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1 Introduction
In this paper, we are concerned with the incompressible porous media equation (IPM) in
R

d (d =  or ):

(IPM)

{
∂tθ + u · ∇θ = , θ (x, ) = θ,
u = –k(∇p + gγ θ ), divu = ,

(.)

where x ∈ R
d , t > , θ is the liquid temperature, u is the liquid discharge, p is the scalar

pressure, k is the matrix of position-independent medium permeabilities in the different
directions, respectively, divided by the viscosity, g is the acceleration due to gravity, and
γ ∈ R

d is the last canonical vector ed . For simplicity, we only consider k = g = .
By rewriting Darcy’s law we obtain the expression of velocity u only in terms of temper-

ature θ [, ]. In the D case, thanks to the incompressibility, taking the curl operator first
and the ∇⊥ := (–∂x , ∂x ) operator second on both sides of Darcy’ law, we have

–�u =∇⊥(∂xθ ) =
(
–∂x∂xθ , ∂


xθ

)
,

thus the velocity u can be recovered as

u(x, t) = –

π

∫
R

ln |x – y|
(
–

∂θ

∂y∂y
(y, t),

∂θ

∂y
(y, t)

)
dy, x ∈R

.

©2014 Yu and He; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2014/1/95
mailto:slowbird@sohu.com
http://creativecommons.org/licenses/by/2.0


Yu and He Boundary Value Problems 2014, 2014:95 Page 2 of 11
http://www.boundaryvalueproblems.com/content/2014/1/95

Through integration by parts we finally get

u(x, t) = –


(
, θ (x, t)

)
+


π

PV
∫
R

H(x – y)θ (y, t)dy, x ∈R
, (.)

where the kernel H(·) is defined by

H(x) =
(
xx
|x| ,

x – x
|x|

)
.

Similarly, in D case, applying the curl operator twice to Darcy’s law, we get

–�u =
(
–∂∂θ , –∂∂θ , ∂

 θ + ∂
θ

)
,

where ∂i := ∂
∂xi

, thus

u(x, t) = –


(
,, θ (x, t)

)
+


π

PV
∫
R

K (x – y)θ (y, t)dy, x ∈R
, (.)

where

K (x) =
(
xx
|x| ,

xx
|x| ,

x – x – x
|x|

)
.

We observe that, in general, each coefficient of u(· , t) (with t as parameter) is only the
linear combination of the Calderoń-Zygmund singular integral (with the definition see
the sequel) of θ and θ itself. We write the general version as

u := T (θ ) = C(θ ) + S(θ ), (.)

where T = (Tk), C = (Ck), S = (Sk),  ≤ k ≤ N are all operators mapping scalar functions
to vector-valued functions and Ck equals a constant multiplication operator whereas Sk

means a Calderón-Zygmund singular integral operator. Especially the corresponding spe-
cific forms in D or D are shown as (.) or (.).
We observe that the system (IPM) is not more than a transport equation with non-local

divergence-free velocity field (the specific relationship between velocity and temperature
as (.) shows). It shares many similarities with another flow model - the D dissipative
quasi-geostrophic (QG) equation, which has been intensively studied by many authors
[–]. From a mathematical point of view, the system (IPM) is somewhat a generalization
of the (QG) equation. Very recently, the system (IPM) was introduced and investigated by
Córdoba et al. In [], they treated the (IMP) in D case and obtained the local existence
and uniqueness in Hölder space Cδ for  < δ <  by the particle-trajectory method and
gave some blow-up criteria of smooth solutions. Recently, they proved non-uniqueness for
weak solutions of (IPM) in []. For the dissipative system related (IPM), in [], the authors
obtained some results on strong solutions, weak solutions and attractors. For finite energy
they obtained global existence and uniqueness in the subcritical and critical cases. In the
supercritical case, they obtained local results in Hs, s > (N – α)/ +  and extended to
be global under a small condition ‖θ‖Hs ≤ cν , for s > N/ + , where c is a small fixed
constant.
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Recently, Chae studied the local well-posedness and blow-up criterion for the incom-
pressible Euler equations [, ], and quasi-geostrophic equations [] in Triebel-Lizorkin
spaces. As is well known, Triebel-Lizorkin spaces are the unification of several classical
function spaces such as Lebegue spaces Lp(Rd), Sobolev spaces Hs

p(Rd), Lipschitz spaces
Cs(Rd), and so on. In [], the author first used the Littlewood-Paley operator to localize
the Euler equation to the frequency annulus {|ξ | ∼ j}, then obtained an integral represen-
tation of the frequency-localized solution on the Lagrangian coordinates by introducing
a family of particle-trajectory mappings {Xj(α, t)} defined by

