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Abstract
In this paper, we study the blow-up profiles for a coupled diffusion system with a
weighted source term involved in a product with local term. We prove that the
solutions have a global blow-up and the profile of the blow-up is precisely
determined in all compact subsets of the domain.
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1 Introduction
In this paper, we consider the following coupled diffusion system with a weighted nonlin-
ear localized sources:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut –�u = a(x)up(x, t)vα(, t), x ∈ B,  < t < T∗,
vt –�v = b(x)uβ(, t)vq(x, t), x ∈ B,  < t < T∗,
u(x, t) = v(x, t) = , x ∈ ∂B, t > ,
u(x, ) = u(x), v(x, ) = v(x), x ∈ B,

(.)

where B is an open ball of RN , N ≥  with radius R; α, β , p, q are nonnegative constants
and satisfy α + p >  and β + q > .
System (.) is usually used as amodel to describe heat propagation in a two-component

combustible mixture []. In this case u and v represent the temperatures of the interacting
components, thermal conductivity is supposed constant and equal for both substances,
a volume energy release given by some powers of u and v is assumed.
The problem with a nonlinear reaction in a dynamical system taking place only at a

single site, of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut –�u = up(, t)vα(, t), x ∈ �,  < t < T∗,
vt –�v = uβ (, t)vq(, t), x ∈ �,  < t < T∗,
u(x, t) = v(x, t) = , x ∈ ∂�, t > ,
u(x, ) = u(x), v(x, ) = v(x), x ∈ �,

(.)

was studied by Pao and Zheng [] and they obtained the blow-up rates and boundary layer
profiles of the solutions.
As for problem (.), it is well known that problem (.) has a classical, maximal in time

solution and that the comparison principle is true (using themethods of []). A number of
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papers have studied problem (.) from the point of view of blow-up and global existence
(see [, ]).
In [], Chen studied the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut –�u = upvα , x ∈ �,  < t < T∗,
vt –�v = uβvq, x ∈ �,  < t < T∗,
u(x, t) = v(x, t) = , x ∈ ∂�, t > ,
u(x, ) = u(x), v(x, ) = v(x), x ∈ �,

(.)

assuming p > , or q > , or αβ > (–p)(–q), he proved that the solution blows up in finite
time if the initial data u(x) and v(x) are large enough.
In the case of a(x) = b(x) = , Li and Wang [] discussed the blow-up properties for this

system, and they proved that:
(i) If m,q ≤ , this system possesses uniform blow-up profiles.
(ii) If m,q > , this system presents single point blow-up patterns.
Recently, Zhang and Yang [] studied the problem of (.), but they only obtained the es-

timation of the blow-up rate, which is not precisely determined. In [], the authors proved
there are initial data such that simultaneous and non-simultaneous blow-up occur for a
diffusion system with weighted localized sources, but they did not study the profile of
the blow-up solution. There are many known results concerning blow-up properties for
parabolic system equations, of which the reaction terms are of a nonlinear localized type.
For more details as regards a parabolic system with localized sources, see [–].
Our present work is partially motivated by [–]. The purpose of this paper is to de-

termine the blow-up rate of solutions for a nonlinear parabolic equation system with a
weighted localized source. That is, we prove that the solutions u and v blow up simultane-
ously and that the blow-up rate is uniform in all compact subsets of the domain.Moreover,
the blow-up profiles of the solutions are precisely determined.
In the following section, we will build the profile of the blow-up solution of (.).

2 Blow-up profile
Throughout this paper, we assume that the functions a(x), b(x), u(x) and v(x) satisfy the
following three conditions:
(A) a(x),b(x),u(x), v(x) ∈ C(B); a(x),b(x),u(x), v(x) >  in B and

a(x) = b(x) = u(x) = v(x) =  on ∂B.
(A) a(x), b(x), u(x) and v(x) are radially symmetric; a(r), b(r), u(r) and v(r) are

non-increasing for r ∈ (,R] (r = |x|).
(A) u(x) and v(x) satisfy �u(x) + a(x)up(x)vα(, t)≥  and

�v(x) + b(x)uβ
 (x)vq(, t) ≥  in B, respectively.

