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Abstract
In this paper, a non-dimensional unsteady adiabatic flow of a plane or cylindrical
strong shock wave propagating in plasma is studied. The plasma is assumed to be an
ideal gas with infinite electrical conductivity permeated by a transverse magnetic
field. A self-similar solution of the problem is obtained in terms of density, velocity
and pressure in the presence of magnetic field. We use the method of Lie group
invariance to determine the class of self-similar solutions. The arbitrary constants,
occurring in the expressions of the generators of the local Lie group of
transformations, give rise to different cases of possible solutions with a power law,
exponential or logarithmic shock paths. A particular case of the collapse of an
imploding shock is worked out in detail. Numerical calculations have been performed
to obtain the similarity exponents and the profiles of flow variables. Our results are
found in good agreement with the known results. All computational work is
performed by using software package MATHEMATICA.
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1 Introduction
The spread of shock waves under the control of strongmagnetic field is a problem of great
interest to researchers in a variety of fields such as nuclear science, geophysics, plasma
physics and astrophysics. Hunter [], Guderley [], Greifinger and Cole [] studied the
problem of blast wave propagation in homogeneous and inhomogeneous media. Most
recently, van Dyke and Guttmann [], Sharma and Radha [, ], Madhumita and Sharma
[], Pandey et al. [], Sharma and Arora [], Arora et al. [, ] presented high accuracy
results and alternative approaches for the investigation of blast wave by using the self-
similar solutions method. In the same decade, a number of analytical solutions for the
blast wave propagations have been obtained by Sachdev [], Chisnell [] and Singh et
al. [, ]. Chisnell [] provided analytical solutions to the problem of converging shock
waves by using the singular points method. Singh et al. [, ] used the method of Lie
group of transformations to obtain an exact solution for unsteady equation of non-ideal
gas and magnetogasdynamics.
The magnetic fields have important roles in a variety of astrophysical situations. Com-

plex filamentary structures in molecular clouds, shapes and the shaping of planetary neb-
ulae, synchrotron radiation from supernova remnants, magnetized stellar winds, galactic
winds, gamma-ray bursts, dynamo effects in stars, galaxies and galaxy clusters as well as
other interesting problems all involve magnetic fields. When the internal disturbances ac-
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companied by an increase in pressure take place in the central region of a star, a shock
wave is formed. It travels from the central region to the periphery and emerges at the
surface of the star. In the present paper, we consider the problem of propagation of a one-
dimensional unsteady flow of an inviscid ideal gas permeated by a transverse magnetic
field with infinite electrical conductivity as it approaches the surface of a star. It is assumed
that mass density distribution in the medium follows a power law of the radial distance
from the point of explosion.
In flows with imploding shocks, conditions of very high temperature and pressure can

be produced near the center (axis) of implosion on account of the self-amplifying nature
of imploding shocks. As a result of high temperatures attained by gases in motion, the
effects of nonequilibrium thermodynamics on the dynamic motion of a converging shock
wave can be important.
In this paper, we use themethod of Lie group invariance under infinitesimal point trans-

formations [–] to study the problem of propagation of strong shock waves in a radiat-
ing and electrically conducting gas permeated by a transversemagnetic field. The arbitrary
constants, occurring in the expressions for the generators of the local Lie group of trans-
formations, give rise to different cases of possible solutions with a power law, exponential
or logarithmic shock paths. The Lie symmetry approach does not necessarily take into ac-
count the boundary and initial conditions unless the same are invariant under the change
of variable transformations.

2 Basic equations
The basic equations describing the one-dimensional unsteady non-planar motion in
which the direction of magnetic field is orthogonal to the trajectories of gas particles and
electrical conductivity is infinite can be written as follows (Whitham []):

ρt + ρux + uρx +mρu/x = ,

ut + uux +

ρ
(px + hx) = ,

pt + upx + γ p
(
ux +

mu
x

)
= ,

ht + uhx + hux + hmu/x = ,

()

where p is the gas pressure, ρ is the density, u is the velocity, γ is the constant specific heat
ratio, x is the single spatial co-ordinate, t is the time, h is the magnetic pressure defined
by h = μH/ with μ as magnetic permeability and H is the transverse magnetic field;
m =  and  correspond to planar and cylindrical symmetry, respectively, and the non-
numeric subscripts denote the partial differentiation with respect to the indicated variable
unless stated otherwise. The equation of state is taken to be of the form

p = ρRT . ()