{
∂
∂t Xj(α, t) = (Sj–v)(Xj(α, t), t),
Xj(α, ) = α,

(.)

where v is a divergence-free velocity field and Sj– is a frequency projection to the ball
{|ξ |� j} (see Section ). He also used the following equivalent relation:

∥∥∥∥
(∑

j∈Z
jsq

∣∣�jv
(
Xj(α, t)

)∣∣q) 
q
∥∥∥∥
Lp(·dα)

∼=
∥∥∥∥
(∑

j∈Z
jsq

∣∣�jv(x)
∣∣q) 

q
∥∥∥∥
Lp(·dx)

= ‖v‖Ḟsp,q (.)

to estimate the frequency-localized solutions of the Euler equations or quasi-geostrophic
equations in Triebel-Lizorkin spaces. However, it seems difficult to give a strict proof for
the above equivalent relation (.) and its related counterpart due to the lack of a uni-
form change of the coordinates independent of j. To avoid this trouble, Chen et al. []
introduced a particle trajectory mapping X(α, t) independent of j defined by

{
∂
∂t X(α, t) = v(X(α, t), t),
X(α, ) = α,

and then established a new commutator estimate to obtain the local well-posedness of the
ideal MHD equations in the Triebel-Lizorkin spaces.
In this paper, we will adapt the method of Chen et al. [] to establish the local well-

posedness for the incompressible porous media equation (.) and to obtain a blow-up
criterion of smooth solutions in the framework of Triebel-Lizorkin spaces.
Now we state our result as follows.

Theorem . (i) Local-in-time existence. Let s > d
p + ,  < p,q < ∞. Assume that θ ∈

Fs
p,q(Rd), then there exists T = T(‖θ‖Fsp,q ) such that (.) has a unique solution θ ∈

C([,T];Fs
p,q(Rd))∩ Lip([,T];Fs–

p,q (Rd)).
(ii) Blow-up criterion. The local-in-time solution θ ∈ C([,T];Fs

p,q) constructed in (i)
blows up at T∗ > T in Fs

p,q, i.e.

lim sup
t↗T∗

∥∥θ (t)
∥∥
Fsp,q

= +∞, T∗ < ∞,

if and only if

∫ T∗



∥∥θ (t)
∥∥
Ḟ∞,∞ dt = +∞.
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2 Preliminaries
Let B = {ξ ∈ R

d, |ξ | ≤ 
 } and C = {ξ ∈ R

d,  ≤ |ξ | ≤ 
 }. Choose two nonnegative smooth

radial functions χ , ϕ supported, respectively, in B and C such that

χ (ξ ) +
∑
j≥

ϕ
(
–jξ

)
= , ξ ∈R

d,
∑
j∈Z

ϕ
(
–jξ

)
= , ξ ∈R

d\{}.

We denote ϕj(ξ ) = ϕ(–jξ ), h =F–ϕ and h̃ =F–χ . Then the dyadic blocks �j and Sj can
be defined as follows:

�jf = ϕ
(
–jD

)
f = jd

∫
Rd

h
(
jy

)
f (x – y)dy,

Sjf =
∑
k≤j–

�kf = χ
(
–jD

)
f = jd

∫
Rd

h̃
(
jy

)
f (x – y)dy.

Formally, �j = Sj+ – Sj is a frequency projection to the annulus {|ξ | ∼ j}, and Sj is a fre-
quency projection to the ball {|ξ |� j}. One easily verifies that with our choice of ϕ

�j�kf ≡  if |j – k| ≥  and �j(Sk–f�kf ) ≡  if |j – k| ≥ . (.)

