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Abstract
This paper deals with the large time behavior of non-negative solutions for the
porous medium equation with a nonlinear gradient source ut =�um + |∇ul|q,
(x, t) ∈ � × (0,∞), where l ≥m > 1 and 1≤ q < 2. When lq =m, we prove that the
global solution converges to the separate variable solution t–

1
m–1 f (x). While

m < lq ≤ m + 1, we note that the global solution converges to the separate variable
solution t–

1
m–1 f0(x). Moreover, when lq >m + 1, we show that the global solution also

converges to the separate variable solution t–
1

m–1 f0(x) for the small initial data u0(x),
and we find that the solution u(x, t) blows up in finite time for the large initial data
u0(x).
MSC: 35K55; 35K65; 35B40

Keywords: large time behavior; separate variable solution; porous medium
equation; gradient source; blow-up

1 Introduction
In this paper, we investigate the large time behavior of non-negative solutions for the fol-
lowing initial-boundary value problem:

⎧⎪⎨
⎪⎩
ut =�um + |∇ul|q, (x, t) ∈ � × (,∞),
u(x, t) = , (x, t) ∈ ∂� × (,∞),
u(x, ) = u(x), x ∈ �,

(.)

where l ≥ m > ,  ≤ q < , � is a bounded domain of RN (N ≥ ) with smooth boundary
∂�, and the initial function is

u(x) ∈ C(�) =
{
z ∈ C(�) : z =  on ∂�

}
, u(x)≥ ,u(x) �≡ . (.)

Equation (.) arises in the study of the growth of surfaces and it has been considered as a
mathematical model for a variety of physical problems (see [, ]). For instance, in ballistic
deposition processes, the evolution of the profile of a growing interface is described by the
diffusive Hamilton-Jacobi type equation (.) withm = l =  (see []).
One of the particular feature of problem (.) is that the equation is a slow diffusion

equationwith nonlinear source term depending on the gradient of a power of the solution.
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In general, there is no classical solution. Therefore, it turns out that a suitable framework
for the well-posedness of the initial-boundary value problem (.) is the theory of viscosity
solutions (see [–]), so we first define the notion of solutions.

Definition . Anon-negative function u(x, t) ∈ C(�× (,∞)) is called a solution of (.),
if u(x, t) is a viscosity solution to (.) in � × (,∞) and satisfies

u(x, t) = , (x, t) ∈ ∂� × (,∞) and u(x, ) = u(x) ∈ C(�), x ∈ �. (.)

Under some assumptions, the global (local) existence in time, uniqueness and regular-
ity of solutions to reaction-diffusion equations with gradient terms have been extensively
investigated by many authors (see [–] and the references therein). In particular, in [],
Andreucci proved the existence of solutions for the following degenerate parabolic equa-
tion with initial data measures:

{
ut =�um + |∇ul|q, (x, t) ∈R

N × (,∞),
u(x, ) = μ, x ∈R

N ,
(.)

wherem ≥ , ql ≥m,  < q < , and N ≥ .
The main purpose of this paper is to further study the large time behavior of non-

negative solutions u(x, t) to (.) with homogeneous Dirichlet boundary conditions. In
recent years, many authors have investigated the asymptotic behavior of solutions to the
viscous Hamilton-Jacobi equations (see [, , , , , –] and the references therein).
For example, for the special casem = l = , Gilding [] studied the large time behavior of
solutions to the following Cauchy problem:

{
ut =�u + |∇u|q, (x, t) ∈R

N × (,∞),
u(x, ) = u(x), x ∈ R

N ,
(.)

and he gave the temporal decay estimates.
In [], Stinner investigated the asymptotic behavior of solutions for the following one

space dimensional viscous Hamilton-Jacobi equation:

⎧⎪⎨
⎪⎩
ut = (|ux|p–ux)x + |ux|q, (x, t) ∈ (–R,R)× (,∞),
u(±R, t) = , t ∈ (,∞),
u(x, ) = u(x), x ∈ (–R,R),

(.)

where R > , p > , and  < q < p – , and he proved that these solutions converge to the
steady states by Lyapunov functional.
In higher dimensional case, Barles et al. [] studied the large time behavior of solutions

for the following initial-boundary value problem:

⎧⎪⎨
⎪⎩
ut = div(|∇u|p–∇u) + |∇u|q, (x, t) ∈ B(, )× (,∞),
u(x, t) = , (x, t) ∈ ∂B(, )× (,∞),
u(x, ) = u(x), x ∈ B(, ),

(.)

where p ≥ ,  < q < p – , and they showed that the non-negative radially symmetric
solutions converge to the stationary solution.
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Recently, in [], Laurencot et al. extended the case  < q < p –  of the problem (.)
to the case q ≥ p – , and derived that these solutions converge to two different separate
variables solutions according to the cases q = p –  and q > p –  in the general bounded
domain � ⊂R

N , respectively.
Motivated by the above work, by using the modified comparison argument, the self-

similar transformation method, and the half-relaxed limits technique used in [, , ],
we investigate the asymptotic behavior of non-negative solutions to (.). Ourmain results
in this paper are stated as follows.

