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Abstract
This paper is concerned with the Cauchy problem of nonlinear wave equations with
potential, strong, and nonlinear damping terms. Firstly, by using variational calculus
and compactness lemma, the existence of standing waves of the ground states is
obtained. Then the instability of the standing wave is shown by applying
potential-well arguments and concavity methods. Finally, we show how small the
initial data are for the global solutions to exist.
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1 Introduction
Consider the Cauchy problem for nonlinear wave equations with potential, strong, and
nonlinear damping terms,

{
utt –�u –ω�ut +V (x)u + |ut|m–ut = |u|p–u, in [,T)× Rn,
u(,x) = u, ut(,x) = u, in Rn,

(.)

where p > ,m ≥ , T > , ω > ,

u ∈ H(Rn), u ∈ L
(
Rn), (.)

and

 < p≤ n
n – 

, for n≥ ; p > , for n≤ . (.)

With the absence of the strong damping term �ut , and the damping term ut (see []), (.)
can be viewed as an interaction between one or more discrete oscillators and a field or
continuous medium [].
For the case of linear damping (ω = ,m = ) and nonlinear sources, Levine [] showed

that the solutions to (.) with negative initial energy blow-up for the abstract version.
For the nonlinear damping and source terms (ω = , m > , p > , V (x) = ), the ab-
stract version has been considered by many researchers [–]. For instance, Georgiev
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and Todorova [] prove that if m ≥ p, a global weak solution exists for any initial data,
while if  <m < p the solution blows up in finite time when the initial energy is sufficiently
negative. In [], Todorova considers the additional restriction onm. Ikehata [] considers
the solutions of (.) with small positive initial energy, using the so-called ‘potential-well’
theory. The case of strong damping (ω > , m = , V (x) = ) and nonlinear source terms
(p > ) has been studied by Gazzola and Squassina in []. They prove the global existence
of solutions with initial data in the potential well and show that every global solution is
uniformly bounded in the natural phase space. Moreover, they prove finite time blow-up
for solutions with high energy initial data. However, they do not consider the case of a
nonlinear damping term (ω > ,m > , p > ).
To the best of our knowledge, little work has been carried out on the existence and in-

stability of the standing wave for (.). In this paper, we study the existence of a standing
wave with ground state (ω = ), which is the minimal action solution of the following el-
liptic equation:

–�φ +V (x)φ = |φ|p–φ. (.)

Based on the characterization of the ground state and the local well-posedness theory [],
we investigate the instability of the standing wave for the Cauchy problem (.). Finally, we
derive a sufficient condition of global existence of solutions to the Cauchy problem (.)
by using the relation between initial data and the ground state solution of (.). It should
be pointed out that these results in the present paper are unknown to (.) before.
For simplicity, throughout this paper we denote

∫
Rn ·dx by ∫ ·dx and arbitrary positive

constants by C.

2 Preliminaries and statement of main results
We define the energy space H in the course of nature as

H :=
{
ϕ ∈ H(Rn),∫ V (x)|ϕ|dx < ∞

}
. (.)

By its definition, H is a Hilbert space, continuously embedded in H(Rn), when endowed
with the inner product as follows:

〈ϕ,φ〉H :=
∫ (∇ϕ∇φ̄ +V (x)ϕφ̄

)
dx, (.)

whose associated norm is denoted by ‖ · ‖H . If ϕ ∈H , then

‖ϕ‖H =
(∫

|∇ϕ| dx +
∫

V (x)|ϕ| dx
) 


.

Throughout this paper, we make the following assumptions on V (x):

⎧⎪⎨
⎪⎩

infx∈Rn V (x) = V̄ (x) > ,
V (x) is a C bounded measurable function on Rn,
limx→∞ V (x) = ∞.
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According to [] and [], we have the following local well-posedness for the Cauchy prob-
lem (.).

Proposition . If (.) and (.) hold, then there exists a unique solution u(t,x) of the
Cauchy problem (.) on a maximal time interval [,T), for some T ∈ (,∞) (maximal
existence time) such that

u(t,x) ∈ C
(
[,T);H(Rn)) ∩C([,T);L(Rn)) ∩C([,T);H–(Rn)),

ut(t,x) ∈ C
(
[,T);H(Rn)) ∩ Lm

(
[,T)× Rn),

and either T = ∞ or T <∞ and limt→T– ‖u‖H = ∞.

