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Abstract

In this paper, we prove the existence of global strong solutions to the Cauchy
problem of 2D incompressible magnetohydrodynamics (MHD) flows. Here, we
emphasize that the initial density pg is permitted to contain vacuum states, and the
initial velocity ug and magnetic fields Hy can be arbitrarily large.
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1 Introduction

The mathematical model of magnetohydrodynamics (MHD) is used to simulate the mo-
tion of a conducting fluid under the effect of the electromagnetic field and has a very wide
range of applications in astrophysics, plasma, and so on. The governing equations of non-

homogeneous MHD can be stated as follows [1, 2]:

o +div(pu) = 0, 1)
(pu); +div(pu ® u) — wAu + VP = (B- V)B, )
B, +(u-VB)—(B-V)u=vAB, 3)
divu=0, divB=0 (4)

with £ > 0 and x = (x1,%,) € R%. The unknown functions p, u, P, and B denote the fluid den-
sity, velocity, pressure, and magnetic field, respectively. The constant p > 0 is the viscosity
coefficient. The constant v > 0 is the resistivity coefficient, which is inversely proportional
to the electrical conductivity constant and acts as the magnetic diffusivity of magnetic
fields. Without loss of generality, we set u = v = 1 throughout the paper. In this paper, we
assume the state equation P = P(p) = ap” (a >0, y > 1) and study the Cauchy problem.
Without loss of generality, we assume that a = 1. In this paper, we consider the Cauchy

problem for (1)-(4) with (p, &, B) with given initial data po, By, and uy, as

p(x,0) = po(x), pu(x,0) = potso (%), B(x,0) = By(x), xeR? (5)
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and far-field behavior
(o, u,B)(x,t) = (p,0,0) (in some weak sense), as x| — oo, (6)

where p is some fixed positive constant.

The global well-posedness and dynamical behaviors of MHD system are rather difficult
to investigate because of the strong coupling and interplay interaction between the fluid
motion and the magnetic fields. Recently, there is much more important progress on the
mathematical analysis of these topics for the (nonhomogeneous or homogeneous) MHD
system (see, for example, [3—20]). Here, we only mention some of them. Kawashima [14]
obtained the global existence of smooth solutions in the two-dimensional case when the
initial data are a small perturbation of some given constant state. Li-Xu-Zhang showed in
[15] the global well-posedness and large-time behavior of classical solutions to the Cauchy
problem of compressible MHD for regular initial data with small energy but possibly large
oscillations. In [9, 18], Hoff and Tsyganov obtained the global existence and uniqueness
of weak solutions with small initial energy. Umeda-Kawashima-Shizuta [17] studied the
global existence and time decay rate of smooth solutions to the linearized two-dimensional
compressible MHD equations. The optimal decay estimates of classical solutions to the
compressible MHD system were obtained by Zhang-Zhao [20] when the initial data are
close to a nonvacuum equilibrium. Hu-Wang [10, 11] and Fan-Yu [8] proved the global ex-
istence of renormalized solutions to the compressible MHD equations for general large
initial data. When the viscosity and resistivity go to zero, Zhang [19] showed that the
solution of the Cauchy problem for the nonhomogeneous incompressible MHD system
converges to the solution of the ideal MHD system and the convergence rate was also
obtained. Craig-Huang-Wang [7] obtained the global existence and uniqueness of strong
solutions for initial data with small /2 -norm in the bounded or unbounded domain in R®.

In [12], Huang-Wang considered the global strong solutions to (1)-(4) in the bounded
domain with suitable boundary conditions on # and B. Their arguments actually depend
on the size of the domain, and so they cannot be applied to the Cauchy problem directly.
Then one natural question may be raised: whether the global strong solutions exist in the
whole space R2. Here, we want to answer the question. Our main result is stated as follows.