Theorem . Let l ≥ m > ,  ≤ q < , and lq =m. Assume that u(x) ∈ W ,∞(�) satisfies
(.). Then there exists a unique solution u(x, t) to (.) in the sense of Definition . such
that

lim
t→∞

∥∥t 
m– u(t) – f

∥∥∞ = , (.)

where f (x) ∈ C(�) is the unique positive solution to

–�f m –
∣∣∇f l

∣∣q – f
m – 

=  in �, f >  in �, f =  on ∂�. (.)

Moreover, we have |∇u(t)| ∈ L∞(�) for all t ≥  and

�[u] := sup
t≥

{∥∥∇u(t)
∥∥∞

}
< ∞. (.)

Theorem . Let l ≥ m > ,  ≤ q < , and m < lq ≤ m + . Assume that u(x) ∈ W ,∞(�)
satisfies (.). Then there exists a unique solution u(x, t) to (.) in the sense of Definition .
such that

lim
t→∞

∥∥t 
m– u(t) – f

∥∥∞ = , (.)

where f(x) ∈ C(�) is the unique positive solution to

–�f m –
f

m – 
=  in �, f >  in �, f =  on ∂�. (.)

Theorem . Let l ≥m > ,  ≤ q < , and lq >m + . Assume that u(x) ∈W ,∞(�) satis-
fies (.) and suppose further that there exists G ∈W ,∞(�) satisfying (.) such that

u(x)≤ G(x)
�[G]

, x ∈ �, (.)

where �[G] is defined in (.). Then there exists a unique solution u(x, t) to (.) in the
sense of Definition . such that

lim
t→∞

∥∥t 
m– u(t) – f

∥∥∞ = , (.)

where f(x) ∈ C(�) is defined in (.).
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Theorem . Let l ≥ m > ,  ≤ q < , and lq >m + . Assume that there exists a positive
constant K depending only on m, l, q, s, and ε such that

∫
�
us(x)φε(x)dx ≥ K, where

s ∈ (,  ), ε ∈ (, ), and φε(x) = Aεe–ε|x| with Aε = ∫
� e–ε|x| dx . Then the solution u(x, t) of

the problem (.) blows up in finite time in the sense of weak solution.Moreover, the upper
bound of blow-up time is given as follows:

T ≤ 
ql – 

(
ql

ql + s – 

) q(m–)
ql–m (

mε
) –ql
ql–m . (.)

Remark . Compared to the results in [], we extend the results of p-Laplacian equation
to the porous medium equation (.) with a nonlinear gradient source.

Remark . In Theorem ., we only give an upper estimate of the blow-up time. But the
lower estimate of the blow-up time is an open problem.

This paper is organized as follows. In Section , we establish the comparison lemmas
to prove the uniqueness of the positive solution to (.) and the identification of the half-
relaxed limits. In Section , using the comparison principle, we construct the global so-
lutions to obtain the upper bound and Hölder estimate of solutions to (.), and we prove
Theorems . and . by the half-relaxed limits method. Moreover, we give the large time
behavior of solutions to (.) with the small initial data u(x) for lq >m + , and we prove
Theorem . in Section . Finally, we obtain the blow-up case, and we prove Theorem .
in Section .

2 Comparison lemmas
In this section, we establish the following comparison lemma between positive supersolu-
tions and non-negative subsolutions to the elliptic equation in (.): which is an important
tool for the uniqueness of the positive solution to (.) and the identification of the half-
relaxed limits later.

Lemma . Let l ≥ m > ,  ≤ q < , and lq = m. Assume that w ∈ USC(�) and W ∈
LSC(�) are respectively a bounded upper semicontinuous (usc) viscosity subsolution and a
bounded lower semicontinuous (lsc) viscosity supersolution to

–�ζm –
∣∣∇ζ l∣∣q – ζ

m – 
=  in �, (.)

such that

w(x) =W (x) =  for x ∈ ∂�, (.)

and

W (x) >  for x ∈ �. (.)

Then

w(x)≤W (x) for x ∈ �. (.)

http://www.boundaryvalueproblems.com/content/2014/1/98
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Proof The proof is based on the idea as in [, ], but with different auxiliary functions.
For i ≥ N large enough, it is easy to see that �i = {x ∈ � : d(x, ∂�) > 

i } is a non-empty
open subset of RN .
Since �i is compact and W is lower semicontinuous, the function W has a minimum

in �i. By the positivity (.) ofW in �i, we have

μi =min
x∈�i

{
W (x)

}
> . (.)

Similarly, the compactness of � \ �i, the upper semicontinuity and boundedness of w
imply that w has at least one point of maximum xi in � \ �i and we set

ηi = w(xi) = max
x∈�\�i

{
w(x)

}
. (.)

It follows from ∂� ⊂ � \ �i and w vanishes on ∂� by (.) that ηi ≥ .
Next, we claim that

lim
i→∞ηi = . (.)

Indeed, owing to the compactness of � and the definition of �i, there exist y ∈ ∂� and
a subsequence of {xi}i≥N (not relabeled) such that xi → y as i → ∞. Since w(y) = , we
deduce from the upper semicontinuity of w that

lim
ε→

sup
{
w(x) : x ∈ B(y, ε)∩ �

} ≤ .

Given ε >  small enough, there exists iε large enough such that

xi ∈ B(y, ε)∩ � for i≥ iε .

