
El-Raheem and Nasser Boundary Value Problems 2014, 2014:97
http://www.boundaryvalueproblems.com/content/2014/1/97

RESEARCH Open Access

On the spectral investigation of the scattering
problem for some version of one-dimensional
Schrödinger equation with turning point
Zaki FA El-Raheem1* and AH Nasser2

*Correspondence:
zaki55@Alex-Sci.edu.eg
1Department of Mathematics,
Faculty of Education, Alexandria
University, Alexandria, Egypt
Full list of author information is
available at the end of the article

Abstract
In this paper we introduce and investigate the eigenvalues and the normalizing
numbers as well as the scattering function for some version of the one-dimensional
Schrödinger equation with turning point on the half line.
MSC: 58C40; 34L25

Keywords: initial value problem; the eigenvalues; normalizing numbers; scattering
function; asymptotic formula

1 Introduction
The solution of many problems of mathematical physics are reduced to the spectral inves-
tigation of a differential operator. The differential operator is called regular if its domain
is finite and its coefficients are continuous, otherwise it is called a singular differential op-
erator. The Sturm-Liouville theory occupies a central position in the spectral theory of
regular operator. During the development of quantum mechanics there was an increase
in the interest of spectral theory of singular operators, on which we will restrict our atten-
tion. The first basic role in the development of the spectral theory of singular operators
dates back to Titchmarsh []. He gave a new approach in the spectral theory of singular
differential operator of the second order by using contour integration. Also Levitan []
gave a new method, he obtained the eigenfunction expansion in an infinite interval by
taking the limit of a regular case. In the last  or so years, due to the needs of mathemat-
ical physics, in particular, quantum mechanics, the question of solving various spectral
problems with explosive factor has appeared in the study of geophysics and electromag-
netic fields; see [, ]. The spectral theory of differential operators with explosive factor is
studied by Tikhonov [], Gasymov []. For earlier results on various aspects of solvability
theory of boundary value problems and spectral theory in the half line case, the situa-
tion closely related to the principal topic of this paper, we refer, for instance, to [–].
Notice that the paper [] presented an approximate construction of the Jost function for
some Sturm-Liouville boundary value problem in the case ρ(x) =  by means of the col-
location method. In the present paper we introduce and investigate the eigenvalues and
the normalizing numbers as well as the scattering function for some version of the one-
dimensional Schrödinger equation with turning point on the half line as in (.), (.). In
[, ], and [] the weight functions introduced are considered as applications of the
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discontinuous wave speed problem on a non-homogeneous medium as in our case, while
the introduction of the weight function ρ(x) which is given by (.) as ± signs causes an
excess of analytical difficulties. In [] the author studied the spectral property in a finite
interval, while in the present work we consider the half line which gives rise both to a con-
tinuous and a discrete spectrum; the latter is treated by the scattering function. In [] the
author considered the weight function of the form

ρ(x) =

{
α; Imα �= , ≤ x≤ a < π ,
; a < x≤ π ,

and the spectra were both continuous and discrete as in our problem.Wemust notice that
the result of this paper is a starting point in calculating the regularized trace formula and
solving the inverse scattering problem, which will be investigated later on.
Consider the initial value problem

–y′′ + q(x)y = μρ(x)y, ≤ x < ∞, (.)

y′() – hy() = , h > , (.)

where

ρ(x) =

{
–;  ≤ x ≤ ,
;  < x <∞,

(.)

q(x) is a finite real valued function which satisfies

∫ ∞


( + x)

∣∣q(x)∣∣dx < ∞,

and μ is a complex spectral parameter. To study the eigenvalues of (.)-(.), we first
consider the case when q(x) ≡  and h = .
For q(x)≡  and h =  problem (.)-(.) takes the form

–y′′ = μρ(x)y,  ≤ x≤ ∞, (.)

y′() = , (.)

μ = λ. (.)

From now on we consider Imλ ≥  because according to (.) μ covers all the com-
plex plane. Denote by ϕo(x,λ) the solution of (.) with the initial conditions ϕo(,λ) = ,
ϕ′
o(,λ) = . According to (.), (.) is equivalent to the two equations

–y′′ = –λy,  ≤ x < ,

–y′′ = λy,  < x≤ ∞.
(.)