Now, we consider the motion of a shock front, x = X(t), with the shock speed V = dX/dt
propagating into a medium specified by

u = , p = p(x), h = h(x), ρ = ρ(x), ()
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where T is the temperature, R is the gas constant, p(x), h(x) and ρ(x) are some func-
tions of x. The Rankine-Hugoniot jump conditions for the strong shocks are as follows
(Whitham []):

u =


γ + 
V , ρ =

γ + 
γ – 

ρ
(
X(t)

)
,

p =


γ + 
ρ

(
X(t)

)
V  –



(γ + )

(γ – )
Cρ

(
X(t)

)
V , ()

h =


(γ + )

(γ – )
Cρ

(
X(t)

)
V ,

where C is the shock Cowling number which is defined as C = h
ρ

V , and the suffix 
denotes the evaluation of the flow parameters just ahead of the shock.

3 Similarity analysis by invariance groups
Here, we suppose that there exists a solution of system () along a family of curves, called
similarity curves, for which system () of partial differential equations reduces to a system
of ordinary differential equations; this type of solution is called a similarity solution. In
order to obtain the similarity solutions of system (), we derive its symmetry group such
that the system is invariant under this group of transformations. The idea of the calculation
is to find a one-parameter infinitesimal group of transformations (see Sharma and Arora
[]):

x∗ = x + εχ (x, t,ρ,u,p,h), t∗ = t + εψ(x, t,ρ,u,p,h),

u∗ = u + εU(x, t,ρ,u,p,h), ρ∗ = ρ + εS(x, t,ρ,u,p,h), ()

p∗ = p + εP(x, t,ρ,u,p,h), h∗ = h + εE(x, t,ρ,u,p,h),

where the generators χ , ψ , U , S, P and E are to be determined in such a way that system
() of partial differential equations together with conditions () and () is invariant with
respect to transformations (); the entity ε is so small that its square and higher powers
may be neglected. The existence of such a group allows the number of independent vari-
ables in the problem to be reduced by one, and thereby allowing system () to be replaced
by a system of ordinary differential equations.
In continuation, we shall use the summation convention and introduce the notation

x = t, x = x, u = ρ , u = u, u = p, u = h and pij =
∂ui
∂xj

, where i = , , ,  and j = , .
The system of basic equations (), which is represented as

Fk
(
xj,ui,pij

)
= , k = , , , ,

is said to be constantly conformally invariant under the infinitesimal group () if there
exist constants αkr (k, r = , , , ) such that for all smooth surfaces, ui = ui(xj), we have

LFk = αkrFr , ()

where L is the Lie derivative in the direction of the extended vector field

L = ξ j ∂

∂xj
+ ηi ∂

∂ui
+ β i

j
∂

∂pij
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with

ξ  = ψ , ξ  = χ , η = S, η =U , η = P, η = E

and

β i
j =

∂ηi

∂xj
+

∂ηi

∂uk
pkj –

∂ξ l

∂xj
pil –

∂ξ l

∂un
pilp

n
j , ()

where l = , , j = , , i = , , , , n = , , ,  and k = , , , . Here, repeated indices imply
summation convention and β i

j is the generalization of the derivative transformation.
System () implies

ξ j ∂Fk
∂xj

+ ηi ∂Fk
∂ui

+ β i
j
∂Fk
∂pij

= αkrFr , k = , , , , r = , , , . ()

Substitution of β i
j from () into () yields a polynomial equations in the Pi

j . Setting the
coefficients of Pi

j and Pi
jPk

l to zero yields a system of first order, linear partial differential
equations in the generators ψ , χ , S,U , P and E. This system, which is called the system of
determining equations, is given as follows:

St + uSx + ρUx +
m
x

(
ρU + uS –

ρuχ

x

)
= α

γmpu
x

+ α
mρu
x

+ α
hmu
x

,

Sρ –ψt – uψx = α, Su – ρψx = α, Sp = α,

Sh = α, U – χt + uSρ – uχx + ρUρ = αu, ()

S + uSu + ρ(Uu – χx) = αρ + αu + αγ p + αh,

ρUp + uSp = αρ
– + αu, ρUh + uSh = αu + αρ

–;