With the introduction of �j and Sj, let us recall the definition of the Triebel-Lizorkin
space. Let s ∈ R, (p,q) ∈ [,∞) × [,∞], the homogeneous Triebel-Lizorkin space Ḟs

p,q is
defined by

Ḟs
p,q =

{
f ∈Z ′(

R
d);‖f ‖Ḟsp,q < ∞}

,

where

‖f ‖Ḟsp,q =
{

‖(∑j∈Z jsq|�jf |q)

q ‖Lp , for ≤ q < ∞,

‖ supj∈Z(js|�jf |)‖Lp , for q =∞,

andZ ′(Rd) denotes the dual space ofZ(Rd)={f ∈ S(Rd); ∂α f̂ () = ;∀α ∈N
d multi-index}

and can be identified by the quotient space of S ′/P with the polynomials space P .
For s >  and (p,q) ∈ [,∞) × [,∞], we define the inhomogeneous Triebel-Lizorkin

space Fs
p,q as follows:

Fs
p,q =

{
f ∈ S ′(

R
d);‖f ‖Fsp,q < ∞}

,

where

‖f ‖Fsp,q = ‖f ‖Lp + ‖f ‖Ḟsp,q .

We refer to [] for more details.

Lemma . (Bernstein’s inequality) [] Let k ∈N. There exists a constant C independent
of f and j such that, for all ≤ p≤ q ≤ ∞, the following inequalities hold:

supp f̂ ⊂ {|ξ |� j
} ⇒ sup

|α|=k

∥∥∂αf
∥∥
Lq ≤ Cjk+jd(


p–


q )‖f ‖Lp ,

supp f̂ ⊂ {|ξ | ∼ j
} ⇒ ‖f ‖Lp ≤ C sup

|α|=k
–jk

∥∥∂α f
∥∥
Lp .
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Lemma. [] For any k ∈ N, there exists a constant Ck such that the following inequality
holds:

C–
k

∥∥∇kf
∥∥
Ḟsp,q

≤ ‖f ‖Ḟs+kp,q
≤ Ck

∥∥∇kf
∥∥
Ḟsp,q

.

Proposition . [] Let s > , (p,q) ∈ (,∞) × (,∞], or p = q = ∞, then there exists a
constant C such that

‖fg‖Ḟsp,q ≤ C
(‖f ‖L∞‖g‖Ḟsp,q + ‖g‖L∞‖f ‖Ḟsp,q

)
,

‖fg‖Fsp,q ≤ C
(‖f ‖L∞‖g‖Fsp,q + ‖g‖L∞‖f ‖Fsp,q

)
.

Proposition . [] Let s > d/ with p,q ∈ [,∞]. Suppose f ∈ Fs
p,q, then there exists a

constant C such that the following inequality holds:

‖f ‖L∞ ≤ C
(
 + ‖f ‖Ḟs∞,∞

(
log+ ‖f ‖Fsp,q + 

))
.

Proposition . [] Let (p,q) ∈ (,∞)× (,∞], or p = q =∞, and f be a solenoidal vector
field. Then for s > 

∥∥∥∥ks([f ,�k] · ∇g
)∥∥

q(Z)

∥∥
Lp �

(‖∇f ‖L∞‖g‖Ḟsp,q + ‖∇g‖L∞‖f ‖Ḟsp,q
)
, (.)

or for s > –

∥∥∥∥ks([f ,�k] · ∇g
)∥∥

q(Z)

∥∥
p �

(‖∇f ‖L∞‖g‖Ḟsp,q + ‖g‖L∞‖∇f ‖Ḟsp,q
)
. (.)

The classical Calderón-Zygmund singular integrals are operators of the form

Tczf (x) := PV
∫
RN

�(y′)
|y|N f (x – y)dy = lim

ε→

∫
|y|>ε

�(y′)
|y|N f (x – y)dy,

where � is defined on the unit sphere of RN , SN–, and is integrable with zero average
and where y′ := y

|y| ∈ SN–. Clearly, the definition is meaningful for Schwartz functions.
Moreover if � ∈ C(SN–), Tcz is Lp bounded,  < p <∞.
The general version (.) of the relationship between u and θ is in fact ensured by the

following result (see e.g. []).