Theorem 1.1 Assume that the initial data po, uo, and By satisfy

£0 ZO! (100 _:51”0!30) GHZ(Rz)i
diV Uy = diVB() = 0, (7)
—AMO + VPO —Bo . VBO =00 &

Nl

where (VPo,g) € L*(R?). Then for any given 0 < T < 0o, there exists a unique global strong
solution (p,u, P, B) of (1)-(6) such that

p € C([0, T]; H*(R?)), (u,B) € C([0, T]; H*(R?)),
P e C([0, T]; H(R?) N L*(0, T; H*(R?)), (s, By) € L*(0, T; H(R?)), (8)
(p1, /PUs, Br) € L(0, T; L*(R?)).


http://www.boundaryvalueproblems.com/content/2014/1/94

Su et al. Boundary Value Problems 2014, 2014:94 Page 3 of 14
http://www.boundaryvalueproblems.com/content/2014/1/94

The proof of Theorem 1.1 is mainly based on a critical Sobolev inequality of logarith-
mic type which was recently proved by Huang-Wang [12] and is originally due to Brezis-
Wainger [21]. The main difficulty compared with [12] is that we should bound all the
desired estimates without the restriction on the size of the domain, especially that the
Poincaré inequality is not the same from the bounded domain to the whole spaces.

For convenience, we explain the notions used throughout this paper. Set

/fdxé/szdx.

The standard homogeneous and inhomogeneous Sobolev spaces are defined as follows:

L' =L"(R?), DM (R?) = {ve LL (R?)|VFv e L"(R?)},

loc

Dl — D1,2, Wk,r — Wk,r(RZ)’ Hk — Wk,Z’

forl<r<ooand k>1.

The paper is organized as follows. In Section 2, we state some well-known inequalities
and basic facts which will be used frequently later. The proof of Theorem 1.1 will be cast
in Section 3.

2 Preliminaries
In this section, we list some useful lemmas which will be frequently used in the next sec-
tions. We start from the local existence of strong solutions, which is similar to [4] or [14].

Lemma 2.1 Assume that the conditions of Theorem 1.1 hold. Then there exists a positive
time Ty such that the Cauchy problem (1)-(6) admits a unique strong solution on R* x
[Or TO]'

Next is the well-known Gagliardo-Nirenberg inequality (see [22]).

Lemma 2.2 Forf € H'(R?), we have for any 2 < p < 00

FI, < CONFIZIVIE?, 9)

where C(p) is a positive constant depending only on p. In addition, if f € WP (R?) N H?(R?)
with p > 2, then there exists a universal positive constant C such that

Ifllzee < Clif llwrr@ey < Cllf 22y (10)

Next, we list the Poincaré type inequality, which yields ||v||;2(z2) even when the vacuum
states appear.

Lemma 2.3 Assume that p — p € L*(R?) N L™ (R?) with p(x) > 0, Vv € L*(R?) and /pv €
L%(R?). Then

IVll2 < C(IVovIi2 + 1VVIiz2), (11)

where C depends only on p, ||p — pll;2, and ||p — p||r-
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Proof The proof of this lemma can easily be deduced by (9), Holder’s inequality and the
following equality:

ﬁf|v|2dx=/p|v|2dx—/(p—ﬁ>|v|2dx,

so the details are omitted here. O

In the following, in order to improve the regularity of the velocity, we need to use the
estimates of the Stokes equations. We refer the reader to [23, 24] for details.

Lemma 2.4 Counsider the following stationary Stokes equations:
~AU+VP=f, divl=0, inR>

Then for any f € W™ (p > 1), there exists a positive constant C, depending only on m and
P, such that

IV2U|| oy + VPl wme < C|f [y 12)

To improve the regularity of the magnetic fields, we need the following result on the

elliptic system.

Lemma 2.5 Assume that B € H' is a weak solution of the Poisson equations
AB=g, inR?
where g € L7 (1 < g < 00). Then we have
I1Bllw2q < Cliglliza, (13)

with some constant C depending only on q.

To bound the L2-norm of the gradient of the velocity, we will apply a critical Sobolev
inequality of logarithmic type which was proved by Huang-Wang [12]. This is the key tool
for the proof of Theorem 1.1.