Ut + uUx + ρ–(Px + Ex) = α
mρu
x

+ α
γ pmu

x
+ α

hmu
x

,

Uρ = α, Uu –ψt – uψx = α,

Uh – ρ–ψx = α, Up – ρ–ψx = α,

U – χt + u(Uu – χx) + ρ–(Pu + Eu) = αρ + αu + αγ p + αh, ()

uUρ + ρ–(Pρ + Eρ) = αu,

–Sρ– + uUp + ρ–(Pp – χx + Ep) = αρ
– + αu,

–Sρ– + uUh + ρ–(Ph – χx) = αρ
– + αu;

Pt + uPx + γ pUx +mγ x–
(
uP + pU – puχx–

)
= αmρux– + αmux– + αhmu/x,

Pρ = α, Pu – γ pψx = α, Pp –ψt – uψx = α, Ph = α,

uPρ + γ pUρ = αu, ()

γP + uPu + γ p(Uu – χx) = αρ + αu + αγ p + αh,

U – χt + γ pUp + uPp – uχx = αρ
– + αu,
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uPh + γ pUh = αρ
– + αu;

Et + uEx + hUx – hmux–χ + hmx–U + umx–E

= αmρux– + αmux– + αhmux–,

Eρ = α, Eh –ψt – uψx = α, Eu – hψx = α,

Ep = α, hUρ + uEρ = αu,

E + hUu – hχx + uEu = αρ + αu + αγ p + αh,

hUp + uEp = αρ
– + αu,

U – χt + hUh + uEh – uχx = αu + αρ
–,

ψ = ψ(x, t), χ = χ (x, t).

()

Solving the above system of determining equations, we obtain the group of transforma-
tions as follows:

S = (α + a)ρ,

U =

{
(α + a)u + k, m = ,
(α + a)u, m = ,

P = (α + α + a)p, E = (α + a)h, ()

χ =

{
(α + a)x + kt + c, m = ,
(α + a)x + c, m = ,

ψ = at + b,

where α, α, a, b, c, and k are the arbitrary constants.

4 Self-similar solutions
The arbitrary constants, which appear in the expressions for the infinitesimals of the in-
variant group of transformations, yield different cases of possible solutions as discussed
below.
Case I.When a �=  and α +a �= , the change of variables from (x, t) to (x̄, t̄), defined as

x̄ =

{
x ifm = ,
x + c(α + a)– ifm = ,

t̄ = t +
b
a
, ()

does not change system (). Thus, rewriting the set of equations () in terms of the new
variables x̄ and t̄, and then suppressing the bar sign, we obtain

S = (α + a)ρ,

U =

{
(α + a)u + k, m = ,
(α + a)u, m = ,

P = (α + a + a)p, E = (α + a)h, ()
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χ =

{
(α + a)x + kt, m = ,
(α + a)x, m = ,

ψ = at.

The similarity variable and the form of similarity solutions for ρ , u, p and h readily follow
from the invariant surface condition which yields

ψρt + χρx = S, ψut + χux =U , ψpt + χpx = P, ψht + χhx = E. ()

The set of equations () together with () yields on integration the following forms of
the flow variables:

ρ = t(+
α
α ) �

S (ξ ),

u =

{
tδ–

�

U (ξ ) ifm = ,
tδ–

�

U (ξ ) – k∗ ifm = ,

p = t(δ–+
α
a ) �

P (ξ ),

h = t(+
α
a ) �

E (ξ ),

()

where

k∗ =
k

(δ – )a
and δ =

α + a
a

. ()

The functions
�

S ,
�

U ,
�

P and
�

E depend only on the dimensionless form of the similarity
variable ξ , which is determined as follows:

ξ =

{
x

Atδ ifm = ,
x

Atδ +
k∗t(–δ)

A ifm = ,
()

where A is a dimensional constant whose dimensions are obtained by the similarity expo-
nent δ. Since the shock must be a similarity curve, it may be normalized to be at ξ = . The
shock path X and the shock velocity V are, then, given by

X =

{
Atδ ifm = ,
At[t(δ–) – k∗

A ] ifm = ,
()

V =

{
δX
t ifm = ,
Aδt(δ–) – k∗ ifm = .

()

At the shock, we have the following conditions on the functions
�

S ,
�

U ,
�

P and
�

E:

ρ|ξ= = t(+
α
a ) �

S (),

u|ξ= =
{
tδ–

�

U () ifm = ,
tδ–

�

U () – k∗ ifm = ,

p|ξ= = tδ–+
α
a

�

P (),

h|ξ= = t(+
α
a ) �

E ().