Therefore, we have

 ≤ ηi = w(xi) ≤ sup
{
w(x) : x ∈ B(y, ε)∩ �

}
, i≥ iε .

Thus

 ≤ lim
i→∞ supηi ≤ sup

{
w(x) : x ∈ B(y, ε)∩ �

}
.

Letting ε → , we conclude that zero is a cluster point of {ηi}i≥N as i → ∞. The claim
(.) follows from the monotonicity of {ηi}i≥N .
Now, fix s ∈ (,∞). For δ >  and i≥N, we define

zi(t,x) = (t + s)–


m–w(x) – s–


m– ηi, (t,x) ∈ [,∞)× �

and

Zδ(t,x) = (t + δ)–


m–W (x), (t,x) ∈ [,∞)× �.

http://www.boundaryvalueproblems.com/content/2014/1/98
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It follows from the assumptions on w and W that zi and Zδ are, respectively, a bounded
usc viscosity subsolution and a bounded lsc viscosity supersolution to

∂tζ –�ζm –
∣∣∇ζ l∣∣q =  in (,∞)× �,

and satisfy

Zδ(t,x) =  ≥ –s–


m– ηi = zi(t,x), (t,x) ∈ (,∞)× ∂�.

Moreover, if

 < δ <
[

μi

 + ‖w‖∞

]m–

s, (.)

then it follows from (.) and (.) that, for x ∈ �i,

Zδ(,x) = δ–


m–W (x)≥ δ–


m– μi ≥ s–


m– ‖w‖∞ ≥ zi(,x).

For x ∈ � \ �i, we deduce from (.) that

Zδ(,x)≥  ≥ s–


m–
(
w(x) – ηi

)
= zi(,x).

By the comparison principle [], we have

zi(t,x)≤ Zδ(t,x), (t,x) ∈ [,∞)× �, (.)

for i≥N and δ >  satisfying (.).
According to (.), the parameter δ can be taken to be arbitrarily small in (.). There-

fore, we deduce that

(t + s)–


m–w(x) – s–


m– ηi ≤ t–


m–W (x), (t,x) ∈ (,∞)× �,

for i≥N.
Passing to the limit as i → ∞, it follows from (.) that

(t + s)–


m–w(x)≤ t–


m–W (x), (t,x) ∈ (,∞)× �.

Finally, let s →  and take t = ; then we obtain

w(x)≤W (x), (t,x) ∈ (,∞)× �.

The proof of Lemma . is complete. �

A straightforward consequence of Lemma . is the uniqueness of the solution to (.).

Corollary . There is at most one positive viscosity solution to (.).

http://www.boundaryvalueproblems.com/content/2014/1/98
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By the similar argument, we have the following result to (.).

Lemma . Let w ∈ USC(�) and W ∈ LSC(�) be respectively a bounded upper semi-
continuous (usc) viscosity subsolution and a bounded lower semicontinuous (lsc) viscosity
supersolution to

–�ζm –
ζ

m – 
=  in �, (.)

satisfying (.) and (.). Then

w(x)≤W (x) for x ∈ �. (.)

Proof The proof is similar as in Lemma ., so we omit it here. �

3 Proofs of Theorems 1.1 and 1.2
In this section, we obtain the well-posedness and large time behavior of solutions to (.)
for lq ∈ [m,m + ], and we prove Theorems .-.. To do this, we first obtain the well-
posedness to (.) by the following proposition.

Proposition . Assume that l ≥ m > ,  ≤ q < , lq ∈ [m,m + ], and u(x) ∈ C(�) sat-
isfies (.). Then there exists a unique solution u(x, t) to (.) in the sense of Definition ..

Proof The idea of the proof is same as in [, ], so we omit here. �

Next, in order to prove the large time behavior of the solution to (.), we shall need
several steps: Step , we will find that the temporal decay rate of ‖u(t)‖∞ is indeed t– 

m– .
Step , we prove the boundary estimates for the large time which guarantee that no loss
of boundary condition occurs throughout the time evolution. Step , the half-relaxed lim-
its technique is applied to show the expected convergence after introducing self-similar
variables. The approach is developed by Laurençot and Stinner in [, ]. To do this, we
need the following lemmas.

Lemma . (Upper bound) Assume that l ≥ m > ,  ≤ q < , lq =m, and the initial data
u(x) ∈ W ,∞(�) satisfies (.). Then there exists C >  depending only on m, l, q, �, and
‖u‖∞ such that

u(t,x)≤ C( + t)–


m– , (t,x) ∈ (,∞)× �. (.)