It is easy to see that

ϕo(x,λ) =

{
coshλx; ≤ x < ,
ao(λ)eiλx + bo(λ)e–iλx;  < x < ∞,

(.)
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where ao(λ), bo(λ) are calculated from the requirements ϕo(–,λ) = ϕo(+,λ) and ϕ′
o(–

,λ) = ϕ′
o( + ,λ), so that (.) takes the form

ϕo(x,λ) =

{
coshλx;  ≤ x < ,
e–iλ
 (coshλ – i sinhλ)eiλx + eiλ

 (coshλ + i sinhλ)e–iλx;  < x < ∞.
(.)

For Imλ = , the function ϕo(x,λ) does not belong to L(,∞) also, for Imλ > , eiλx → 
as x→ ∞ whereas e–iλx → ∞ as x→ ∞, so that it is convenient to consider

eiλ(coshλ + i sinhλ) =  (.)

as the equation of the eigenvalues μo = λ
o .

From this we have λo = (n + 
 )π i, n = , ,±,±, . . . or

μo
n = –

(
n +




)

π, n = , , . . . . (.)

Together with the solution ϕo(x,λ) of (.) we introduce the second solution fo(x,λ), which
is known as the Jost solution. This solution is defined by the condition

fo(x,λ)≈ eiλx, x → ∞. (.)

With the aid of (.), we have

fo(x,λ) =

{
co(λ) coshλx + do(λ) sinhλx,  ≤ x < ,
eiλx,  < x <∞,

where the coefficients co(λ), do(λ) are calculated from the requirements fo( – ,λ) = fo( +
,λ) and f ′

o( – ,λ) = f ′
o( + ,λ), and the solution becomes

fo(x,λ) =

⎧⎪⎨
⎪⎩
eiλ(coshλ – i sinhλ) coshλx

+ eiλ(i coshλ – sinhλ) sinhλx,  ≤ x < ,
eiλx,  < x < ∞.

(.)

It should be noted, here, that the equation of the eigenvalues can be obtained, also, from
the condition that the solution fo(x,λ) ∈ L(,∞;ρ); this condition implies that f ′

o(,λ) = ,
which is the same as (.).
Now for q(x) �= , h �=  we denote by f (x,λ) the solution of (.) which satisfies the con-

dition

f (x,λ)≈ eiλx, x→ ∞, –∞ < λ < ∞.

For x > , (.) takes the form –y′′ + q(x)y = λy, and in the following, we study its solution
and the related spectrum. From [] this solution has the following representation:

f (x,λ) = eiλx +
∫ ∞

x
K (x, t)eiλt dt,  < x < ∞, (.)

where Imλ ≥ , K (x,x) = 

∫ x
 q(t)dt,  < x < ∞.
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For  ≤ x≤ , the solution f (x,λ) has the form

f (x,λ) =

{
a(λ)ϕ(x,λ) + b(λ)θ (x,λ), ≤ x ≤ ,
eiλx +

∫ ∞
x K (x, t)eiλt dt,  < x < ∞,

(.)

where ϕ(x,λ), θ (x,λ) is the fundamental system of solutions of (.) subject to the initial
conditions

ϕ(,λ) = , ϕ′(,λ) = h,

θ (,λ) = , θ ′(,λ) = ,
(.)

where the coefficients a(λ), b(λ) are calculated from the requirements f ( – ,λ) = f ( +
,λ), f ′( – ,λ) = f ′( + ,λ), from which

a(λ) = f (,λ)θ ′(,λ) – f ′(,λ)θ (,λ),

b(λ) = f ′(,λ)ϕ(,λ) – f (,λ)ϕ′(,λ).
(.)

Further, (.), for  ≤ x ≤ , takes the form –y′′ +q(x)y = –λy, and the fundamental system
of solution of this follows from [, p.] by the representation

ϕ(x,λ) =
sinhλx

λ
+

∫ x


B(x, t)

sinhλt
λ

dt,

A(x,x) =



∫ x


q(t)dt, A(x, ) = , A(, ) = h,

(.)

θ (x,λ) = coshλx +
∫ x


A(x, t) coshλt dt,

B(x,x) =



∫ x


q(t)dt,

∂B
∂t

∣∣∣
t=

= , B(, ) = .
(.)