Lemma 2.6 Forq>2and 0 <s<t< oo, assume that f € L*(s,t; H') N L%(s,t; W'9). Then

there exists a positive constant C(q), independent of s and t, such that

1
I 20y < C(L+ I N2 s sy (I 1 1 2050wy % )- (14)

3 Proof of Theorem 1.1

This section is devoted to obtaining the proof of Theorem 1.1. According to Lemma 2.1, a
local strong solution of the Cauchy problem (1)-(6) exists. Suppose T* is the first blowup
time of the strong solution (p, u, P, B) to the Cauchy problem, it suffices to prove there
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actually exists a generic positive constant M (0 < M < 00), depending only on the initial
data (pg, 4o, Bo) and T*, such that

@2 sup (Ilp -5l + |6 B) |1 + I/ouel%)
0<t<T

T
+ /0 ([ B + e 2 + NHL 2, ) e < M, (15)

where 0 < T < T*. Then due to the local existence theorem (Lemma 2.1), it can easily be
shown that the strong solution can be extended beyond 7. This conclusion contradicts
the assumption on T*. Thus, the strong solution exists globally on R? x [0, T] for any
0 < T < 00. Hence the proof of Theorem 1.1 is therefore completed.

The proof of (15) is based on a series of lemmas. For simplicity, throughout the remain-
der of this paper, we denote by C a generic constant which depends only on the initial data
and 7™ and may change from line to line.

First, the L*°-norm of the density can be obtained easily by using the method of charac-
teristics, we list the following lemma without proof.

Lemma 3.1 Forevery0< T < T*, we have

0< sup [pllzee < llpollzee. (16)
0<t<T

Next, the basic energy inequalities are used.

Lemma 3.2 Forevery 0 < T < T*, we have

T
SHPT(II«/,EMIIiz +11Bll.2) +/ (IVuly. + IVBIE) dt < C. 17)
0

0<t<

The following estimates are the key estimates in the proof of Theorem 1.1, which de-
pends on the critical Sobolev inequality of logarithmic type (see Lemma 2.6).

Lemma 3.3 Forevery 0 < T < T*, we have

T
sup (lluliza + I1BI70) +/ (IV/pill3, + 1B:l172) dt < C, (18)
0

0<t<T
where f = f; + u - Vf is the material derivative of f.

Proof First, multiplying (2) by u; and integrating the resultant equation by parts over R?
on x, one deduces that

1d
51V

1.2 .
57 ulliz+ Hp2u”L2 =/,ou(u-V)udx+/(B-V)B-utdx. 19)

For the first term on the right-hand side of (19), using Young’s inequality and (16), one
shows that

. 1 .
f piku - Vyu = o I/Pitll2 + Cllaall oo | V]| 2.


http://www.boundaryvalueproblems.com/content/2014/1/94

Su et al. Boundary Value Problems 2014, 2014:94 Page 6 of 14
http://www.boundaryvalueproblems.com/content/2014/1/94

Next, the second term can be deduced as follows:

/(B~VB)-ut=%/(B-V)B-udx—/(BrV)B-udx—/(B-V)Bt-udx

d

:—E/(B-V)u-de+/(Bt-V)M'de—/(B'V)“'Bf

d 1
<-— /(B -V)u-Bdx + —Bll; + ClIBl 7o | Vuel| 7.
dt 4
Then, substituting the above two estimates into (19), one obtains

1d
— IV

d 1 .
T M”iz+$/(B'V)”'de+§||x/ﬁ””%2

1
= g IBelizz + C(lullzo + 1Bl z0) [Vl 7o- (20)
Multiplying (3) by B; and integrating over R? by parts, one deduces that
B + L vBI, - VB -B.d B-Vu-B,d
Il t”L2+E” lj2==[ u- -bpax + *VU-brax

< ~1B:ll> + C(lull e + 1Bl 7o) (1 VallZ2 + I VBIZ)- (21)

N

The term % (B- V)u - Bdx on the left-hand side of (20) cannot be determined positive
or negative, thus we have to control it by some appropriate positive terms. Note that it

follows from Gagliardo-Nirenberg inequality that we may deduce

’/(BoV)dex

< 1Bl Vull2 < CIBIl 2 [1Bll g | V]2
1
< ZIIVulliz + GBI (IBIP + I VBI).