Proof Assume that x /∈ � and R >  such that � ⊂ B(x,R). For (t,x) ∈ (,∞)× �, we
define the function

S(t,x) = A( + t)–


m– ϕ(r), ϕ(r) =
[

m
m + 

(
e
R(m+)

m – e
r(m+)

m
)] 

m
with r = |x – x|,

where R > R and A >  satisfies the following condition:

A ≥max

{(
m

m – 
e
R(m+)
m

) 
m–

,
‖u‖∞
ϕ(R)

}
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/98
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Since x /∈ �, the function S(t,x) is C∞-smooth in [,∞) × �. Moreover, according the
condition l ≥ m > ,  ≤ q < , and lq = m, we have l = m >  and q = . Therefore, for
(t,x) ∈ (,∞)× � and r = |x – x| < R < R, it follows from (.) that

( + t)
m

m–
{
∂tS –Sm –

∣∣∇Sl
∣∣q}(t,x)

= –
A

m – 
ϕ(r) –Am



[
N – 
r

(
ϕm)

r +
(
ϕm)

rr

]
–Am


∣∣(ϕl)

r

∣∣q
= –

A

m – 
ϕ(r) +Am



[
N – 
r

e
r(m+)

m +
m + 
m

e
r(m+)

m

]
–Am

 e
r(m+)

m

≥ A

[
Am–


(
N – 
r

+

m

)
e
r(m+)

m –


m – 
e
R(m+)
m

]

≥ A

(

m
Am–
 –


m – 

e
R(m+)
m

)

≥ . (.)

Hence, the condition (.) guarantees that S(t,x) is a supersolution to (.) in (,∞)×�.
In addition, since r = |x – x| < R < R for x ∈ �, for (t,x) ∈ (,∞)× ∂�, we deduce from
(.) that

u(t,x) =  ≤ A( + t)–


m– ϕ(R) ≤ S(t,x),

and

u(x)≤
∥∥u(x)∥∥∞ ≤ Aϕ(R) ≤ S(,x), x ∈ �.

By the comparison principle, we have

u(t,x)≤ S(t,x), (t,x) ∈ [,∞)× �.

The proof of Lemma . is complete. �

Lemma . (Upper bound) Assume that l ≥ m > ,  ≤ q < , lq ∈ (m,m + ], and the
initial data u(x) ∈ W ,∞(�) satisfies (.). Then there exists C >  depending only on m,
l, q, �, and ‖u‖∞ such that

u(t,x)≤ C( + t)–


m– , (t,x) ∈ (,∞)× �. (.)

Proof Assume that x /∈ � and R >  such that � ⊂ B(x,R). For (t,x) ∈ (,∞)× �, we
define the function

S(t,x) = A( + δt)–


m– σ (r), σ (r) =
[

m
m + 

(
R

m+
m – r

m+
m

)] 
m

with r = |x – x|,

http://www.boundaryvalueproblems.com/content/2014/1/98
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where the positive constants A, R, and δ satisfy the following condition:

A =
[
mq–( +m(N – ))

lqR
(m+)(l–m)q+m(q+m–)

m

] 
lq–m

, R =
[
R

m+
m

 +
(m + )‖u‖m∞

mAm


] m
m+

> R

and δ =
(m – )( +m(N – ))Am–



mR
+m
m

.

(.)

Since x /∈ �, the function S(t,x) is C∞-smooth in [,∞) × �. Moreover, for (t,x) ∈
(,∞)× � and r = |x – x| < R < R, it follows from (.) and lq >m that

( + δt)
m

m–
{
∂tS –Sm –

∣∣∇Sl
∣∣q}(t,x)

= –
Aδ

m – 
σ (r) –Am



[
N – 
r

(
σm)

r +
(
σm)

rr

]
–Alq

 ( + δt)–
lq–m
m–

∣∣(σ l)
r

∣∣q
= –

Aδ

m – 
σ (r) +Am



[

m

+N – 
]
r–

m–
m –Alq

 ( + δt)–
lq–m
m–

∣∣((σm) l
m

)
r

∣∣q
= –

Aδ

m – 
σ (r) +Am



[

m

+N – 
]
r–

m–
m –Alq



(
l
m

)q

R
(m+)(l–m)q+mq

m

≥ Am


[(
N –  +


m

)
R–m–

m –Alq–m


(
l
m

)q

R
(m+)(l–m)q+mq

m –
δR

m+
m

(m – )Am–


]

≥ Am


[(



(
N –  +


m

)
R–m–

m –Alq–m


(
l
m

)q

R
(m+)(l–m)q+mq

m

)

+
(



(
N –  +


m

)
R–m–

m –
δR

m+
m

(m – )Am–


)]

≥ . (.)

Therefore, the condition (.) guarantees that S(t,x) is a supersolution to (.) in
(,∞)× �. In addition, since r = |x – x| < R < R for x ∈ �, for (t,x) ∈ (,∞) × ∂�,
we deduce from (.) that

u(t,x) =  ≤ A( + t)–


m– σ (R) ≤ S(t,x),

and

u(x)≤
∥∥u(x)∥∥∞ ≤ Aσ (R) ≤ S(,x), x ∈ �.

By the comparison principle, we have

u(t,x)≤ S(t,x), (t,x) ∈ [,∞)× �.

The proof of Lemma . is complete. �

Lemma . (Hölder estimate) Assume that l ≥ m > ,  ≤ q < , lq ∈ [m,m + ], and the
initial data u(x) ∈ W ,∞(�) satisfies (.). Then there exists L >  depending only on m,

http://www.boundaryvalueproblems.com/content/2014/1/98
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l, q, �, and ‖u‖W ,∞(�) such that

∣∣u(t,x)∣∣ = ∣∣u(t,x) – u(t,x)
∣∣ ≤ L

( + t) 
m–

|x – x| 
m ,

(t,x,x) ∈ [,∞)× � × ∂�. (.)