()
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Equations (), in view of the invariance of jump conditions, suggest the following forms
of ρ(x) and h(x):

ρ(x) = ρc(x/x)θ ,

h(x) = hc(x/x)μ,
()

and the following conditions on the functions
�

S ,
�

U ,
�

P and
�

E at the shock:

�

U () =
δA
γ + 

,

�

E () =


(γ + )

(γ – )
C

ρhcAμ

hxμ


,

�

P () =
ρcδ

A+θ

(γ + )xθ


–


(γ + )

(γ – )
C

ρcδ
A+θ

xθ


,

�

S () =
γ + 
γ – 

ρc
Aθ

xθ

,

()

where

μ =
α + a
α + a

, ()

θ =
α + a

δa
, δ =

α + a
a

, ()

where ρc and hc are some reference constants associated with the medium.
Using (), we rewrite equations () as follows:

ρ = ρ
(
X(t)

)
S∗(ξ ), u = VU∗(ξ ),

p = ρ
(
X(t)

)
V P∗(ξ ), h = ρ

(
X(t)

)
V E∗(ξ ).

()

Substituting () in system (), we obtain the following system of ordinary differential
equations in S∗, U∗, P∗ and E∗, which on suppressing the asterisk sign becomes:

(U – ξ )S′ + S
(

θ +U ′ +
mU
ξ

)
= ,

(δ – )δ–U + (U – ξ )U ′ + S–
(
P′ + E′) = ,

(δ – )δ–P + (U – ξ )P′ + θP + γP
(
U ′ +

mU
ξ

)
= ,

(δ – )δ–E +
(
θ + mUξ– + U ′)E + (U – ξ )E′ = .

()

The jump conditions for the strong shock are:

U() =


γ + 
, S() =

γ + 
γ – 

,

P() =


γ + 
–


(γ + )

(γ – )
C, E() =



(γ + )

(γ – )
C.

()
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Case II. When a =  and α �= , the change of variables from (x, t) to (x̄, t̄) is defined as

x̄ = x + c(α)–, t̄ = t,

the basic equations in system () remain unchanged. The form of similarity solutions for
the flow variables readily follows from (), and can be expressed in the following form on
suppressing the bar sign:

ρ = ρ
(
X(t)

)
S∗(ξ ), u = VU∗(ξ ),

p = ρ
(
X(t)

)
V P∗(ξ ), h = ρ

(
X(t)

)
V E∗(ξ ),

()

together with the initial density and initial magnetic pressure:

ρ(x) = ρc

(
x
x

)θ

, h(x) = hc
(

x
x

)μ

,

where ξ is the dimensionless similarity variable, X(t) is the shock location and V is the
shock velocity given by

ξ =
x
x

e–
δt
A , X = xe

δt
A , V =

δx
A

e
δt
A , ()

with A as a dimensional constant. Substituting () in the equations in system () and
using (), we obtain the following system of ordinary differential equations in S∗, U∗, P∗

and E∗, which on suppressing the asterisk sign becomes:

(U – ξ )S′ + S
(
θ +U ′ +mUξ–) = ,

U + (U – ξ )U ′ + S–
(
P′ + E′) = ,

( + θ )P + (U – ξ )P′ + γP
(
U ′ +mUξ–) = ,

(
 + θ + U ′ + mUξ–)E + (U – ξ )E′ = .

()

The jump conditions are

U() =

{


γ+ ifm = ,


γ+ +
k∗
V ifm = ,

S() =
γ + 
γ – 

,

P() =


γ + 
–


(γ + )

(γ – )
C, E() =



(γ + )

(γ – )
C.