Remark . From Proposition ., it follows that m = p is the critical case, namely for
p ≤ m, a weak solution exists globally in time for any compactly supported initial data;
while form < p, blow-up of the solution to the Cauchy problem (.) occurs.

We define the functionals

S(φ) :=



∫
|∇φ| dx + 



∫
V (x)|φ| dx – 

p

∫
|φ|p dx, (.)

R(φ) :=
∫

|∇φ| dx +
∫

V (x)|φ| dx –
∫

|φ|p dx, (.)

for φ ∈H(Rn), and we define the set

M :=
{
φ ∈H \ {};R(φ) = 

}
. (.)

We consider the constrained variational problem

dM := inf
{

sup
λ≥

S(λφ) : R(φ) < ,φ ∈H \ {}
}
. (.)

For the Cauchy problem (.), we define unstable and stable sets, K and K, as follows:

K ≡ {
φ ∈H(Rn) | R(φ) < ,S(φ) < dM

}
,

K ≡ {
φ ∈ H(Rn) | R(φ) > ,S(φ) < dM

} ∪ {}.

The main results of this paper are the following.

Theorem . There exists Q ∈M such that
(a) S(Q) = infM S(φ) = dM ;
(a) Q is a ground state solution of (.).

From Theorem ., we have the following.

Lemma . Let Q(x) be the ground state of (.). If (.) holds, then

S(Q) = min
M

S(φ).

http://www.boundaryvalueproblems.com/content/2014/1/144
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Theorem . Assume that (.)-(.) hold and the initial energy E() satisfies

E() =



∫
|u| dx + 



(∫
|∇u| dx +

∫
V (x)|u| dx

)
–

p

∫
|u|p dx

<
p – 
p

(∫
|∇Q| dx +

∫
V (x)|Q| dx

)
. (.)

(b) If  <m < p, and there exists t ∈ [,T) such that u(t) ∈ K, then the solution u(x, t)
of the Cauchy problem (.) blows up in a finite time.

(b) If  < p ≤ m, there exists t ∈ [,T) such that u(t) ∈ K, then the solution u(x, t) of
the Cauchy problem (.) globally exists on [,∞).Moreover, for t ∈ [,∞), u(x, t)
satisfies

‖ut‖ +
p – 
p

(∫
|∇u| dx +

∫
V (x)|u| dx

)

<
p – 
p

(∫
|∇Q| dx +

∫
V (x)|Q| dx

)
. (.)

3 Variational characterization of the ground state
In this section, we prove Theorem ..

Lemma . The constrained variational problem

dM := inf
{

sup
λ≥

S(λφ) : R(φ) < ,φ ∈H \ {}
}
, (.)

is equivalent to

d := inf
{

sup
λ≥

S(λφ) : R(φ) = ,φ ∈H \ {}
}
= inf

φ∈MS(φ), (.)

and dM provided  < p≤ n
n– as well as  ≤ m < p.

Proof Let φ ∈H. Since

S(λφ) =
λ



(∫
|∇φ| dx +

∫
V (x)|φ| dx

)
–

λp

p

∫
|φ|p dx, (.)

it follows that

d
dλ

S(λφ) = λ

(∫
|∇φ| dx +

∫
V (x)|φ| dx

)
– λp–

∫
|φ|p dx. (.)

Thus by ≤ m < p, one sees that there exists some λ ≥  such that

sup
λ≥

S(λφ) = S(λφ) = λ


(



∫
|∇φ| dx + 



∫
V (x)|φ| dx – λ

p–

p

∫
|φ|p dx

)
, (.)

where λ uniquely depends on φ and satisfies

∫
|∇φ| dx +

∫
V (x)|φ| dx – λ

p–


∫
|φ|p dx = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/144
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Since

d

dλ S(λφ) =
∫

|∇φ| dx +
∫

V (x)|φ| dx – pλp–
∫

|φ|p dx,

which together with p >  and (.) implies that d
dλ

S(λφ)|λ=λ < , we have

sup
λ≥

S(λφ) =
p – 
p

(
∫ |∇φ| dx + ∫

V (x)|φ| dx) p
p–

(
∫ |φ|p dx) 

p–
. (.)

Therefore, the above estimates lead to

dM = inf
{

sup
λ≥

S(λφ) : R(φ) < ,φ ∈H \ {}
}

= inf

{
p – 
p

(
∫ |∇φ| dx + ∫

V (x)|φ| dx) p
p–

(
∫ |φ|p dx) 

p–
: R(φ) < 

}
. (.)