Proof Since the boundary ∂� of � is smooth, there exists R� >  such that for each x ∈
∂�, there exists y ∈R

N satisfying |x – y| = R� and B(y,R�)∩� = ∅. It follows from the
initial data condition u(x) ∈W ,∞(�) that u(x) is Lipschitz continuous, i.e., there exists
L >  such that

∣∣u(x) – u(y)
∣∣ ≤ L|x – y|, (x, y) ∈ � × �. (.)

Next, we define the open subset Uκ ,x of RN by

Uκ ,x =
{
x ∈ � : R� < |x – y| < R� + κ

}
,

where  < κ <  satisfies �κ = {x ∈ � : d(x, ∂�) > κ} �= ∅, and denote the function

Sκ ,x (t,x) = A( + t)–


m– ψ(r), ψ(r) =
(
 – e–

r
κ
) 
m with r = |x – y| – R�,

for (t,x) ∈ (,∞)×Uκ ,x and A > .
Moreover, we assume that

A ≥max

{
eL,

e 
m C

(e – ) 
m
,
(

e
m – 

) 
m–

}
(.)

and

 < κ <min

{
,

R�

(N – )
,
(

mq

lqAlq–m

) 
–q

}
, (.)

where C =max{C,C} > , C, and C are defined in Lemmas . and ., respectively.
Since y /∈ Uκ ,x , the function Sκ ,x (t,x) is C∞-smooth in [,∞) × Uκ ,x . For (t,x) ∈

(,∞) × Uκ ,x , we have r = |x – y| – R� ∈ (,κ). By a direct computation, we infer from
(.)-(.) that

( + t) m
m–

Am


{
∂tSκ ,x –�Smκ ,x –

∣∣∇Slκ ,x
∣∣q}(t,x)

= –


(m – )Am–


ψ(r) –
[
N – 
r + R�

(
ψm)

r +
(
ψm)

rr

]
–Alq–m

 ( + t)–
lq–m
m–

∣∣(ψ l)
r

∣∣q
= –


(m – )Am–



(
 – e–

r
κ
) 
m +


κ e

– r
κ –

N – 
(r + R�)κ

e–
r
κ

–Alq–m
 ( + t)–

lq–m
m–

∣∣((ψm) l
m
)
r

∣∣q
≥ –


(m – )Am–


+


κ e

– r
κ –

N – 
κR�

e–
r
κ –Alq–m


∣∣((ψm) l

m
)
r

∣∣q

http://www.boundaryvalueproblems.com/content/2014/1/98
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≥ 
κ e

– r
κ

[
 –

N – 
R�

κ –Alq–m


(
l
m

)q

κ–q –
e

(m – )Am–


]

≥ 
κ e

– r
κ

[(


–
N – 
R�

κ

)
+

(


–Alq–m



(
l
m

)q

κ–q
)
+

(


–

e
(m – )Am–



)]

≥ .

Therefore, Sκ ,x (t,x) is a supersolution to (.) in (,∞)×Uκ ,x . In addition, it follows from
(.)-(.) and the mean value theorem that

Sκ ,x (,x) = A
(
 – e–

|x–y|–R�
κ

) 
m ≥ A

(
 – e–

|x–y|–R�
κ

)
≥ A

|x – y| – R�

eκ
=
A

eκ
dist

(
x, ∂B(y,R�)

)
≥ A

eκ
dist(x, ∂�) ≥ L dist(x, ∂�) ≥ u(x), x ∈Uδ,x .

Moreover, for (t,x) ∈ (,∞) × ∂Uκ ,x , we have either x ∈ ∂� or r = |x – y| – R� = δ. If
x ∈ ∂�, then we have

Sκ ,x (t,x) = A( + t)–


m–
(
 – e–

r
κ
) 
m ≥  = u(x, t), (t,x) ∈ (,∞)× ∂�.

If r = |x – y| – R� = δ, by Lemmas .-. and (.), we have

Sκ ,x (t,x) = A( + t)–


m–
(
 – e–

) 
m ≥ C( + t)–


m– ≥ u(t,x).

By the comparison principle [] we have

u(t,x)≤ Sκ ,x (t,x), (t,x) ∈ [,∞)×Uκ ,x .

Consequently,

 ≤ u(t,x) – u(t,x) = u(t,x)≤ A( + t)–


m–
(
 – e–

|x–y|–R�
κ

) 
m ,

for (t,x) ∈ [,∞)×Uκ ,x .
Since |x – y| – R� = , we have

 ≤ ∣∣u(t,x) – u(t,x)
∣∣ ≤ A

κ

m ( + t) 

m–
|x – x| 

m , x ∈ Uκ ,x . (.)

Finally, we consider x ∈ � and x ∈ ∂�. If |x–x| ≥ κ
 , it follows from Lemmas .-. that

∣∣u(t,x) – u(t,x)
∣∣ = u(t,x) ≤  

m C
κ


m ( + t) 

m–
|x – x| 

m ,

where C =max{C,C} > , and C and C are defined in Lemmas . and ., respectively.
If |x – x| < κ

 , let y ∈ R
N satisfy |x – y| = R� and B(y,R�) ∩ � = ∅. Since x ∈ �, we

have

|x – y| > R� and |x – y| ≤ |x – x| + |x – y| < R� + κ ,

http://www.boundaryvalueproblems.com/content/2014/1/98
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which implies x ∈Uκ ,x . Therefore, we deduce from (.) that

∣∣u(t,x) – u(t,x)
∣∣ = u(t,x) ≤ A

κ

m ( + t) 

m–
|x – x| 

m .