()

Case III. When Q∗ and α + a = , the study reveals that this condition cannot be
obtained in an axially symmetric (m = ) flow as it does not permit for the existence of
a similarity solution in such a flow pattern. However, this condition can arise in a plane
(m = ) flow where the change of variables from (x, t) to (x̄, t̄), defined as

x̄ = x, t̄ = t +
b
a
,
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does not change the basic equations in system (). Accordingly, the similarity variable and
the similarity solutions for the flow variables readily follow from (), and can be expressed
in the following form on suppressing the bar sign:

ρ = ρ
(
X(t)

)
S∗(ξ ), u = VU∗(ξ ),

p = ρ
(
X(t)

)
V P∗(ξ ), h = ρ

(
X(t)

)
V E∗(ξ ),

()

ξ =
[x – xδ ln( tA )]

x
, X = xδ ln

(
t
A

)
, V =

δx
t
, ()

ρ(x) = ρce
θ ( x

x
), h(x) = hc

(
x
x

)μx

. ()

Substituting (), () and () in the equations in system (), we obtain the following
system of ordinary differential equations in S∗, U∗, P∗ and E∗, which on suppressing the
asterisk sign becomes:

(U – )S′ + θS + SU ′ = ,

(U – )U ′ –
U
δ
+ S–

(
P′ + E′) = ,

(U – )P′ +
(

θ –

δ

)
P + γPU ′ = ,

(U – )E′ +
(

θ –

δ
+ U ′

)
E = .

()

The jump conditions are:

U() =


γ + 
, S() =

γ + 
γ – 

, P() =


γ + 
–


(γ + )

(γ – )
C,

E() =


(γ + )

(γ – )
C.

()

Case IV.When a =  and α = , this situation is similar to the previous case in the sense
that it does not permit for the existence of a self-similar solutions in an axially symmetric
flow. However, the plane flow involving a shock wave moving at constant speed admits a
self-similar solution. Accordingly, the similarity variable and the similarity solutions for
the flow variables follow from (), and can be expressed in the following form:

ρ = ρ
(
X(t)

)
S∗(ξ ), u = VU∗(ξ ),

p = ρ
(
X(t)

)
V P∗(ξ ), h = ρ

(
X(t)

)
V E∗(ξ ),

ξ =
[x – xδt

A ]
x

, X = x
(
 +

δt
A

)
, V =

xδ
A

,

ρ(x) = ρce
θ
x–x
x , h(x) = hce

μ
x–x
x .

()

Substituting () in the equations in system () for m = , and using (), we obtain the
following system of ordinary differential equations in S∗, U∗, P∗ and E∗, which on sup-

http://www.boundaryvalueproblems.com/content/2014/1/142
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pressing the asterisk sign becomes:

(U – )S′ + θS + SU ′ = ,

(U – )U ′ + S–
(
P′ + E′) = ,

(U – )P′ + θP + γPU ′ = ,

(U – )E′ +
(
θ + U ′)E = .

()

The jump conditions are:

U() =


γ + 
, S() =

γ + 
γ – 

, P() =


γ + 
–


(γ + )

(γ – )
C,

E() =


(γ + )

(γ – )
C.

()

5 Imploding shocks
Here, we consider Case I of an imploding strong shock in the neighborhood of implosion.
For the problem of a converging shock collapsing at the axis, the origin of time t is taken
to be the instant at which the shock reaches the axis so that t ≤  in (). Therefore, the
definition of the similarity variable is slightly modified by setting

X = A(–t)δ , ξ = x/A(–t)δ , ()

so that the intervals of the variables are –∞ < t ≤ , X ≤ x < ∞ and  ≤ ξ < ∞. At the
instant of collapse (t = ), the gas velocity, pressure, density and the sound speed at any
finite axial distance x are bounded, but with t =  and finite x, ξ = ∞. In order for the
quantities u, p, ρ and h to be boundedwhen t =  and x is finite, wemust have the following
boundary conditions at ξ = ∞:

U(∞) = ,
P(∞)
S(∞)

= , E(∞) = . ()

In the matrix notation, system () can be written as

CW ′ = B, ()

where W = (U ,S,P,E)tr , and the matrix C and the column vector B can be identified by
observing system (). In system (), there is an unknown parameter δ, which cannot be
obtained from an energy balance or the dimensional considerations; it is computed only
by solving a non-linear eigenvalue problem for a system of ordinary differential equations.
The range of similarity variable is  ≤ ξ < ∞ for the implosion problem, and system ()
can be solved for the derivatives U ′, S′, P′ and E′ in the following form:

U ′ =
�

�
, S′ =

�

�
, P′ =

�

�
, E′ =

�

�
, ()

where �, defined as the determinant of the matrix C, is given by

� = (U – ξ )
[
(U – ξ ) –

(γP + E)
S

]
, ()
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and�k (k = , , , ) are the determinants obtained from� by replacing the kth columnby
the column vectorB. It can be observed thatU < ξ in the interval [,∞), while� is positive
at ξ =  and negative at ξ = ∞ indicating that there exists a ξ ∈ [,∞) at which� vanishes,
and consequently the solutions become singular. In order to get a non-singular solution
of () in the interval [,∞), we select the value of the exponent δ such that � vanishes
only at the points where the determinant � is zero too. It can be checked that at points
where � and � vanish, the determinants �, � and � also vanish simultaneously. To
find the exponent δ in such a manner, we introduce the variable Z as follows:

Z(ξ ) = (U – ξ ) –
γP(ξ ) + E(ξ )

S(ξ )
. ()

This, in view of (), implies

Z′ =
{
(U – ξ )(� –�) –

γ� + �

S
+

γP + E
S

�

}/
�. ()

Equations (), in view of (), become

dU
dZ

=
�

�
,

dS
dZ

=
�

�
,

dP
dZ

=
�

�
,

dE
dZ

=
�

�
,

()

where � = (U – ξ )(� –�) – γ�+�
S + γP+E

S �, with ξ =U + {Z + γP+E
S }/.

6 Numerical results and discussion
We integrate equations () from the shock Z = Z() to the singular point Z =  by choos-
ing a trial value of δ, and compute the values of U , S, P, E and � at Z = ; the value of δ

is corrected by successive approximations in such a way that for these values, the deter-
minant � vanishes at Z = . The values of the similarity exponent δ, obtained from the
numerical calculations for different values of C,m and θ are given in Table .
It may be noticed that the magnetic field effects enter through the parameter C. The

values of the flow variables before collapse and at the instant of collapse are depicted in
Figures  and .

Table 1 Similarity exponent δ for planar and cylindrically symmetric flows and the density
exponent θ with γ = 1.4

M θ C0 Computed δ Guderley
[2] δ

% Error

1 0.5 0.00 0.72855 0.74000 1.54%
1 0.5 0.02 0.72810 0.75000 2.92%
1 0.5 0.05 0.85610 0.81000 5.69%
1 1 0.00 0.64108 0.65000 1.37%
1 1 0.02 0.64105 0.65310 1.85%
1 1 0.05 0.64098 0.65510 2.16%
0 1 0.00 0.75675 0.71400 5.99%
0 1 0.02 0.75748 0.71100 6.54%
0 1 0.05 0.75869 0.75000 1.16%
0 0.5 0.00 0.85382 0.82500 3.49%
0 0.5 0.02 0.85428 0.80350 6.32%
0 0.5 0.05 0.85500 0.86000 0.58%
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(a)

(b)

(c)

(d)

Figure 1 Flow patterns: (a) density, (b) pressure, (c) temperature, (d) velocity form = 0 (planar flow)
and γ = 1.4 and C0 = 0.
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(a)

(b)

(c)

(d)

Figure 2 Flow patterns: (a) density, (b) pressure, (c) temperature, (d) velocity form = 1 (cylindrically
symmetric flow) and γ = 1.4 and C0 = 0.
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The typical flow profiles show that the density, pressure, temperature and velocity in-
crease behind the shock wave with the increase in the value of θ ; this is because a gas
particle passing through the shock is subjected to a shock compression. Indeed, this in-
crease in pressure and density behind the shock may also be attributed to the geometrical
convergence or area contraction of the shock wave. Figures  and  show that the growth
of the flow variables is slower in cylindrical symmetry as compared with that in planar
symmetry. Figures  and  also confirm the generation of higher pressure near the axis
of symmetry, i.e., near ξ = ∞. The difference between flow profiles in cylindrical waves
and those in planar waves is attributed to the fact that for planar waves, the flow distribu-
tion is relatively less influenced by the interaction between the gasdynamic phenomena as
compared to cylindrical waves.

7 Conclusions
In the present investigation a self-similar method is used to study the flow pattern be-
hind an exponential shock driven by a piston in ideal magnetogasdynamics. The general
behavior of density, velocity and pressure profiles remains unaffected due to presence of
magnetic field in ideal gas. However, there is a decrease in values of density, velocity and
pressure in the case of magnetogasdynamics as compared to non-magnetic case. It may
be noted that the effect of magnetic field on the flow pattern is more significant in the case
of isothermal flow as compared to that of adiabatic flow.
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