It is easy to see that

d = inf
{

sup
λ≥

S(λφ) : R(φ) = ,φ ∈H \ {}
}

= inf
φ∈M

{
p – 
p

(∫
|∇φ| dx +

∫
V (x)|φ| dx

)}
. (.)

From (.)-(.), onM one has

S(φ) =
p – 
p

(∫
|∇φ| dx +

∫
V (x)|φ| dx

)
. (.)

It follows that d = infφ∈M S(φ) and S(φ) >  onM.
Next we establish the equivalence of the two minimization problems (.) and (.).
For any φ ∈ H and R(φ) < , let φβ (x) = βφ. There exists a β ∈ (, ) such that

R(φβ ) = , and from (.) we get

sup
λ≥

S(λφβ ) =
p – 
p

(
∫ |∇φβ | dx +

∫
V (x)|φβ | dx)

p
p–

(
∫ |φβ |p dx)


p–

=
p – 
p

β
p
p–
 (

∫ |∇φ| dx +
∫
V (x)|φ| dx)

p
p–

β
p
p–
 (

∫ |φ|p dx)


p–

=
p – 
p

(
∫ |∇φ| dx +

∫
V (x)|φ| dx)

p
p–

(
∫ |φ|p dx)


p–

. (.)

Consequently the two minimization problems (.) and (.) are equivalent, that is, (.)
and (.) are equivalent.
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Finally, we prove dM >  by showing d >  in terms of the above equivalence. Since
 < p ≤ n

n– , the Sobolev embedding inequality yields

∫
|φ|p dx ≤ C

(∫
|∇φ| dx +

∫
V (x)|φ| dx

) p

. (.)

From R(φ) = , it follows that

∫
|∇φ| dx +

∫
V (x)|φ| dx

=
∫

|φ|p dx ≤ C
(∫

|∇φ| dx +
∫

V (x)|φ| dx
) p


, (.)

which together with p >  implies

∫
|∇φ| dx +

∫
V (x)|φ| dx≥ C > . (.)

Therefore, from (.), we get

S(φ)≥ C > , φ ∈M.

Thus from the equivalence of the twominimization problems (.) and (.) one concludes
that dM >  for  < p ≤ n

n– .
This completes the proof of Lemma .. �

Proposition . S is bounded below on M and dM > .

Proof From (.)-(.), onM one has

S(φ) =
p – 
p

(∫
|∇φ| dx +

∫
V (x)|φ| dx

)
. (.)

It follows that S(φ) >  on M. So S is bounded below on M. From (.) we have dM > .
�

Proposition . Let φλ(x) = λφ(x), for φ ∈ H \ {} and λ > . Then there exists a unique
μ >  (depending on φ) such that R(φμ) = .Moreover,

R(φλ) > , for λ ∈ (,μ); R(φλ) < , for λ ∈ (μ,∞);

and

S(φμ) ≥ S(φλ), ∀λ > .

Proof By (.) and (.), we have

S(φλ) =
λ



(∫
|∇φ| dx +

∫
V (x)|φ| dx

)
–

λp

p

∫
|φ|p dx,

http://www.boundaryvalueproblems.com/content/2014/1/144
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R(φλ) = λ
(∫

|∇φ| dx +
∫

V (x)|φ| dx
)
– λp

∫
|φ|p dx.

From the definition ofM, there exists a unique μ >  such that R(φμ) = . Moreover,

R(φλ) > , for λ ∈ (,μ); R(φλ) < , for λ ∈ (μ,∞).

Since

d
dλ

S(φλ) = λ–R(φλ),

and R(φμ) = , we have S(φμ) ≥ S(φλ), ∀λ > . �

Next, we solve the variational problem (.).
We first give a compactness lemma in [].

Lemma. Let  ≤ p < N+
N– whenN ≥  and  ≤ p < ∞whenN = , .Then the embedding

H ↪→ Lp+ is compact.

In the following, we prove Theorem ..

Proof of Theorem . According to Proposition ., we let {φn,n ∈N} ⊂M be a minimiz-
ing sequence for (.), that is,

R(φn) = , S(φn) → dM. (.)

From (.) and (.), we know ‖∇φn‖ is bounded for all n ∈ N . Then there exists a
subsequence {φnk ,k ∈ N} ⊂ {φn,n ∈N}, such that

{φnk } ⇀ φ∞ weakly in H. (.)