Lemma . Let m ∈ C∞(RN\{}) be a homogeneous function of degree , and Tm be the
corresponding multiplier operator defined by (Tmf )∧ =mf̂ , then there exist a ∈ C and � ∈
C∞(SN–) with zero average such that for any Schwartz function f ,

Tmf = af + PV
�(x′)
|x|N ∗ f .

Remark . Since –�v = (∂∂Nθ , . . . , –∂N–∂Nθ , ∂
 θ + · · · + ∂

N–θ ), the Fourier multiplier
of the operator T is rather clear. In fact, each component of its multiplier is the linear
combination of the term like ξiξj

|ξ | , i, j ∈ {, , . . . ,N}, which of course belongs toC∞(RN\{})
and is homogeneous of degree .
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3 Proof of Theorem 1.1
We divide the proof of Theorem . into several steps.
Step . A priori estimates.
Taking the operation �k on both sides of the first equation of (.), we have

∂t�kθ + u · ∇�kθ = u · ∇�kθ –�k(u∇θ )� [u,�k] · ∇θ . (.)

Let X(α, t) be the solution of the following ordinary differential equations:

{
∂tX(α, t) = u(X(α, t), t),
X(α, ) = α.

(.)

Then it follows from (.) that

d
dt

�kθ
(
X(α, t), t

)
= [u,�k] · ∇θ

(
X(α, t), t

)
, (.)

which implies that

∣∣�kθ
(
X(α, t), t

)∣∣ ≤ ∣∣�kθ(α)
∣∣ + ∫ t



∣∣([u,�k] · ∇θ
)(
X(α, τ ), τ

)∣∣dτ . (.)

Multiplying ks, taking the q(Z) norm on both sides of (.), we get by using the
Minkowski inequality

(∑
k

∣∣ks�kθ
(
X(α, t), t

)∣∣q) 
q

≤
(∑

k

∣∣ks�kθ(α)
∣∣q) 

q
+

∫ t



(∑
k

∣∣ks([u,�k] · ∇θ
)(
X(α, τ ), τ

)∣∣q) 
q
dτ . (.)

Next, taking the Lp normwith respect to α ∈R
d on both sides of (.), we get by using the

Minkowski inequality that

(∫
Rd

∣∣∣∣
(∑

k

∣∣ks�kθ
(
X(α, t), t

)∣∣q) 
q
∣∣∣∣
p

dα

) 
p

≤ ‖θ‖Ḟsp,q +
∫ t



(∫
Rd

∣∣∣∣
(∑

k

∣∣ks([u,�k] · ∇θ
)(
X(α, τ ), τ

)∣∣q) 
q
∣∣∣∣
p

dα

) 
p
dτ . (.)

Using the fact that α �→ X(α, t) is a volume-preserving diffeomorphism due to divu = ,
we get from (.) that

∥∥θ (t)
∥∥
Ḟsp,q

≤ ‖θ‖Ḟsp,q +
∫ t



∥∥∥∥ks([u,�k] · ∇θ
)∥∥

q(k∈Z)
∥∥
Lp dτ . (.)

Thanks to Proposition ., the last term on the right side of (.) is dominated by

∫ t



(‖∇u‖L∞‖θ‖Ḟsp,q + ‖∇θ‖L∞‖u‖Ḟsp,q
)
dτ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/95
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and thus

∥∥θ (t)
∥∥
Ḟsp,q

≤ ‖θ‖Ḟsp,q +
∫ t



(‖∇u‖L∞ + ‖∇θ‖L∞
)‖θ‖Ḟsp,q dτ , (.)

where we used (.) and the boundedness of the Calderón-Zygmund singular integral op-
erator on Ḟs

p,q.
Now from (.) we have immediately

∥∥θ (t)
∥∥
Lp = ‖θ‖Lp (.)

for all  ≤ p ≤ ∞, since div u = . Summing up (.) and (.) yields

∥∥θ (t)
∥∥
Fsp,q

≤ ‖θ‖Fsp,q +
∫ t



(‖∇u‖L∞ + ‖∇θ‖L∞
)‖θ‖Fsp,q dτ , (.)

which together with the Gronwall inequality gives

∥∥θ (t)
∥∥
Fsp,q

≤ ‖θ‖Fsp,q exp
(
C

∫ t



(‖∇u‖L∞ + ‖∇θ‖L∞
)
dτ

)
. (.)