Choosing L =max{ 

m C

κ

m

, A

κ

m

}, we have

∣∣u(t,x)∣∣ = ∣∣u(t,x) – u(t,x)
∣∣ ≤ L

( + t) 
m–

|x – x| 
m , (t,x,x) ∈ [,∞)× � × ∂�.

The proof of Lemma . is complete. �

We next proceed as in [] to deduce the Hölder continuity of u(x, t) from Lemma ..
Therefore, we obtain the following corollary.

Corollary . Assume that l ≥ m > ,  ≤ q < , lq ∈ [m,m + ], and the initial data
u(x) ∈ W ,∞(�) satisfies (.). Then there exists L >  depending only on m, l, q, �, and
‖u‖W ,∞(�) such that

∣∣u(t,x) – u(t, y)
∣∣ ≤ L

( + t) 
m–

|x – y| 
m , (t,x, y) ∈ [,∞)× � × �. (.)

Proof The proof is similar to the argument in [, ], so we omit here. �

Proofs of Theorems . and . The proofs are based on the ideas in [], but we give the
details of the argument for the reader’s convenience. Let U(x, t) be the solution to the
porous medium equation with homogeneous Dirichlet boundary conditions

⎧⎪⎨
⎪⎩

∂tU –�Um = , (t,x) ∈ (,∞)× �,
U(t,x) = , (t,x) ∈ (,∞)× ∂�,
U(,x) = u(x), x ∈ �.

(.)

According to the nonnegativity of |∇ul|q, it follows from the comparison principle [] that

 ≤U(t,x)≤ u(t,x), (t,x) ∈ (,∞)× �. (.)

We introduce the scaling variable s = ln t for t >  and denote the new unknown function
v and V by

u(t,x) = t–


m– v(ln t,x), (t,x) ∈ (,∞)× �

and

U(t,x) = t–


m–V (ln t,x), (t,x) ∈ (,∞)× �.

http://www.boundaryvalueproblems.com/content/2014/1/98
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Then v is a viscosity solution to the following problem:

⎧⎪⎨
⎪⎩

∂sv –�vm – e–
(lq–m)s
m– |∇vl|q – v

m– = , (s,x) ∈ (,∞)× �,
v(s,x) = , (s,x) ∈ (,∞)× ∂�,
v(,x) = u(,x), x ∈ �.

(.)

In addition, owing to Lemmas .-. and (.), we have

V (s,x) ≤ v(s,x)≤ C, (s,x) ∈ [,∞)× �, (.)

and

∣∣v(s,x) – v(s, y)
∣∣ ≤ L|x – y| 

m , (s,x, y) ∈ [,∞)× � × ∂�. (.)

Next, for ε ∈ (, ), we define

wε(s,x) = v
(
s
ε
,x

)
, (s,x) ∈ [,∞)× �,

and the half-relaxed limits

w∗(x) = lim
(σ ,y,ε)→(s,x,)

infwε(σ , y) and w∗(x) = lim
(σ ,y,ε)→(s,x,)

supwε(σ , y),

for (s,x) ∈ (,∞)× �.
By (.), it is easy to see that w∗(x) and w∗(x) are well-defined and do not depend on

s > . Moreover, it readily follows from (.) and (.) that

w∗(x) = w∗(x) = , x ∈ ∂�. (.)

By a direct computation, wε(s,x) is a solution to the following initial-boundary problem:

⎧⎪⎨
⎪⎩

ε∂swε –�wm
ε – e–

(lq–m)s
(m–)ε |∇wl

ε|q – wε

m– = , (s,x) ∈ (,∞)× �,
wε(s,x) = , (s,x) ∈ (,∞)× ∂�,
wε(,x) = u(,x), x ∈ �.

(.)

Next, we shall give proofs of Theorems . and .. To do this, we distinguish the two
cases lq =m and lq ∈ (m,m + ].
Case . lq =m. We use the stability of semicontinuous viscosity solutions [] to deduce

from (.) that

w∗(x) is a supersolution to (.) in � (.)

and

w∗(x) is a subsolution to (.) in �. (.)

http://www.boundaryvalueproblems.com/content/2014/1/98
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In addition, by [], V (s) → f in L∞(�) as s → ∞. Moreover, it follows from (.) and
the definition of w∗(x) and w∗(x) that

f(x)≤ w∗(x)≤ w∗(x)≤ C, x ∈ �. (.)

Since f >  in � by [], we deduce from (.) that w∗(x) and w∗(x) are positive and
bounded in � and vanish on ∂� by (.). Owing to (.) and (.), we infer from
Lemma . that

w∗(x)≤ w∗(x), x ∈ �.

By (.), we have

w∗(x) = w∗(x), x ∈ �.