For simplicity, we still denote {φnk ,k ∈N} by {φn,n ∈N}. So we have

φn ⇀ φ∞ weakly in H.

By Lemma ., we have

φn → φ∞ strongly in L
(
Rn), (.)

φn → φ∞ strongly in Lp
(
Rn). (.)

Next, we prove that φ∞ �=  by contradiction. If φ∞ ≡ , from (.) and (.), we have

φn →  strongly in L
(
Rn), (.)

φn →  strongly in Lp
(
Rn). (.)

Since φn ∈M, R(φn) = , we obtain
(∫

|∇φ| dx +
∫

V (x)|φ| dx
)

→ , n→ ∞. (.)

http://www.boundaryvalueproblems.com/content/2014/1/144
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On the other hand, from (.) we have

(∫
|∇φ| dx +

∫
V (x)|φ| dx

)
–

p

∫
|φn|p dx → dM.

From (.)-(.) we obtain (
∫ |∇φ| dx + ∫

V (x)|φ| dx) → dM . According to Proposi-
tion ., dM ≥ c > . This is in contradictory to (.). Thus φ∞ �= .
According to Proposition ., we takeQ = (φ∞)μ with μ >  uniquely determined by the

condition R(Q) = R[(φ∞)μ] = . From (.)-(.), we have

(φ∞)μ →Q strongly in L
(
Rn), (.)

(φ∞)μ →Q strongly in Lp
(
Rn), (.)

(φ∞)μ ⇀ Q weakly in H(Rn). (.)

Since R(φn) =  and by Proposition ., we get

S
[
(φ∞)μ

] ≤ S(φn). (.)

From (.)-(.), we have

S(Q)≤ lim
n→∞

S
[
(φ∞)μ

] ≤ lim
n→∞S(φn) = inf

M
S. (.)

Since Q �=  and R(Q) = , then Q ∈ M. Therefore from (.), Q solves the minimization
problem

S(Q) = min
φ∈MS(φ). (.)

Thus we complete the proof of (a) of Theorem ..
Next we prove (a) of Theorem ..
Since Q is a solution of the problem (.), there exists a Lagrange multiplier 
 such

that

δQ[S +
R] = , (.)

where δφG denotes the variation of G(φ) about φ. By the formula

δφG(φ) =
∂

∂η
G(φ + ηδφ)

∣∣∣
η=

,

we have

δφ[S +
R] = ( + 
)
∫ (

–�φ · δφ +V (x)φ · δφ)
dx

– ( + p
)
∫

φ|φ|p–δφ dx, (.)

http://www.boundaryvalueproblems.com/content/2014/1/144
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where δφ denotes the variation of φ. From (.), we get

( + 
)
∫ (|∇Q| +V (x)|Q|)dx = ( + p
)

∫
|Q|p dx. (.)

From R(Q) = , we have

∫ (|∇Q| +V (x)|Q|)dx = ∫
|Q|p dx. (.)

From (.) and (.), we obtain 
 = . Thus from (.) and (.), we have

–�Q +V (x)Q = |Q|p–Q.

This indicates that Q is a solution of (.) as (.) is the Euler Lagrange equation of the
functional S. Thus we prove (a) of Theorem ..
So far, we have completed the proof of Theorem .. �

4 Blow-up and global existence
In this section, we prove Theorem ..

Lemma . Let E() < dM , then K and K are invariant under the flow generated by (.).

Proof Suppose that u ∈ K and u(t) be the solution of (.). From Pucci and Serrin []
and (.), we have

S
(
u(t)

) ≤ E(t) = E() –
∫ t



∥∥ut(s, ·)∥∥m
m ds –

∫ t



∥∥∇ut(s, ·)
∥∥
 ds

< S(Q) = dM, t ∈ [,T).

To prove u(t) ∈ K, we need to prove

R
(
u(t)

)
< , t ∈ [,T). (.)