Step . Approximate solutions and uniform estimates.
We construct the approximate solutions of (.). Define the sequence {θ (n),u(n)}N=N∪{}

by solving the following systems:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tθ
(n+) + u(n) · ∇θ (n+) = ,

u(n) = C(θ (n)) + S(θ (n)),
divu(n) = ,
θ (n+)|t= = Sn+θ.

(.)

We set (θ (),u()) = (, ) and let X(n)(α, t) be the solutions of the following ordinary differ-
ential equations:

{
∂tX(n)(α, t) = u(n)(X(n)(α, t), t),
X(n)(α, ) = α

(.)

for each n ∈ N. Then, following the same procedure of estimate leading to (.), we ob-
tain

∥∥θ (n+)(t)
∥∥
Fsp,q

≤ ‖Sn+θ‖Fsp,q +
∫ t



(∥∥∇u(n)
∥∥
L∞

∥∥θ (n+)∥∥
Fsp,q

+
∥∥∇θ (n+)∥∥

L∞
∥∥u(n)∥∥Fsp,q

)
dτ

≤ ‖θ‖Fsp,q +
∫ t



(∥∥∇u(n)
∥∥
Fs–p,q

∥∥θ (n+)∥∥
Fsp,q

+
∥∥∇θ (n+)∥∥

Fs–p,q

∥∥u(n)∥∥Fsp,q

)
dτ

≤ ‖θ‖Fsp,q +
∫ t



∥∥θ (n)∥∥
Fsp,q

∥∥θ (n+)∥∥
Fsp,q

dτ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/95
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where we used the fact that ‖Sn+θ‖ ≤ ‖θ‖, Sobolev embedding theorem Fs–
p,q ↪→

L∞ for s –  > d/p, (.) and the boundedness of the Calderón-Zygmund singular in-
tegral operator on Fs

p,q. Equation (.) together with the Gronwall inequality implies
that

∥∥θ (n+)(t)
∥∥
Fsp,q

≤ ‖θ‖Fsp,q exp
(
C

∫ t



∥∥θ (n)∥∥
Fsp,q

dτ

)
, (.)

for some C >  independent of n. Thus, if we choose T = T(‖θ‖Fsp,q ) >  such that

T‖θ‖Fsp,q ≤ 
C

ln,

we have, for any n ∈ N,

sup
≤t≤T

∥∥θ (n+)(t)
∥∥
Fsp,q

≤ C‖θ‖Fsp,q , (.)

by the standard induction arguments. Then, θ (n+) ∈ C([,T];Fs
p,q(Rd)). Moreover, it fol-

lows from Proposition . that

∥∥∂tθ
(n+)(t)

∥∥
Fs–p,q

=
∥∥u(n) · ∇θ (n+)∥∥

Fs–p,q

≤ C
(∥∥u(n)∥∥L∞

∥∥∇θ (n+)∥∥
Fs–p,q

+
∥∥u(n)∥∥Fs–p,q

∥∥∇θ (n+)∥∥
L∞

)
≤ C

∥∥θ (n)∥∥
Fs–p,q

∥∥θ (n+)∥∥
Fsp,q

by Sobolev embedding and the boundedness of the Calderón-Zygmund singular integral
operator on Fs

p,q, and then

sup
≤t≤T

∥∥∂tθ
(n+)(t)

∥∥
Fsp,q

≤ C‖θ‖Fsp,q , (.)

which implies that ∂tθ
(n+) ∈ C([,T];Fs–

p,q (Rd)). This together with (.) gives the uni-
form estimate of θ (n)(x, t) in n.
Step . Existence.
We will show that there exists a positive time T (≤ T) independent of n such that θ (n)

and u(n) are Cauchy sequences in Xs–
T � C([,T];Fs–

p,q ). For this purpose, we set

δθ (n+) = θ (n+) – θ (n), δu(n+) = u(n+) – u(n).