Then multiplying (21) by (2C; C + 1), adding it to (20), and integrating the resulting equa-
tion over (s, t) on time, we finally deduce that

t
1.2
(IVull?, + I VBIIZ,)(2) +/ (| 2|}, + 11B:117.) dx
S
t
< C(IVull?; + ||VB||§2)(s)exp{C / (lll7o0 + ||B||ioo)} dr. (22)
S
To proceed, we have to estimate | ||z and ||B]|;. First, due to (11), we obtain

lul?, < C(L+IVul2,). (23)

For convenience, we denote

W =+ swp (Ju@) G+ [BO) + [ (W + | ) d.
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Then, combining (17), (22), and (23), we conclude that

W(t) < C(s) exp{c f (7o + ||B||%oo)dr}. (24)

To proceed, we have to get the appropriate bound on ||u|| =~ and ||B||z=. Thus, due to
(13), we obtain

|V2B]|,2 < C(I1Bll> + 1l I VBII 2 + 1Bl IIVMIIL2)

< C(IBll2 + ||u|| Hv2u||L2||VB||Lz + ||B|| I VZB||L2 [ Vul|12)

[—

= 1Vl + g ||VzB||L2 +C(IBll 2 + VBl + IVul72), (25)

where we have used (11) and (24). Similarly, we conclude from (12), (11), and (24) that

IV?u|,» < C(llpicl 2 + |B - VB 12)
< C(llpitll 2 + Bl I VB 2)
1 1
< C(llpitll 2 + 1B 5 || V>B| % VBl 2 )

1
= 7 1V2Bl 2 + C(lpicl 2 + 1VBIL)- (26)

Hence, combining (25) and (26), we obtain

[ Qv+ 19802 ar

t
< sup (| Vull}, + IVBI7,)Co + C/ (IV/pil72 + I1B:l72) dz. (27)

S<T=<t s

Thus, keeping the definition of W(¢) in mind, we conclude from (27) that

”u”iz(s,t;LOC) + ”B”iz(s,t;Lw)
< C[1+ (Il Fa g gy + UBN G2y ][I0 (e + 128l 2o w10)) + (e + 1Bl 2 w1 )]
< CL1+ (Il 72 gy + 1Bz ) 1[I0 (e + el 2 ra2)) + In(e + 1Bl 25 002)) ]

<C[1+ (Ilulliz(s,t;ﬁl) + ”B”iZ(S,t;HI))] In(CW(1)).
Substituting the above estimate into (25), we conclude that

W(t) < CW(s)expl Ci [Vl oy y2) + VB (g 2y | In(C2W(2)) }

)

2
]Cl HVMH a2y VB2 oy

<CYE[CY () (28)

It follows from the basic energy estimate that one can choose the interval [s, 7] small

enough, such that

1
CLIVitl2sg o) + IVBIZs ) < 5

[\7
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Substituting the above estimate into (25), we conclude that
W(T) < CY(5)WH(T),
which implies that
W(T) < CW(s),
from which we complete the proof of this lemma. d

Remark 3.1 Due to (18) and the definition of the material derivative f , we show that

T
/ Il de < C, 29)
0

by the following simple fact, i.e.:

T T T

f ||\/5ut||§zdtsf ||ﬁu||§2dt+/ plul|Vul? dxdt
0 0 0
T T
5/ ||ﬁﬂ||§zdt+6f laal| 4 1Vt 74 it
0 0
T
5C+/ ocl 2 V212, | 9] e < C,
0

where we have used (9), (16), (17), and (18).
The following lemma is devoted to improving the time regularity of # and B.

Lemma 3.4 Forevery0<T < T*, we have

T
sup ([Iv/puell?s + I1Bll7) + / (IV a2, + IVB|7,) dt < C. (30)
T 0

0<t<

Proof Differentiating (2) with respect to ¢, we obtain
Py + pu - Vi + VP — Auy = —petty — psth - Vuu— puty - Vuu+ By - VB + B- VB;.

Multiplying the above equation by u;, then integrating the resulting equation over R? on

x, we deduce that

1d
2dt

:—/ptlut|2dx—/ptu~Vu-utdx—/put-Vu-utdx

2 2
lvoullps + 1 Vuelya

+/Bt~VB~utdx+/B-VBt~utdx

Y7 (31)
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Now, we estimate each term on the right-hand side of (31). First, due to (1), we have

11:/div(pu)|ut|2dx:—Z/puout~Vut

1
= Cllpll oo Iv/puel 2 llull oo [ Vet 2

1
= gIIVutlliz + Cllull e /ol 7o

Next, it follows from (1), (18), Holder’s inequality, and Young’s inequality that