Setting f (x) = w∗(x) = w∗(x), we deduce from (.), (.), (.), and (.) that f (x) ∈
C(�) is a positive viscosity solution to (.) and solves (.). Therefore, the existence of a
positive solution to (.) is proved. Moreover, by Corollary ., we obtain the uniqueness
of solution to (.).
Furthermore, it follows from the equality w∗(x) = w∗(x) that

∥∥wε() – f
∥∥∞ →  as ε → ,

i.e.,

lim
s→∞

∥∥v(s) – f
∥∥∞ = . (.)

Therefore, we infer from the scaling transformation that

lim
t→∞

∥∥t 
m– u(t) – f

∥∥∞ = . (.)

Finally, Corollary . gives the last statement of Theorem .. The proof of Theorem . is
complete.
Case . lq ∈ (m,m + ]. We use once more the stability of semicontinuous viscosity so-

lutions [] to deduce from (.) that

w∗(x) is a supersolution to (.) in � (.)

and

w∗(x) is a subsolution to (.) in �. (.)

In addition, by [], V (s) → f in L∞(�) as s → ∞. Moreover, it follows from (.) and
the definition of w∗(x) and w∗(x) that

f(x)≤ w∗(x)≤ w∗(x)≤ C, x ∈ �. (.)

http://www.boundaryvalueproblems.com/content/2014/1/98
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Since f >  in � by [] and is a solution to (.), we can apply Lemma . to conclude
that w∗(x)≤ f in �. Owing to (.), we have

w∗(x) = w∗(x) = f(x), x ∈ �.

Therefore, we deduce from (.) that

∥∥wε() – f
∥∥∞ →  as ε → ,

i.e.,

lim
s→∞

∥∥v(s) – f
∥∥∞ = . (.)

Thus, we infer from the scaling transformation that

lim
t→∞

∥∥t 
m– u(t) – f

∥∥∞ = . (.)

The proof of Theorem . is complete. �

4 Proof of Theorem 1.3
In this section, we shall consider the well-posedness and the large time behavior of solu-
tions to (.) with the small initial data u(x) for lq >m +  by the method used in []. To
do this, we need the following lemma.

Lemma . Let l ≥ m >  and  ≤ q < . Assume that G is the corresponding solution to
(.) with the initial data G ∈W ,∞(�) satisfying (.) for the case lq =m, and denote

F (t,x) =


�[G]
G

(
t

�[G]m– ,x
)
, (t,x) ∈ [,∞)× �, (.)

where the parameter �[G] is defined in (.). Then F (t,x) is a solution to (.) with the
initial data G/�[G] and lq = m such that |∇F l| ≤  for (t,x) ∈ [,∞) × �. Moreover,
F (t,x) is a supersolution to (.) for lq >m.

Proof According to the definition of �[G] in (.), it is easy to see that |∇F l| ≤  for
(t,x) ∈ [,∞)× �.
Next, let ϕ(t,x) ∈ C((,∞)×�) andF –ϕ has a local minimum at (t,x) ∈ (,∞)×�.

Since F is smooth with respect to the time variable and Hölder continuous with respect
to the space variable, we obtain

∣∣∇ϕl(t,x)
∣∣ ≤ . (.)

Moreover, introducing ψ(t,x) := �[G]ϕ(�[G]m–t,x) for (t,x) ∈ [,∞)× �, the function
G –ψ has a local minimum at (t�[G]–m,x) such that

∂tψ
(
t�[G]–m,x

)
–�ψm(

t�[G]–m,x
)
–

∣∣∇ψ l(t�[G]–m,x
)∣∣ml ≥ ,

http://www.boundaryvalueproblems.com/content/2014/1/98
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i.e.,

∂tϕ(t,x) –�ϕm(t,x) –
∣∣∇ϕl(t,x)

∣∣ml ≥ . (.)

Therefore, F (t,x) is a supersolution to (.) with lq =m. In a similar way, it can be shown
that F (t,x) is also a subsolution. Hence, F (t,x) is a solution to (.) with lq =m.
Furthermore, we deduce from (.), (.), and lq >m that

∂tϕ(t,x) –�ϕm(t,x) –
∣∣∇ϕl(t,x)

∣∣q
≥ ∣∣∇ϕl(t,x)

∣∣ml (
 –

∣∣∇ϕl(t,x)
∣∣q–m

l
) ≥ . (.)

The proof of Lemma . is complete. �

Proposition . Let l ≥ m > ,  ≤ q < , and lq > m + . Assume that the initial data
u(x) ∈ W ,∞(�) satisfies (.), moreover, there exists G ∈ W ,∞(�) satisfying (.) such
that

u(x)≤ G(x)
�[G]

, x ∈ �, (.)

where the parameter �[G] is defined in (.). Then there exists a unique solution u to (.)
in the sense of Definition . and it satisfies

u(t,x)≤F (t,x), (t,x) ∈ [,∞)× �, (.)

where F (t,x) is defined in (.).

Proof On the one hand, the solution U to the porous medium equation (.) is clearly a
subsolution to (.) in (,∞)× �.
On the other hand, it follows fromLemma . that the functionF (t,x) is a supersolution

to (.) in (,∞)× �. Therefore, F (t,x) is a supersolution to (.).
SinceU =F =  on (,∞)×∂� andU(,x) = u(x)≤F (,x) for x ∈ � by (.), we infer

from the comparison principle [] that

U(t,x)≤F (t,x), (t,x) ∈ [,∞)× �.