Then, it follows that δθ (n+) satisfies the equations

{
∂tδθ

(n+) + u(n) · ∇δθ (n+) = –δu(n) · ∇θ (n),
δθ (n+)|t= =�n+θ.

(.)

Applying �k to the first equation of (.), we get

∂t�kδθ
(n+) + u(n) · ∇�kδθ

(n+) =
[
u(n),�k

] · ∇δθ (n+) –�k
(
δu(n) · ∇θ (n)). (.)

http://www.boundaryvalueproblems.com/content/2014/1/95
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Exactly as in the proof of (.), we get

∥∥δθ (n+)∥∥
Ḟs–p,q

≤ C‖�n+θ‖Ḟs–p,q
+

∫ t



∥∥∥∥k(s–)([u(n),�k
] · ∇δθ (n+))(τ )∥∥

q(Z)

∥∥
p dτ

+
∫ t



∥∥δu(n) · ∇θ (n)(τ )
∥∥
Ḟs–p,q

dτ

≤ C‖�n+θ‖Ḟs–p,q
+

∫ t



(∥∥∇u(n)
∥∥
L∞

∥∥δθ (n+)∥∥
Ḟs–p,q

+
∥∥δθ (n+)∥∥

L∞
∥∥∇u(n)

∥∥
Ḟs–p,q

)
dτ

+
∫ t



(∥∥δu(n)
∥∥
L∞

∥∥∇θ (n)∥∥
Ḟs–p,q

+
∥∥δu(n)

∥∥
Ḟs–p,q

∥∥∇θ (n)∥∥
L∞

)
dτ

≤ C‖�n+θ‖Ḟs–p,q
+

∫ t



(∥∥u(n)∥∥Fsp,q

∥∥δθ (n+)∥∥
Fsp,q

+
∥∥δu(n)

∥∥
Fs–p,q

∥∥θ (n)∥∥
Fsp,q

)
dτ

≤ C‖�n+θ‖Ḟs–p,q
+

∫ t



(∥∥θ (n)∥∥
Fsp,q

∥∥δθ (n+)∥∥
Fsp,q

+
∥∥δθ (n)∥∥

Fs–p,q

∥∥θ (n)∥∥
Fsp,q

)
dτ , (.)

where we used Proposition ., Proposition ., the embedding Fs–
p,q ↪→ L∞, and the

boundedness of the Calderón-Zygmund singular integral operator on Fs
p,q. Thanks to the

Fourier support of �n+θ, we have

‖�n+θ‖Ḟs–p,q
≤ C–(n+)‖θ‖Ḟsp,q . (.)

Now, we estimate the Lp norm of δθ (n+). Multiplying |δθ (n+)|p–δθ (n+) on both sides of
the first equation of (.), and integrating the resulting equations over Rd , we obtain

∥∥δθ (n+)(t)
∥∥
Lp ≤ ‖�n+θ‖Lp +

∫ t



∥∥δu(n) · ∇θ (n)(τ )
∥∥
Lp dτ

≤ –(n+)
∥∥z+∥∥Ḟsp,q

+C
∫ t



∥∥δu(n)
∥∥
Lp

∥∥∇θ (n)∥∥
L∞ dτ

≤ –(n+)
∥∥z+∥∥Ḟsp,q

+C
∫ t



∥∥δθ (n)∥∥
Lp

∥∥θ (n)∥∥
Fsp,q

dτ ,

which together with (.) and (.) gives

∥∥δθ (n+)∥∥
Fs–p,q

≤ C–(n+)‖θ‖Fsp,q +C
∫ t



(∥∥θ (n)∥∥
Fsp,q

∥∥δθ (n+)∥∥
Fs–p,q

+
∥∥δθ (n)∥∥

Fs–p,q

∥∥θ (n)∥∥
Fsp,q

)
dτ

≤ C–(n+)‖θ‖Fsp,q +CT sup
t∈[,T]

∥∥θ (n)∥∥
Fsp,q

∥∥δθ (n+)∥∥
Fs–p,q

+CT sup
t∈[,T]

∥∥θ (n)∥∥
Fsp,q

∥∥δθ (n)∥∥
Fs–p,q

. (.)