I = /div(pu)qu U dx
< [ putvutsdz s [ ol |Vulldds+ [ plul (7 Vil s
1
< Cllpl Z lutllzoo Il /Pl 2 | Vit 2
+ Cllal oo | /Ptaell 2 | V20t ] o + Clluelloc | Vit 2| Vit | 2
< Cllullzs lI/oudll 2 | Vil 2 | V2 2
1
+ Cllpl Zoo ltl Foo /Pt 2 | V22| 12 + Cllusl|Foo [ Vaell 21| Vite |l 2

< VU2, + (L4 ulf) /ol + C(L+ [Vull?) | V2ul

< Va2 + (L4l ] V20 3) I/puel % + C(L+ [ Vul2) | V2] o

| = oK

Then one obtains

1
I5 < Cllpl foo ll/Ptaell 2 | Vaall pa [ ]| 4
1 9 1 1 1
< Cl/pucll2 IVl | V2u| 2 e 51 Vit 2
1 1 1 1 1
< Cl/pudl2IVull s | V2u| o (I/puell > + IV uell ) IV il
3 1 1 1 1 1
= Cll/pucl L1 Vul & || V2ul| 21Vl s + Cl/pudl 2 Vull 5 | V| 5 1 Va2

1
< -

2 2
IVullzs + Cli/pud | 1Vl [ V2| fy + Cll/pud 32 IVl 2 | Va2

| = oo

Va2 + C(L+ | V2 2) Il/pe 1

<
where we have used (9), (11), and (24). Finally, as for I, and I5, we see that

[4+15:/Bt'VB'ut+/B'VBt'ut

=—[Bt-Vut-B—fB~VMt-B,

= ClIBliz |Bell 2 | Vsl 2

1
< gIVulfa + CL+ V2B2,) 1B:1%.

Page 9 of 14
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Hence, substituting all the above estimates into (31), we conclude that

d
Zpuls + 1Vuel}y < C(| V7l + [ V°BIL2) (/P2 + 1Be112)

+ C(IVpudllz + 1Bl 72)- (32)

From now on, we focus on the estimate for B. Differentiating equation (3) with respect
to ¢, multiplying the resulting equation by By, and then integrating by parts over R? on «,

we finally obtain

1d
Eﬁ/ﬁm%mﬁ/wmﬁm

:—/M['VB'Btdx"'/(Bt'Vu)’Btdx+/(B'v)Mt'Btdx

- Z J. (33)

We estimate each term on the right-hand side of (33). First, for J;, ones deduce from (11)
and (9) that

L=< C||Bt||L2 ||14t||L4 ||VB||L4
1 1 1 1
< ClIBll 2 el 5 | Ve | 5 IV BI % | V2B 2
1 1 1 1 1
< ClIB:ll 2 (IW/puel 2y + 1Vl ) I Vare | L IVBI 2 | V2B 2

1 1 1 1 1
< ClIBll 2 Iv/pudll 5 Vue |l LI VBI 2 | V2B [ + ClIBll 2 Vase | 2| VBI | V2B
1 1 1 1
< ClIBilI2 Iv/pudl 21 VBI || V2B [ + CliBell 2| Vel 2 | VBI || V2B 12

1 2
= gIVuellps + CQU+ | VB[ 1) 1B + Cll/pue o
Similarly, for J,, we show that

Jo < ClIVull21Bll7s < ClIVall211Bell 2| VBl 2

< L IVBI2 + IVl B2
_Mlmg+ﬂuhﬂm»
For /3, one deduces
1 2 2|2 2 2
J3 = CllBll= | Vitull2 1Bell2 < g I Vel + C[ VB[ 2 Bl 7> + CIBII -
Then, substituting the above estimates on /3, /5, /3, one deduces

d 1 2
- / B, dx + f VB dx < LIVl + CIVulls + VB2 1B

+ C(IVouellZ2 + I1Bll22). (34)

Page 10 of 14
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Thus, combining (32) and (34), together with Gronwall’s inequality, one easily completes
the proof of (30). This completes the proof of Lemma 3.4. d

Next, we will apply (12) and (13) to improve the higher regularity on the velocity # and
magnetic fields B, respectively.