If (.) is not true, by continuity, there would exist a t̄ >  such that R(u(t̄)) =  because
R(u) < . It follows that u(t̄) ∈ M. This is impossible because S(u(t̄)) < S(Q) and S(Q) =
minφ∈M S(φ). Thus (.) is true. So K is invariant under the flow generated by (.).
Similarly, we can show that K is also invariant under the flow generated by (.). This

completes the proof of Lemma .. �

Lemma . Let the initial data u, u satisfy (.) and let u(t,x) be a local solution of the
Cauchy problem (.) on [,T). If there exists a u ∈ K and E() < dM , then the inequality

∫ (|∇u| +V (x)|u|)dx > p
p – 

dM

is fulfilled for t ∈ [,T).

http://www.boundaryvalueproblems.com/content/2014/1/144
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Proof According to Lemma ., we have
∫ |u|p dx > ∫

(|∇u| + V (x)|u|)dx for t ∈ [,T).
Using the above inequality and the identity (.), we get

dM ≤ p – 
p

∫ (|∇u| +V (x)|u|)dx, (.)

which completes the proof of Lemma .. �

Next, we prove Theorem ..

Proof of Theorem . By (.), we have S(u)≤ E() < S(Q).
Firstly, we prove (b) of Theorem .. From the energy identity we have

∫ t



∥∥ut(s, ·)∥∥m
m ds +

∫ t



∥∥∇ut(s, ·)
∥∥
 ds = E() – E(t)≤ dM, (.)

for all t ≥ .
Denoting J(t) = ‖u(t, ·)‖, we have

J ′′(t) = 
∥∥ut(t, ·)∥∥

 – R
(
u(t)

)
– 

∫
∇ut(t,x)∇u(t,x)dx

– 
∫

u(t,x)ut(t,x)
∣∣ut(t,x)∣∣m– dx.

Using the Hölder inequality and the interpolation inequality, we obtain

∣∣∣∣
∫

u(t,x)ut(t,x)
∣∣ut(t,x)∣∣m– dx

∣∣∣∣ ≤ ∥∥u(t, ·)∥∥m

∥∥ut(t, ·)∥∥m–
m

≤ ∥∥u(t, ·)∥∥δ



∥∥u(t, ·)∥∥–δ

p

∥∥ut(t, ·)∥∥m–
m , (.)

with δ =

m– 

p

 –


p
. From R(u) < , we have

∫
V (x)|u| dx < ‖u‖pp,

which together with Lemma . give

∥∥u(t, ·)∥∥δ



∥∥u(t, ·)∥∥–δ

p

∥∥ut(t, ·)∥∥m–
m ≤ C

∥∥ut(t, ·)∥∥m–
m

∥∥u(t, ·)∥∥– p
m–δ+ pδ


p

∥∥u(t, ·)∥∥ p
m
p . (.)

Using the Young inequality and  – p
m – δ + pδ

 = , we have

∥∥u(t, ·)∥∥δ



∥∥u(t, ·)∥∥–δ

p

∥∥ut(t, ·)∥∥m–
m ≤ C(ε)

∥∥ut(t, ·)∥∥m
m + ε

∥∥u(t, ·)∥∥p
p,∫

∇ut(t,x)∇u(t,x)dx≤ ∥∥∇u(t, ·)∥∥

∥∥∇ut(t, ·)
∥∥


≤ C(ε)
∥∥∇ut(t, ·)

∥∥
 + ε

∥∥∇u(t, ·)∥∥
.

http://www.boundaryvalueproblems.com/content/2014/1/144
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Since

–R
(
u(t)

) ≥ –R
(
u(t)

)
+ δ

(
E(t) – E()

)
≥

(
 –

δ

p

)∥∥u(t, ·)∥∥p
p +

δ


∥∥ut(t, ·)∥∥



+
(

δ


– 

)(∥∥∇u(t, ·)∥∥
 +

∫
V (x)

∣∣u(t, ·)∣∣ dx) – δE(),

we have



J ′′(t) +C(ε)

∥∥ut(t, ·)∥∥m
m +C(ε)

∥∥∇ut(t, ·)
∥∥
 + ε

∥∥∇u(t, ·)∥∥


≥
(
 +

δ



)∥∥ut(t, ·)∥∥
 +

(
 –

δ

p
– ε

)∥∥u(t, ·)∥∥p
p

+
(

δ


–  – ε

)(∥∥∇u(t, ·)∥∥
 +

∫
V (x)

∣∣u(t, ·)∣∣ dx) – δE(), (.)

where the constant δ >  is chosen as follows.
Since E() < dM , we choose the constant δ so that

pdM
pdM – (p – )E()

< δ < p.

This guarantees that δ > . Then, using this choice and Lemma ., we get

(
δ


– 

)(∥∥∇u(t, ·)∥∥
 +

∫
V (x)

∣∣u(t, ·)∣∣ dx) – δE()

≥
(

δ


– 

)
p
p – 

dM – δE()≥ . (.)