Equation (.) together with (.) yields

∥∥δθ (n+)∥∥
Xs–
T

≤ C–(n+) +CT
∥∥δθ (n+)∥∥

Xs–
T

+CT
∥∥δθ (n)∥∥

Xs–
T
, (.)
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where C = C(‖θ‖Fsp,q ). Thus, if CT ≤ 
 , then

∥∥δθ (n+)∥∥
Xs–
T

≤ C–n + CT
∥∥δθ (n)∥∥

Xs–
T
.

This implies that

∥∥δθ (n+)∥∥
Xs–
T

≤ C–(n+).

Thus, {θ (n)}n∈N is a Cauchy sequence in Xs–
T . By the standard argument, for T ≤

min{T, 
C

}, the limit θ ∈ Xs
T solves (.) with the initial data θ. The fact that θ ∈

Lip([,T];Fs
p,q) follows from the uniform estimate (.).

Step . Uniqueness.
Consider θ̃ ∈ C([,T]; (Fs

p,q)) is another solution to (.) with the same initial data. Let
δθ = θ – θ̃ and δu = u – ũ. Then δθ satisfies the following equation:

{
∂tδθ + u · ∇δθ = –δu · ∇ θ̃ ,
δθ |t= = .

In the same way as the derivation in (.), we obtain

‖δθ‖Xs–
T

≤ CT‖δθ‖Xs–
T

for sufficiently small T . This implies that δθ ≡ , i.e., θ ≡ θ̃ .
Blow-up criterion.
For the a priori estimate (.), we only need to dominate ‖∇u‖L∞ and ‖∇θ‖L∞ . From

Proposition . and the boundedness of the Calderón-Zygmund operator from Ḟ∞,∞ into
itself, we have

‖∇u‖L∞ ≤ C
(
 + ‖∇u‖Ḟ∞,∞

(
log+ ‖∇u‖Fs–p,q

+ 
))

≤ C
(
 + ‖θ‖Ḟ∞,∞

(
log+ ‖θ‖Fsp,q + 

))
.

Similarly,

‖∇θ‖L∞ ≤ C
(
 + ‖θ‖Ḟ∞,∞

(
log+ ‖θ‖Fsp,q + 

))
.

Thus, the a priori estimate (.) gives

‖θ‖Fsp,q ≤ C‖θ‖Fsp,q exp
(
C

∫ t



∥∥θ (τ )
∥∥
Ḟ∞,∞

(
log+

∥∥θ (τ )
∥∥
Fsp,q

+ 
)
dτ

)
.

By the Gronwall inequality

‖θ‖Fsp,q ≤ C‖θ‖Fsp,q exp
(
C exp

(∫ t



∥∥θ (τ )
∥∥
Ḟ∞,∞ dτ

))
.

Therefore, if lim supt↗T∗ ‖θ (t)‖Fsp,q =∞, then
∫ T∗
 ‖θ (t)‖Ḟ∞,∞ dt =∞.

http://www.boundaryvalueproblems.com/content/2014/1/95
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On the other hand, it follows from the Sobolev embedding Fs
p,q ↪→ W ,∞ ↪→ Ḟ∞,∞ for

s > d/p +  that

∫ T∗



∥∥θ (t)
∥∥
Ḟ∞,∞ dt ≤ T∗ sup

≤τ≤T∗

∥∥θ (τ )
∥∥
Ḟ∞,∞

≤ T∗ sup
≤τ≤T∗

∥∥∇θ (τ )
∥∥
L∞

≤ T∗ sup
≤τ≤T∗

∥∥θ (τ )
∥∥
Fsp,q

.

Then
∫ T∗
 ‖θ (t)‖Ḟ∞,∞ dt =∞ implies lim supt↗T∗ ‖θ (t)‖Fsp,q =∞.
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