Lemma 3.5 Forevery0< T < T*, we have

T
sup ([lul?2 + IBIZ2) + / (IVull? 04 + IVBI314) dt < C. (35)
0

0<t<T

Proof Let us rewrite (2) in the following form:
-Au+VP=-pu,—pu-Vu+B-VB.
Then, using Lemma 2.4, we conclude that

< C(llpucliz2 + llou - Vull 2 + 1B - VB||2)

< C(Iv/puellp2 + llull 2 IVl g + 1Bl [ VBl 4)

[Vl

< C(Ily/pcl2 + | V22, + | V2B ). (36)
Similarly, due to Lemma 2.5, we obtain
[V2B|» < C(IBdll2 + - VBI,2 + 1B - Vurl2)
< C(1Bell 2 + Il 4 1 VBl s + 1Bl s IVl )
< C(1Bdl2 + 1) 5 1 Va5 1 VBI 4 | V2B
+ IBILIVBIL IVl | V2u| 3)

1 1
< C(IBellz2 + |V?B j» + [ V?u ). (37)
Thus, combining the above two inequalities and Young’s inequality, we arrive at

sup (llully2 + 1Blig2) < C. (38)
0<t<T

Then, by Lemmas 2.4 and 2.5, we have
’ 2112 r 2 2 2
IV2uljadt <C | (llpuell2s + lpu- Vul7s +11B- VB|7,) dt
0 0

T
<C / (I/Puell2s + 1V uel s + lull7oo I Vael 2o + 1Bl 7 | VBIIZ,) dt
0

T
<C / (Ipucll 7 + IVl + Nl 2 | V2] 2 [ Vaall 2] VP02
0

+1Bllz2 || V*B| ;2 VBl 2 | V?B|| ) dt

T
<C+ C/ Vi3, dt < C (39)
0

Page 11 of 14
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and
T 9 T
/ |V?B| . dt<C / (1Bl + - VBIZy + |B - Vull?,) dt
0 0
T
<C f (I1B11% + VB2, + 1l 7o | VB4 + 1Bll7oo | Vull24) dt
0
T
<C / (I1Bell72 + IVBel72 + llull 2| V2| 2 1 VBIl 2| V?B]|
0

+ 1Bl 2| V2B|| 2 1 Vetl 2 | V2u] ) it

T
<C+ c/ VB2, dt. (40)
0

Then, combining all the above estimates (36)-(40) together we show that (35). This com-
pletes the proof of Lemma 3.5. O

Lemma 3.6 Forevery 0<T < T*, we have

T
sup (Ilollg2 + 1ol 1) +/ (lulls + IBIl}s) dt < C. (41)
0

0<t<T

Proof Differentiating (1) with respect to x; (i = 1,2), multiplying the resultant equation by
|Vp|d;p, then integrating the resulting equation by parts over R? with respect to x, we
finally deduce after summing them up that

d
EIIV,OIIiz < CIVuli=lIVplf < ClIVullywrs [V ollZ,

which, combined with (35) and Gronwall’s inequality, yields

T
IVpI2: < ClIV ol exp{c / IV2l s dt} <C. (42)
0
Similarly, we can also obtain from (1) that
d
V2ol < CIVallis [ Vol 12 + CIVul all Vollis [ V202
< Cllullwas (1+ |20 32),

which combined with (42), together with (35) and Gronwall’s inequality, yields

T
HVsz; < c”vzpouiz exp{C/O ll2]] 2.0 dt} <C.
It follows from (12) that

IVl < Cllpuelipn + Nl ow - Vullgp + 1B - VBlijp)
< Cllloue2 + IVp - uell2 + 10Vl 2 + lpu -Vl 2 + Vo - - Vaul 2

+ | p(Vu)? HLz + | pu- V2u||L2 +|B- VBl 2 +IVB|?s + | B- szHLz)
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< C(IoE IN/Fuel2 + 19 ol e
+ 1ol I Vatell 2 + Nlpllzoe oo | Vel 2
+ el IV ol Vulls + 1ol 1Vullfs + ol el | Va2
+ 1Bl IVBI2 + IVBIza + 1Bl | V2B 2)

< C(L+ Vil ),

which implies fOT l|lzt|| ;3 dt < C. Similarly, we can obtain foT |Bll;s3 dt < C. Thus, we obtain

(41), and thus complete the proof of Lemma 3.6. d

The proof of Theorem 1.1 is based on all the estimates that we deduced in Lemmas 3.1-
3.6. From all the estimates obtained, we arrive at (15), and, finally, the proof of Theorem 1.1
is therefore completed.
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