Nowwe find the characteristic equation of the eigenvalues of (.)-(.). Since the solution
(.) belongs to L(,∞), Imλ >  it follows that, for μ = λ to be an eigenvalue, it must
satisfy the initial condition (.), namely

f ′(,λ) – hf (,λ) = . (.)

From (.) and (.) we have

f ′(,λ) – hf (,λ) = b(λ) = f ′(,λ)ϕ(,λ) – f (,λ)ϕ′(,λ). (.)

In the following lemmaswe study someproperties of the eigenvalues of problem (.)-(.).

Lemma . Under the conditions q(x) >  ( < x < ∞), the roots of (.), for Imλ > , are
simple and lie only on the imaginary axis.

Proof Let λo, where Imλo > , be a zero of the function f ′(,λ) – hf (,λ), so that

f ′(,λo) – hf (,λo) = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/97
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We prove that λo = iτo, τo > . Since f (x,λo) is a solution of (.) we have

–f ′′(x,λo) + q(x)f (x,λo) = λ
oρ(x)f (x,λo), (.)

multiplying both sides of this by f (x,λo) and integrating both sides from  to ∞, we have

–
∫ ∞


f ′′(x,λo)f (x,λo)dx +

∫ ∞


q(x)

∣∣f (x,λo)
∣∣ dx = λ

o

∫ ∞


ρ(x)

∣∣f (x,λo)
∣∣ dx.

Integrating the first integral by parts and using (.), (.) we obtain

λ
o =

∫ ∞
 {|f ′(x,λo)| + q(x)|f (x,λo)|}dx + h|f (,λo)|∫ ∞

 ρ(x)|f (x,λo)| dx , (.)

where
∫ ∞
 ρ(x)|f (x,λo)| dx �= , from which we deduce that λ

o is real and hence λo is pure
imaginary. We turn now to the proof that the roots are simple from (.), this is carried
out by proving that f ′(,λ)–hf (,λ) =  implies [ḟ ′(,λ)–hḟ (,λ)] �= , where ‘dot’ denotes
differentiation with respect to λ.
Integrating the difference [ḟ (x,λ) × (.)] – [f (x,λ) × d

dλ
(.)] with respect to x from

 to ∞ and using (.) we get after some calculation that

f (,λ)
[
ḟ ′(,λ) – hḟ (,λ)

]
= λ

∫ ∞


ρ(x)f (x,λ)dx. (.)

We prove the reality of f (x,λ).
For x > , λ = iτ the function f (x,λ) = e–τx +

∫ ∞
x K (x, t)e–τ t dt is real because reality of

K (x, t) comes from the reality of q(x).
To prove that, for  ≤ x < , we observe that ϕ and θ are real. Let λ = iτ ; since ϕ(x,λ) is

a solution of (.)-(.), we have

–ϕ′′(x,λ) + q(x)ϕ(x,λ) = –τ ρ(x)ϕ(x,λ), ϕ(,λ) = , ϕ′(,λ) = h. (.)

Taking the conjugate of (.) we have

–ϕ′′(x,λ) + q(x)ϕ(x,λ) = –τ ρ(x)ϕ(x,λ), ϕ(,λ) = , ϕ′(,λ) = h. (.)

It is clear, from (.) and (.), that ϕ(x,λ) = ϕ(x,λ). In a similar way we can prove that
θ (x,λ) is also real so that the solution f (x,λ) for  ≤ x <  is real from which we have
f (x,λ) = |f (x,λ)| and (.) takes the form

f (,λ)
[
ḟ ′(,λ) – hḟ (,λ)

]
= λ

∫ ∞


ρ(x)

∣∣f (x,λ)∣∣ dx. (.)

From (.) we see that d
dλ
[f ′(,λ) – hf (,λ)] �= , which completes the proof. �

Remark  For Imλn >  and f ′(,λn)–hf (,λn) = , the function f (,λn) is the eigenfunc-
tion of problem (.)-(.) that corresponds to the negative eigenvalues μn = λ

n = –χ
n .
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Lemma . For all Reλ �=  the function f ′(,λ) – hf (,λ) does not tend to zero, i.e.

f ′(,λ) – hf (,λ) �= , Reλ �= , –∞ < λ < ∞. (.)