Theorem . Assume (A), (A), and (A) hold. Let (u, v) be the blow-up solution of (.),
non-decreasing in time, and let the following limits hold uniformly in all compact subsets
of B:

(i) If p < , q <  and αβ > ( – p)( – q), then

lim
t→T∗ u(x, t)

(
T∗ – t

)θ = a(x)/(–p)Cθ
θ (σ /θ )β/αβ–(–p)(–q),

lim
t→T∗ v(x, t)

(
T∗ – t

)σ = b(x)/(–p)Cσ
σ (θ/σ )α/αβ–(–p)(–q),
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where

θ = (α +  – q)/
(
αβ – ( – p)( – q)

)
, σ = (β +  – p)/

(
αβ – ( – p)( – q)

)
,

C =
(
a()b()

) β
(–p)(–q)–αβ

(
b()

) βθ
–q , C =

(
a()b()

) α
(–p)(–q)–αβ

(
a()

) αθ
–q .

(ii) If p <  and q = , then

lim
t→T∗ u(x, t)

(
T∗ – t

)/β = a(x)/(–p)
(
a()

)/p–
(

αb()
 + β – p

)/β

(/β)/β ,

lim
t→T∗ v(x, t)

(
T∗ – t

) (+p–β)b(x)
αβb() =

(
a()

) –a(x)
αb() (/β)

(+β–p)b(x)
αβb()

(
 + β – p
αb()

) (–p)b(x)
αβb()

.

(iii) If p =  and q = , then

lim
t→T∗ u(x, t)

(
T∗ – t

) a(x)
βa() =

(


αb()

) a(x)
βa()

,

lim
t→T∗ v(x, t)

(
T∗ – t

) b(x)
αb() =

(


βb()

) b(x)
αb()

.

(iv) If p =  and q < , then

lim
t→T∗ u(x, t)

(
T∗ – t

) (+α–q)b(x)
αβa() =

(
b()

) –a(x)
βa() (/α)

(+α–q)b(x)
αβa()

(
 + α – q
βa()

) (–q)a(x)
αβa()

,

lim
t→T∗ v(x, t)

(
T∗ – t

)/α = b(x)/(–q)
(
b()

)/q–
(

βa()
 + α – q

)/α

(/α)/β .

Throughout this section, we denote

g(t) = uβ (, t), G(t) =
∫ t


g(s)ds, g(t) = vα(, t), G(t) =

∫ t


g(s)ds.

Lemma . Assume that (u, v) is the positive solution of (.), which blow up in finite
time T∗. Let p≤  and q ≤ , then

lim
t→T∗ g(t) = lim

t→T∗ G(t) = ∞, lim
t→T∗ g(t) = lim

t→T∗ G(t) = ∞.

Proof First we claim that limt→T∗ G(t) = ∞. Since u(, t) = max� u(x, t), we have

ut(, t)≤ a()up(, t)g(t).

By integrating the above inequality over (, t), we get

u–p(, t) ≤ ( – p)a()
∫ t


g(s)ds + u–p (), if p < ,

lnu(, t) ≤ a()G(t) + lnu(), if p = .
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From limt→T∗ u(, t) = ∞, it follows that limt→T∗ G(t) = ∞. Applying similar argu-
ments as above to the equation of v in system (.), it is reasonable that limt→T∗ g(t) =
limt→T∗ G(t) = ∞. �

The following lemma will play a key role in proving Theorem ., which will give the
relationships among u, v, G(t), and G(t).

Lemma . Under the conditions of Theorem ., the following statements hold uniformly
in any compact subsets of B:

(i) p <  and q < , then

lim
t→T∗

u–p(x, t)
G(t)

= ( – p)a(x), lim
t→T∗

v–q(x, t)
G(t)

= ( – q)b(x).

(ii) p =  and q < , then

lim
t→T∗

lnu(x, t)
G(t)

= a(x), lim
t→T∗

v–q(x, t)
G(t)

= ( – q)b(x).

(iii) p =  and q = , then

lim
t→T∗

lnu(x, t)
G(t)

= a(x), lim
t→T∗

ln v(x, t)
G(t)

= b(x).

(iv) p <  and q = , then

lim
t→T∗

u–p(x, t)
G(t)

= ( – p)a(x), lim
t→T∗

ln v(x, t)
G(t)

= b(x).

Proof (i) When p <  and q < . A simple computation shows that

du–p

dt
= �u–p + p( – p)u––p|∇u| + ( – p)a(x)g(t), x ∈ �,  < t < T∗, (.)

dv–p

dt
= �v–q + q( – q)v––q|∇u| + ( – q)b(x)g(t), x ∈ �,  < t < T∗, (.)

and the initial and boundary conditions are given by

{
u–p(x, t) = v–q(x, t) = , x ∈ ∂B, t > ,
u–p(x, ) = u–p (x), v–q(x, ) = v–q (x), x ∈ B.

