‖L∞‖∇ut‖L

≤ 

‖∇ut‖L +C‖u‖L∞‖√ρut‖L .

Next, it follows from (), (), Hölder’s inequality, and Young’s inequality that

I =
∫

div(ρu)u · ∇u · ut dx

≤
∫

ρu|∇u||ut|dx +
∫

ρ|u|∣∣∇u
∣∣|ut|dx +

∫
ρ|u||∇u||∇ut|dx

≤ C‖ρ‖ 

L∞‖u‖L∞‖√ρut‖L‖∇u‖L

+C‖u‖L∞‖√ρut‖L
∥∥∇u

∥∥
L +C‖u‖L∞‖∇u‖L‖∇ut‖L

≤ C‖u‖L∞‖√ρut‖L‖∇u‖L
∥∥∇u

∥∥
L

+C‖ρ‖ 

L∞‖u‖L∞‖√ρut‖L

∥∥∇u
∥∥
L +C‖u‖L∞‖∇u‖L‖∇ut‖L

≤ 

‖∇ut‖L +

(
 + ‖u‖L∞

)‖√ρut‖L +C
(
 + ‖∇u‖L

)∥∥∇u
∥∥
L

≤ 

‖∇ut‖L +

(
 + ‖u‖L

∥∥∇u
∥∥
L

)‖√ρut‖L +C
(
 + ‖∇u‖L

)∥∥∇u
∥∥
L .

Then one obtains

I ≤ C‖ρ‖ 

L∞‖√ρut‖L‖∇u‖L‖ut‖L

≤ C‖√ρut‖L‖∇u‖ 

L

∥∥∇u
∥∥ 


L‖ut‖



L‖∇ut‖



L

≤ C‖√ρut‖L‖∇u‖ 

L

∥∥∇u
∥∥ 


L

(‖√ρut‖


L + ‖∇ut‖



L

)‖∇ut‖


L

= C‖√ρut‖


L‖∇u‖ 


L

∥∥∇u
∥∥ 


L‖∇ut‖



L +C‖√ρut‖L‖∇u‖ 


L

∥∥∇u
∥∥ 


L‖∇ut‖L

≤ 

‖∇ut‖L +C‖√ρut‖L‖∇u‖ 


L

∥∥∇u
∥∥ 


L +C‖√ρut‖L‖∇u‖L

∥∥∇u
∥∥
L

≤ 

‖∇ut‖L +C

(
 +

∥∥∇u
∥∥
L

)‖√ρut‖L ,

where we have used (), (), and (). Finally, as for I and I, we see that

I + I =
∫

Bt · ∇B · ut +
∫

B · ∇Bt · ut

= –
∫

Bt · ∇ut · B –
∫

B · ∇ut · Bt

≤ C‖B‖L∞‖Bt‖L‖∇ut‖L

≤ 

‖∇ut‖L +C

(
 +

∥∥∇B
∥∥
L

)‖Bt‖L .
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Hence, substituting all the above estimates into (), we conclude that

d
dt

‖√ρut‖L + ‖∇ut‖L ≤ C
(∥∥∇u

∥∥
L +

∥∥∇B
∥∥
L

)(‖√ρut‖L + ‖Bt‖L
)

+C
(‖√ρut‖L + ‖Bt‖L

)
. ()

From now on, we focus on the estimate for B. Differentiating equation () with respect
to t, multiplying the resulting equation by Bt , and then integrating by parts over R on x,
we finally obtain



d
dt

∫
|Bt| dx +

∫
|∇Bt| dx

= –
∫

ut · ∇B · Bt dx +
∫
(Bt · ∇u) · Bt dx +

∫
(B · ∇)ut · Bt dx

=
∑
i=

Ji. ()

We estimate each term on the right-hand side of (). First, for J, ones deduce from ()
and () that