Proof Since the function f (x,λ) is the solution of (.), f (x, –λ) is also a solution, and it can
be shown that these two solutions are linearly independent and their Wronskian is

W
[
f (x,λ), f (x, –λ)

]
= –iλ, (.)

so that W [f (x,λ), f (x, –λ)] �= , for Reλ �= , so that f (x,λ) and f (x, –λ) is a fundamental
system of solutions of (.). In particular, putting x =  into (.) we have

f (,λ)f ′(,–λ) – f ′(,λ)f (,–λ) = –iλ. (.)

To prove that f ′(,λ) – hf (,λ) �= , Reλ �= , –∞ < λ < ∞, assume to the contrary i.e.
f ′(,λ) – hf (,λ) = , Reλ �= , –∞ < λ <∞. From (.) and (.) we reach to contradic-
tion to the assumption, and, consequently, we deduce that f ′(,λ) – hf (,λ) �= , Reλ �= ,
–∞ < λ < ∞. Notice that f (x,λ) = f (x, –λ). �

Lemma . For all Reλ �=  the following equality holds:

iλϕ(x,λ)
f ′(,λ) – hf (,λ)

= f (x, –λ) – S(λ)f (x,λ), (.)

where ϕ(x,λ) is the solution of problem (.)-(.) and the function

S(λ) =
f ′(,–λ) – hf (,–λ)
f ′(,λ) – hf (,λ)

(.)

satisfies the properties

S(λ) = S(–λ),
∣∣S(λ)∣∣ = , –∞ < λ <∞. (.)

It should be noted here that the function S(λ) defined by (.) is called the scattering
function of problem (.)-(.) and the function f ′(,λ)–hf (,λ) is called the denominator
of S(λ).

Proof As mentioned before (.) for all Reλ �= , f (x,λ) and f (x, –λ) is a fundamental
system of solutions of (.)-(.), so that any linear combination of them is again a solution
of (.)-(.):

ϕ(x,λ) = A(λ)f (x,λ) + B(λ)f (x, –λ), (.)

where A(λ), B(λ) are calculated from the initial conditions ϕ(,λ) = , ϕ′(,λ) = h in the
form

A(λ) =
f ′(,–λ) – hf (,–λ)

–iλ
, B(λ) =

f ′(,λ) – hf (,λ)
–iλ

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/97
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Substituting (.) into (.) we arrive at the required formula (.). Further, since
f (x,λ) = f (x, –λ), it follows from (.) that

S(λ) =
f ′(,–λ) – hf (,–λ)
f ′(,λ) – hf (,λ)

=
f ′(,λ) – hf (,λ)
f ′(,λ) – hf (,λ)

,

from which we have

∣∣S(λ)∣∣ = |f ′(,λ) – hf (,λ)|
|f ′(,λ) – hf (,λ)| = ,

and

S(λ) =
(
f ′(,–λ) – hf (,–λ)
f ′(,λ) – hf (,λ)

)
=

f ′(,λ) – hf (,λ)
f ′(,–λ) – hf (,–λ)

= S(–λ). �

2 The asymptotic formulas of eigenvalues and normalizing numbers
The eigenvalues μ = λ of problem (.)-(.) are the roots of the equation

f ′(,λ) – hf (,λ) = , Imλ > . (.)

In the following we prove that (.) has an infinite number of roots and find their asymp-
totic formula. From (.), (.), (.), and (.) we have

f ′(,λ) – hf (,λ) = b(λ) = f (,λ)ϕ′(,λ) – f ′(,λ)ϕ(,λ). (.)

Now, we calculate the asymptotic formula of f (,λ), f ′(,λ), ϕ(,λ) and ϕ′(,λ). Integrating
(.) by parts we have, for x≥ , Imλ > ,

f (x,λ) = eiλx –
K (x,x)
iλ

eiλx –
∫ ∞

x

eiλx

iλ
∂K (x,x)

∂t
dt, (.)

f ′(x,λ) = iλeiλx –K (x,x)eiλx +
∫ ∞

x

∂K (x,x)
∂x

eiλx dt. (.)

Similarly from (.) we have

ϕ(x,λ) = coshλx +A(x,x)
sinhλx

λ
–

λ

∫ x



∂A(x, t)
∂t

sinhλt dt, (.)