Denote λ, the first eigenvalue of –� in H
(B) and by ϕ(x) >  and φ(x) >  the corre-

sponding eigenfunction, normalized by
∫

B a(x)ϕ(x)dx =  and
∫

B b(x)φ(x)dx = .
Multiplying both sides of (.) and (.) by ϕ and φ, respectively, and integrating over

B× (, t), we have, for  < t < T∗

∫

B
u–pϕ dx –

∫

B
u–p ϕ dx = –λ

∫ t



∫

B
u–pϕ dxds

+
∫ t



∫

B
p( – p)u–p–|∇u|ϕ dxds + ( – p)G(t),
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∫

B
v–pφ dx –

∫

B
v–p φ dx = –λ

∫ t



∫

B
v–pφ dxds

+
∫ t



∫

B
p( – p)v–p–|∇v|φ dxds + ( – p)G(t).

We claim that limt→T∗ u–p(, t)/g(t) =  and limt→T∗ v–q(, t)/g(t) = . In fact, we have
ut(, t)≤ up(, t)vα(, t), for  < t < T∗ that is,

lim
t→T∗ sup

u–p(, t)
G(t)

≤ ( – p)a(). (.)

Since g(t) is non-decreasing, it follows that for all ε > ,

 ≤ G(t)
g(t)

≤
∫ T∗–ε

 g(s)ds
g(t)

+ ε,

and using limt→T∗ g(t) = ∞, we deduce that limt→T∗ G(t)/g(t) = , so that (.) implies
limt→T∗ u–p(, t)/g(t) = . By a process analogous to above, we arrive at limt→T∗ v–p(, t)/
g(t) = .
Analogous to the proof of Theorem . in Ref. [], it can be inferred that

lim
t→T∗

∫

�
u–pϕ dx
G(t)

= ( – p), lim
t→T∗

∫

�
v–qϕ dx
G(t)

= ( – q). (.)

From (.) and (.), we know (u–p, v–q) is a sub-solution of the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dw
dt = �w + ( – p)a(x)g(t), x ∈ B,  < t < T∗,
dz
dt = �z + ( – q)b(x)g(t), x ∈ B,  < t < T∗,
w(x, t) = z(x, t) = , x ∈ ∂B, t > ,
w(x, ) = u–p (x), z(x, ) = v–q (x), x ∈ B,

(.)

Equation (.) and Lemma . assert that

lim
t→T∗

w(x, t)
G(t)

= ( – p)a(x), lim
t→T∗

z(x, t)
G(t)

= ( – q)b(x), (.)

uniformly in all compact subsets of B.
The rest of the proof of case (i) is similar to Lemma .(i). Cases (ii), (iii), and (iv) can be

treated similarly. Now we prove Theorem . by using Lemma .. �

Proof of Theorem . (i) If p <  and q < . By Lemma .(i), we know that for choosing
positive constants δ <  < τ , there exists t < T∗ such that

(
δ( – p)a()G(t)

)β/(–p) ≤ G′
(t) ≤

(
τ ( – p)a()G(t)

)β/(–p), t ∈ [
t,T∗),

(
δ( – q)b()G(t)

)α/(–q) ≤ G′
(t)≤

(
τ ( – q)b()G(t)

)α/(–q), t ∈ [
t,T∗).

Therefore,

(δ( – p)a()G(t))β/(–p)

(τ ( – q)b()G(t))α/(–q)
≤ dG(t)

dG(t)
≤ (τ ( – p)a()G(t))β/(–p)

(δ( – q)b()G(t))α/(–q)
. (.)
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From the right-hand side of (.),

(
δ( – q)b()G(t)

)α/(–q)dG(t)≤
(
τ ( – p)a()G(t)

)β/(–p)dG(t), t ∈ [
t,T∗).

Integrating the above inequality over [, t) yields

( – q)(δ( – q)b())α/(–q)

 + α – q
G(+α–q)/(–q)

 (t)
∣
∣
∣
t

t

≤ ( – p)(τ ( – p)b())β/(–p)

 + β – p
G(+β–p)/(–p)

 (t)
∣
∣
∣
t

t

≤ ( – p)(τ ( – p)b())β/(–p)

 + β – p
G(+β–p)/(–p)

 (t). (.)