J ≤ C‖Bt‖L‖ut‖L‖∇B‖L

≤ C‖Bt‖L‖ut‖


L‖∇ut‖



L‖∇B‖ 


L

∥∥∇B
∥∥ 


L

≤ C‖Bt‖L
(‖√ρut‖



L + ‖∇ut‖



L

)‖∇ut‖


L‖∇B‖ 


L

∥∥∇B
∥∥ 


L

≤ C‖Bt‖L‖√ρut‖


L‖∇ut‖



L‖∇B‖ 


L

∥∥∇B
∥∥ 


L +C‖Bt‖L‖∇ut‖L‖∇B‖ 


L

∥∥∇B
∥∥ 


L

≤ C‖Bt‖L‖√ρut‖L‖∇B‖ 

L

∥∥∇B
∥∥ 


L +C‖Bt‖L‖∇ut‖L‖∇B‖ 


L

∥∥∇B
∥∥ 


L

≤ 

‖∇ut‖L +C

(
 +

∥∥∇B
∥∥
L

)‖Bt‖L +C‖√ρut‖L .

Similarly, for J, we show that

J ≤ C‖∇u‖L‖Bt‖L ≤ C‖∇u‖L‖Bt‖L‖∇Bt‖L

≤ 


‖∇Bt‖L +C‖∇u‖L‖Bt‖L .

For J, one deduces

J ≤ C‖B‖L∞‖∇ut‖L‖Bt‖L ≤ 

‖∇ut‖L +C

∥∥∇B
∥∥
L‖Bt‖L +C‖Bt‖L .

Then, substituting the above estimates on J, J, J, one deduces

d
dt

∫
|Bt| dx +

∫
|∇Bt| dx ≤ 


‖∇ut‖L +C

(‖∇u‖L +
∥∥∇B

∥∥
L

)‖Bt‖L
+C

(‖√ρut‖L + ‖Bt‖L
)
. ()
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Thus, combining () and (), together with Gronwall’s inequality, one easily completes
the proof of (). This completes the proof of Lemma .. �

Next, we will apply () and () to improve the higher regularity on the velocity u and
magnetic fields B, respectively.

Lemma . For every  < T < T∗, we have

sup
≤t≤T

(‖u‖H + ‖B‖H
)
+

∫ T



(‖∇u‖W , + ‖∇B‖W ,
)
dt ≤ C. ()

Proof Let us rewrite () in the following form:

–�u +∇P = –ρut – ρu · ∇u + B · ∇B.

Then, using Lemma ., we conclude that

∥∥∇u
∥∥
L ≤ C

(‖ρut‖L + ‖ρu · ∇u‖L + ‖B · ∇B‖L
)

≤ C
(‖√ρut‖L + ‖u‖L‖∇u‖L + ‖B‖L‖∇B‖L

)

≤ C
(‖√ρut‖L +

∥∥∇u
∥∥ 


L +

∥∥∇B
∥∥ 


L

)
. ()

Similarly, due to Lemma ., we obtain

∥∥∇B
∥∥
L ≤ C

(‖Bt‖L + ‖u · ∇B‖L + ‖B · ∇u‖L
)

≤ C
(‖Bt‖L + ‖u‖L‖∇B‖L + ‖B‖L‖∇u‖L

)

≤ C
(‖Bt‖L + ‖u‖ 


L‖∇u‖ 


L‖∇B‖ 


L

∥∥∇B
∥∥ 


L

+ ‖B‖ 

L‖∇B‖ 


L‖∇u‖ 


L

∥∥∇u
∥∥ 


L

)

≤ C
(‖Bt‖L +

∥∥∇B
∥∥ 


L +

∥∥∇u
∥∥ 


L

)
. ()

Thus, combining the above two inequalities and Young’s inequality, we arrive at

sup
≤t≤T

(‖u‖H + ‖B‖H
) ≤ C. ()