ϕ′(x,λ) = λ sinhλx +A(x,x) coshλx +
∫ x



∂A(x, t)
∂x

coshλt dt. (.)

The following group of inequalities follows from (.)-(.):

f (,λ) = eiλ +O
(
e– Imλ

λ

)
, (.)

f ′(,λ) = iλeiλ +O
(
e– Imλ

)
, (.)

ϕ(,λ) = coshλ +O
(
e|Reλ|

λ

)
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/97
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ϕ′(,λ) = λ sinhλ +O
(
e|Reλ|). (.)

Substituting (.)-(.) into (.), we obtain

f ′(,λ) – hf (,λ) = –iλeiλ[coshλ + i sinhλ] + O
(
e– Imλ+|Reλ|),

λ �= , Imλ > ; (.)

comparing (.) and (.) we see that f ′(,λ) – hf (,λ) and fo(,λ) = eiλ[coshλ+ i sinhλ]
have the same number of zeros inside the quadratic contour �n where {�n : |Reλ| ≤ π (n–

 ),  < Imλ ≤ π (n – 

 )}, but since fo(,λ) has exactly n zeros, namely λo
k = iπ (k – 

 ), k =
, , . . . ,n, f ′(,λ) – hf (,λ) has an infinite number of zeros, as n→ ∞, with limiting point
at infinity. Denote by λn the zeros of f ′(,λ) –hf (,λ) = , so that, by the Rouche theorem,
we have

λn = i
(
n +




)
+ εn. (.)

To make (.) more accurate, we must refine (.). With the aid of Lemma ., λn lies on
the imaginary axis, so that it is sufficient to know the asymptotic of f ′(,λ) – hf (,λ) for
small λ. Let λ = iτ , τ > , we find the asymptotic formula of f ′(, iτ ) –hf (, iτ ) for τ → ∞.
From (.), (.), (.), and (.), we have

f (, iτ ) = e–τ +K (, )
e–τ

τ
+ o

(
e–τ

τ

)
,

f ′(, iτ ) = –τe–τ –K (, )e–τ + o
(
e–τ

)
,

ϕ(, iτ ) = cos τ +A(, )
sin τ

τ
+ o

(

τ

)
,

ϕ′(, iτ ) = –τ sin τ +A(, ) cos τ + o(),

(.)

substituting (.) into f ′(, iτ ) – hf (, iτ ) = , and putting λn = iτn we have

cos τn – sin τn +
A(, ) +K (, )

τn
(cos τn + sin τn) + o

(
e–τn

τn

)
= , (.)

and from this and by virtue of the inequality | cos τn| ≥ δ >  ∀n, we have

 – tan τn +
α

τn
+

β

τn
tan+o

(

τn

)
= ,

where α = A(, ) +K (, ),β = A(, ) –K (, ). (.)

From (.), it is easy to see that

τn =
(
n +




)
+ εn,

tan τn =  + εn +O
(


n

)
,


τn

=

nπ

+O
(

n

)
.

(.)

http://www.boundaryvalueproblems.com/content/2014/1/97
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The estimation of εn follows from (.) and (.) in the form

εn = – +
β – α

nπ
+ o

(

n

)
. (.)

Therefore

τn = π

(
n +




)
–  +

co
nπ

+ o
(

n

)
, co =


π

∫ 


q(t)dt. (.)

Finally

λn = i
[
π

(
n +




)
–  +

co
nπ

+ o
(

n

)]
, co =


π

∫ 


q(t)dt. (.)

Definition (The normalizing numbers) The numbers

an
def=

∫ ∞


ρ(x)

∣∣f (x,λn)
∣∣ dx (.)

are called the normalizing numbers of problem (.)-(.) (notice that f (x,λn) are the
eigenfunctions of problem (.)-(.) corresponding to the eigenvalues λn). From (.)
and the reality of f (x,λn), we have

an
def=

∫ ∞


ρ(x)

∣∣f (x,λn)
∣∣ dx = –

[ḟ ′(,λn) – hḟ (,λn)]f (,λn)
λn

. (.)