Since limt→T∗ G(t) = ∞ and q < , for any constant  < ε < , there exists t̄ : t ≤ t̄ ≤ T∗

such that G(+α–q)/(–q)
 (t) ≤ ( – ε)G(+α–q)/(–q)

 (t) for t ∈ [t̄,T∗). Hence, from (.) it can
be deduced that for t ∈ [t̄,T∗),

ε
(
δb()

)α/(–q)( + β – p)
(
( – q)G(t)

)(+α–q)/(–q)

≤ (
τa()

)β/(–p)( + ∂ – q)
(
( – p)G(t)

)(+β–p)/(–p). (.)

By an argument similar to above, there exists t̃ < T∗ such that t̃ < t < T∗,

ε
(
δa()

)β/(–p)( + ∂ – q)
(
( – p)G(t)

)(+α–q)/(–q)

≤ (
τb()

)α/(–q)( + β – p)
(
( – q)G(t)

)(+α–q)/(–q). (.)

Set t∗ = max{t̄, t̃}, then (.) and (.) hold simultaneously for all t ∈ [t∗,T∗). Next we
choose {δi}∞i=, {εi}∞i=, {τi}∞i=, satisfying  < δi, εi <  and τi >  with δi, εi, τi →  as i → ∞.
Let t∗ < T∗ such that (.) and (.) hold for t∗i ≤ t < T∗. From Lemma .(i), it follows
that for such sequences {δi}∞i=, and {τi}∞i=, there exists {ti}∞i= : ti < T∗ with ti → T∗, as
i→ ∞ such that

(
δi( – p)a()G(t)

)β/(–p) ≤ G′
(t) ≤

(
τi( – p)a()G(t)

)β/(–p), t ∈ [
ti,T∗). (.)

Taking Ti = max{t∗i , ti}, in terms of (.), (.), and (.), we deduce that for T ≤ t < T∗

G′
(t) ≥

(
δi( – p)a()G(t)

)β/(–p)

≥ (
δib()

) βθ
σ (–q)

(
δib()
τia()

) β
(–p)(+β–p)

(εiσ /θ )
β

+β–p
(
( – q)G(t)

) βθ
σ (–q) , (.)

G′
(t) ≤

(
τib()

) βθ
σ (–q)

(
τib()
δia()

) β
(–p)(+β–p)

(σ /εiθ )
β

+β–p
(
( – q)G(t)

) βθ
σ (–q) , (.)

where C = (a()/b())β/(–p) .
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Since  – βθ/(σ ( – q)) = –/(σ ( – q)) <  and limt→T∗ G(t) = ∞, integrating (.) and
(.) over (t,T∗) we have, for T ≤ t < T∗,

D–
i σ (σ /θ )–

β
+β–p ≤ (

T∗ – t
)(
( – q)G(t)

)/σ (–q) ≤ d–
i σ (σ /θ )–

β
+β–p , (.)

where

di =
(
a()
b()

)β/(–p)(
δib()

) βθ
σ (–q)

(
δib()
τia()

) β
(–p)(+β–p)

(εi)
β

+β–p ,

Di =
(
a()
b()

)β/(–p)(
τib()

) βθ
σ (–q)

(
τib()
δia()

) β
(–p)(+β–p)

(εi)
β

+β–p .

Clearly,

di,Di →
(
a()
b()

)β/(–p)(
b()

) βθ
σ (–q)

(
b()
a()

) β
(–p)(+β–p)

, as εi,∈?, τi → .

By plugging i → ∞ into (.) we get

(
( – q)G(t)

)/(–q) ∼ Cσ
σ (θ/σ )β/αβ–(–p)(–q)(T∗ – t

)–σ , (.)

where C = (a())
β

(–p)(–q)–αβ (b())
βθ
–q +

β
(–p)(–q)–αβ .

Applying a similar proof to the one above, we can conclude that

(
( – q)G(t)

)/(–p) ∼ Cθ
θ (σ /θ )β/αβ–(–p)(–q)(T∗ – t

)–θ , (.)

where C = (b())
α

(–p)(–q)–αβ (a())
αθ
–q +

α
(–p)(–q)–αβ .

According to Lemma .(i), (.), and (.), it follows that uniformly in all compact
subsets of B

lim
t→T∗ u(x, t)

(
T∗ – t

)θ = a(x)/(–p)Cθ
θ (σ /θ )β/αβ–(–p)(–q),

lim
t→T∗ v(x, t)

(
T∗ – t

)σ = b(x)/(–p)Cσ
σ (θ/σ )α/αβ–(–p)(–q).

The arguments of cases (ii), (iii), and (iv) are very similar to the above,we omit the details.
Therefore, we have completed the proof of Theorem .. �
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