If the constant δ is fixed, we choose the constant ε such that

C =  –
δ

p
– ε > .

Finally, using the inequality (.) and Lemmas . and . we have

J ′′(t) +C(ε)
∥∥ut(t, ·)∥∥m

m +C(ε)
∥∥∇ut(t, ·)

∥∥
 + ε

∥∥∇u(t, ·)∥∥


≥ C
∥∥u(t, ·)∥∥p

p

≥ C

(∥∥∇u(t, ·)∥∥
 +

∫
V (x)

∣∣u(t, ·)∣∣ dx)

≥ C
p
p – 

dM, (.)

where C > . Since (.), integrating (.) over [, t] we have

J ′(t) ≥ C
pdM
p – 

t –C(ε)d + J ′(), (.)

http://www.boundaryvalueproblems.com/content/2014/1/144
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from which one concludes that there exists a t such that J ′(t)|t=t > . Hence, J(t) is
increasing for t > t (which is the interval of existence). Since R(u) < , there exists a
t such that ‖u(t,x)‖pp is increasing for t > t. When t is large enough, the quantities
‖ut(t,x)‖mm and ‖∇u(t,x)‖ are small enough. Otherwise, assume that there is t∗ such that
‖ut(t,x)‖mm > ‖ut(t∗,x)‖mm for all t > t∗. By integrating the inequality, we obtain a contradic-
tion with (.) and E(t)≥ .
Thus in these cases, the quantity

(
 –

δ

p
– ε

)∥∥u(t, ·)∥∥p
p +

(
δ


– 

)(∥∥∇u(t, ·)∥∥
 +

∫
V (x)

∣∣u(t, ·)∣∣ dx) – δE()

–C(ε)
∥∥ut(t, ·)∥∥m

m –C(ε)
∥∥∇ut(t, ·)

∥∥
 – ε

∥∥∇u(t, ·)∥∥


will eventually become positive. Therefore for t large enough, from (.) and (.) we have

J ′′(t)≥
(
 +

δ



)∥∥ut(t, ·)∥∥
.

Using the Hölder inequality, we get

J(t)J ′′(t)≥  + δ


[
J ′(t)

]. (.)

Since

[
J–

δ–
 (t)

]′′ = –
δ – 


J–
δ+
 (t)

[
J(t)J ′′(t) –

 + δ


[
J ′(t)

]],
from (.) we have [J– δ–

 (t)]′′ ≤ . Therefore J– δ–
 (t) is concave for sufficiently large t,

and there exists a finite time T∗ such that

lim
t→T∗ J

– δ–
 (t) = .

From assumption on V (x), we obtain

∫
V (x)|u| dx ≥ V̄

∫
|u| dx.

Thus one get T <∞ and

lim
t→T–

‖u‖H = ∞.

Now we complete the proof of (b) of Theorem ..
Next, we prove (b) of Theorem ..
From (.) and Lemma ., we obtain E() < S(Q). It follows that u(x, t) satisfies

R(u) =
∫

|∇u| dx +
∫

V (x)|u| dx –
∫

|u|p dx > , (.)

http://www.boundaryvalueproblems.com/content/2014/1/144
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which will be proved by contradiction. If (.) is not true, then we have R(u) ≤ . Thus
there exists  < μ ≤  such that u �=  and

R(μu) = μ
(∫

|∇u| dx +
∫

V (x)|u| dx
)
–μp

∫
|u|p dx = ,

which implies μu ∈M.
On the other hand, for  < μ ≤ , u ∈ K and (.) yield

S(μu) < μ
(∫

|∇u| dx +
∫

V (x)|u| dx
)

≤ p – 
p

∫
|Q|p dx = S(Q),

which is contradictory to Lemma ..
Therefore, by R(u) >  and Lemma ., we have R(u) >  and E(t)≤ E() < S(Q). Thus

E(t) –

p
S(u) ≤ E(),

namely




∫
|ut| dx + p – 

p

(∫
|∇u| dx +

∫
V (x)|u| dx

)
≤ E(). (.)

Therefore we have established the bound of u(x, t) inH for t ∈ [,T) and thus the solution
u(x, t) of (.) exists globally on t ∈ [,∞).
From (.), E() < S(Q) and Lemma ., we have the estimate (.).
Thus, we complete the proof of Theorem .. �
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