To evaluate the asymptotic formula of an we evaluate the asymptotic formula of the right
hand side of (.). From (.), (.) we have

[
ḟ ′(,λn) – hḟ (,λn)

]
f (,λn) =

[
ḃ(λ) + ( + h)ȧ(λ)

]
a(λ), (.)

where dots and dashes denote the differentiation with respect to λ and x, respectively, a(λ)
and b(λ) are given by (.)

a(λ) = f (,λ)θ ′(,λ) – f ′(,λ)θ (,λ),

b(λ) = f ′(,λ)ϕ(,λ) – f (,λ)ϕ′(,λ),

from which it follows that

ȧ(λ) = ḟ (,λ)θ ′(,λ) + f (,λ)θ̇ ′(,λ) – ḟ ′(,λ)θ (,λ) – f ′(,λ)θ̇ (,λ),

ḃ(λ) = ḟ ′(,λ)ϕ(,λ) + f ′(,λ)ϕ̇(,λ) – ḟ (,λ)ϕ′(,λ) – f (,λ)ϕ̇′(,λ).
(.)

http://www.boundaryvalueproblems.com/content/2014/1/97
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From (.), using integration by parts and then putting x = , λ = iτ , we obtain

ϕ(, iτ ) = cos τ +A(, )
sin τ

τ
+At(, )

cos τ

τ  + o
(


τ 

)
,

ϕ′(, iτ ) = –τ sin τ +A(, ) cos τ +At(, )
sin τ

τ
+ o

(

τ

)
,

ϕ̇(, iτ ) = – sin τ +A(, )
cos τ

τ
–

[
A(, ) +At(, )

] sin τ

τ  + o
(


τ 

)
,

ϕ̇′(, iτ ) = –τ cos τ –
[
 +A(, )

]
sin τ –At(, )

cos τ

τ
+At(, )

sin τ

τ  + o
(


τ 

)
.

(.)

From (.), carrying out a similar calculation with respect to θ , we obtain

lθ (, iτ ) =
sin τ

τ
– B(, )

cos τ

τ  + o
(


τ 

)
,

θ ′(, iτ ) = cos τ + B(, )
sin τ

τ
+ o

(

τ

)
,

θ̇ (, iτ ) =
cos τ

τ
–

[
 + B(, )

] sin τ

τ  + B(, )
cos τ

τ  + o
(


τ 

)
,

θ̇ ′(, iτ ) = – sin τ + B(, )
cos τ

τ
– B(, )

sin τ

τ  + o
(


τ 

)
.

(.)

With the aid of (.), similar expressions can be calculated with respect to f (, iτ ):

f (, iτ ) = e–τ +K (, )
e–τ

τ
+ o

(
e–τ

τ

)
,

f ′(, iτ ) = –τe–τ –K (, )e–τ + o
(
e–τ

)
,

ḟ (, iτ ) = –e–τ –K (, )
e–τ

τ
–K (, )

e–τ

τ  + o
(
e–τ

τ 

)
,

ḟ ′(, iτ ) = τe–τ – e–τ +K (, )e–τ + o
(
e–τ

)
.

(.)

From (.) and (.), the normalizing numbers an can be written in the form

an = –
[ḃ(λ) + ( + h)ȧ(λ)]a(λ)

λn
. (.)

We substitute (.), (.), (.), and (.) into (.), λn = iτn, and we find

an = –e–τn
{
cos τn sin τn + cos τn +

α + β

τn
cos τn sin τn +

β

τn
sin τn

+
α

τn
cos τn +

α

τn
cos τn sin τn +

β

τn
cos τn + o

(

τn

)}
, (.)
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where α =  + K (, ) + A(, ), β =  + A(, ), α = B(, ) + K (, ), and β = K (, ) –
B(, ). Further, from (.) and (.) we have


τn

=

nπ

[
 + o

(

τn

)]
,

cos τn =


–

β – α

nπ
+ o

(

τn

)
,

sin τn =


–

β – α

nπ
+ o

(

τn

)
,

cos τn sin τn =



[
 + o

(

τn

)]
.

(.)

By substituting from (.) into (.) we obtain the required asymptotic formula for an:

an = –e–τn
{
 +

c
n
+ o

(

n

)}
, (.)

where

c =
h + 
π

+

π

∫ 


q(t)dt +


π

∫ ∞


q(t)dt.
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