This property and the simultaneous vanishing of U and F on (,∞)× ∂� allow us to use
the classical Perron method to establish the existence of a solution u(x, t) to (.) in the
sense of Definition . which satisfies (.). The uniqueness next follows from the com-
parison principle []. The proof of Proposition . is complete. �

Proof of Theorem . We notice that Lemma . is also valid in that case. It readily follows
from Lemma . and Proposition . that

 ≤ u(t,x) = u(t,x) – u(t,x) ≤F (t,x)≤ L
( + t) 

m–
|x – x| 

m ,

(t,x,x) ∈ [,∞)× � × ∂�.

http://www.boundaryvalueproblems.com/content/2014/1/98
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The convergence proof is similar to that performed in the proof of Theorem . for lq ∈
(m,m + ]. The proof of Theorem . is complete. �

5 Proof of Theorem 1.4
In this section, when lq >m+ , we shall prove that the solution u(x, t) of (.) blows up in
finite time for the large initial data u(x) in the sense of weak solution by the method used
in [].
In order to obtain a blow-up condition corresponding to (.), we have to modify the

function e–ε|x| used in [–], and introduce a test function φε(x) as follows:

φε(x) = Aεe–ε|x| with Aε =
∫

�
e–ε|x| dx

.

Proof of Theorem . Suppose that u(x, t) is the solution of the problem (.) and T is the
blow-up time of the solution. For s ∈ (,  ), we denote

W (t) =

s

∫
�

usφε(x)dx, t ∈ (,T). (.)

By a direct calculation, we have

W ′(t) =
∫

�

us–φεut dx

=
∫

�

us–φε�um dx +
∫

�

us–φε

∣∣∇ul
∣∣q dx

≥ –(s – )
∫

�

us–φε∇um · ∇udx + ε

∫
�

us–φε∇um · x
|x| dx

+
∫

�

us–φε

∣∣∇ul
∣∣q dx

≥m( – s)
∫

�

um+s–φε|∇u| dx –mε

∫
�

um+s–φε|∇u|dx

+
∫

�

us–φε

∣∣∇ul
∣∣q dx. (.)

By Young’s inequality, we obtain

ε

∫
�

um+s–φε|∇u|dx ≤ 


∫
�

um+s–φε|∇u| dx + ε



∫
�

um+s–φε dx. (.)

Since  < s < 
 , it follows from (.), (.), and Poincaré’s inequality that

W ′(t)≥
∫

�

us–φε

∣∣∇ul
∣∣q dx – mε



∫
�

um+s–φε dx

=
(

ql
ql + s – 

)q ∫
�

φε

∣∣∇u
ql+s–

q
∣∣q dx – mε



∫
�

um+s–φε dx

≥
(

ql
ql + s – 

)q ∫
�

φεuql+s– dx –
mε



∫
�

um+s–φε dx. (.)
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According to ql >m + ,  < s < 
 ,

∫
�

φε(x)dx =  and Hölder’s inequality, we have

∫
�

um+s–φε dx =
∫

�

um+s–φ
m+s–
ql+s–
ε φ

ql–m
ql+s–
ε dx ≤

(∫
�

uql+s–φε dx
)m+s–

ql+s–
. (.)

Thus, by (.) and (.), we obtain

dW
dt

≥
(∫

�

uql+s–φε dx
)m+s–

ql+s–
[(

ql
ql + s – 

)q(∫
�

uql+s–φε dx
) ql–m

ql+s–
–
mε



]
. (.)

Owing to ql >m + ,  < s < 
 ,

∫
�

φε(x)dx = , and Jensen’s inequality, we have

(∫
�

uql+s–φε dx
) ql–m

ql+s– ≥
(∫

�

usφε dx
) ql–m

s
. (.)

Therefore, it follows from (.) and (.) that

dW
dt

≥ 


(
ql

ql + s – 

)q(∫
�

usφε dx
) ql+s–

s
=



(
ql

ql + s – 

)q

s
ql+s–

s W
ql+s–

s (t) (.)

as long as

W (t)≥ 
s

(
ql + s – 

ql

) qs
ql–m (

mε
) s
ql–m for all t ∈ [,T). (.)

Taking

K =
(
ql + s – 

ql

) qs
ql–m (

mε
) s
ql–m .

Since the initial data u(x) satisfies

∫
�

us(x)φε(x)dx≥ K,

we have

W ()≥ 
s
K =


s

(
ql + s – 

ql

) qs
ql–m (

mε
) s
ql–m . (.)

Therefore, w(t) increases and remains above 
s K for all t ∈ [,T].

By (.), integrating over (, t) yields

W (t)≥ (
W

–ql
s () –Kt

)– s
ql– with K =

ql – 


(
ql

ql + s – 

)q

s
ql–
s . (.)

Hence, it follows from (.) and (.) that the solution u(x, t) of (.) blows up in finite
time, T = 

K
W

–ql
s ().
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Moreover, by (.), we obtain the upper estimate on the blow-up time T of the solution
u(x, t) as follows:

T ≤ 
ql – 

(
ql

ql + s – 

) q(m–)
ql–m (

mε
) –ql
ql–m . (.)

The proof of Theorem . is complete. �
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