Then, by Lemmas . and ., we have

∫ T



∥∥∇u
∥∥
L dt ≤ C

∫ T



(‖ρut‖L + ‖ρu · ∇u‖L + ‖B · ∇B‖L
)
dt

≤ C
∫ T



(‖√ρut‖L + ‖∇ut‖L + ‖u‖L∞‖∇u‖L + ‖B‖L∞‖∇B‖L
)
dt

≤ C
∫ T



(‖√ρut‖L + ‖∇ut‖L + ‖u‖L
∥∥∇u

∥∥
L‖∇u‖L

∥∥∇u
∥∥
L

+ ‖B‖L
∥∥∇B

∥∥
L‖∇B‖L

∥∥∇B
∥∥
L

)
dt

≤ C +C
∫ T


‖∇ut‖L dt ≤ C ()
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and

∫ T



∥∥∇B
∥∥
L dt ≤ C

∫ T



(‖Bt‖L + ‖u · ∇B‖L + ‖B · ∇u‖L
)
dt

≤ C
∫ T



(‖Bt‖L + ‖∇Bt‖L + ‖u‖L∞‖∇B‖L + ‖B‖L∞‖∇u‖L
)
dt

≤ C
∫ T



(‖Bt‖L + ‖∇Bt‖L + ‖u‖L
∥∥∇u

∥∥
L‖∇B‖L

∥∥∇B
∥∥
L

+ ‖B‖L
∥∥∇B

∥∥
L‖∇u‖L

∥∥∇u
∥∥
L

)
dt

≤ C +C
∫ T


‖∇Bt‖L dt. ()

Then, combining all the above estimates ()-() together we show that (). This com-
pletes the proof of Lemma .. �

Lemma . For every  < T < T∗, we have

sup
≤t≤T

(‖ρ‖H + ‖ρt‖H
)
+

∫ T



(‖u‖H + ‖B‖H
)
dt ≤ C. ()

Proof Differentiating () with respect to xi (i = , ), multiplying the resultant equation by
|∇ρ|∂iρ , then integrating the resulting equation by parts over R with respect to x, we
finally deduce after summing them up that

d
dt

‖∇ρ‖L ≤ C‖∇u‖L∞‖∇ρ‖L ≤ C‖∇u‖W ,‖∇ρ‖L ,

which, combined with () and Gronwall’s inequality, yields

‖∇ρ‖L ≤ C‖∇ρ‖L exp
{
C

∫ T


‖∇u‖W , dt

}
≤ C. ()

Similarly, we can also obtain from () that

d
dt

∥∥∇ρ
∥∥
L ≤ C‖∇u‖L∞

∥∥∇ρ
∥∥
L +C

∥∥∇u
∥∥
L‖∇ρ‖L

∥∥∇ρ
∥∥
L

≤ C‖u‖W,
(
 +

∥∥∇ρ
∥∥
L

)
,

which combined with (), together with () and Gronwall’s inequality, yields

∥∥∇ρ
∥∥
L ≤ C

∥∥∇ρ
∥∥
L exp

{
C

∫ T


‖u‖W, dt

}
≤ C.

It follows from () that

‖∇u‖H ≤ C
(‖ρut‖H + ‖ρu · ∇u‖H + ‖B · ∇B‖H

)
≤ C

(‖ρut‖L + ‖∇ρ · ut‖L + ‖ρ∇ut‖L + ‖ρu · ∇u‖L + ‖∇ρ · u · ∇u‖L
+

∥∥ρ(∇u)
∥∥
L +

∥∥ρu · ∇u
∥∥
L + ‖B · ∇B‖L + ‖∇B‖L +

∥∥B · ∇B
∥∥
L

)
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≤ C
(‖ρ‖ 


L‖

√
ρut‖L + ‖∇ρ‖L‖ut‖L

+ ‖ρ‖L∞‖∇ut‖L + ‖ρ‖L∞‖u‖L∞‖∇u‖L
+ ‖u‖L∞‖∇ρ‖L‖∇u‖L + ‖ρ‖L∞‖∇u‖L + ‖ρ‖L∞‖u‖L∞

∥∥∇u
∥∥
L

+ ‖B‖L∞‖∇B‖L + ‖∇B‖L + ‖B‖L∞
∥∥∇B

∥∥
L

)
≤ C

(
 + ‖∇ut‖L

)
,

which implies
∫ T
 ‖u‖H dt ≤ C. Similarly, we can obtain

∫ T
 ‖B‖H dt ≤ C. Thus, we obtain

(), and thus complete the proof of Lemma .. �

The proof of Theorem . is based on all the estimates that we deduced in Lemmas .-
.. From all the estimates obtained, we arrive at (), and, finally, the proof of Theorem .
is therefore completed.
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