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Abstract
This paper studies the unsteady MHD flow of a viscous fluid in which each point of
the parallel planes are subject to the non-torsional oscillations in their own planes.
The streamlines at any given time are concentric circles. Exact solutions are obtained
and the loci � of the centres of these concentric circles are discussed. It is shown that
the motion so obtained gives three infinite sets of exact solutions in the geometry of
an orthogonal rheometer in which the above non-torsional oscillations are
superposed on the disks. These solutions reduce to a single unique solution when
symmetric solutions are looked for. Some interesting special cases are also obtained
from these solutions.

Keywords: viscous fluid; MHD flow; orthogonal rheometer; eccentric rotation; exact
solutions

1 Introduction
Berker [] has defined the ‘pseudo plane motions’ of the first kind that: if the streamlines
in a plane flow are contained in parallel planes but the velocity components are dependent
on the coordinate normal to the planes. Berker [] has obtained a class of exact solutions
to the Navier-Stokes equations belonging to the above type of flows. The ingenious anal-
ysis of Berker [, ] of the flow of an incompressible viscous fluid confined between two
coaxially or non-coaxially rotating infinite parallel disks has shown the existence of an in-
finite number of exact solutions characterizing the asymmetric and symmetric motions.
The symmetric solutions presented by Berker [] belong to a new class and cannot be ob-
tained as limiting cases of any of the known solutions. It was observed that these results
are relevant in understanding the motions of the fluid in a device called an orthogonal
rheometer.
Owing to the importance of exact solutions, many authors [–] have analyzed the flows

in this geometry for different types of fluids. Rao and Kasiviswanathan [] have investi-
gated the unsteady viscous flow in the orthogonal rheometer and established the existence
of three infinite sets of exact solutions. The flow of an elastico-viscous fluid in the above
geometry has been investigated by Abbott andWalters []. They obtained the unique ex-
act solution of the problem and it was considered as a particular case of the infinite set
of solutions which satisfies the condition for symmetric solutions. Thornley [] has con-
sidered an exact solution for the flow of an incompressible fluid confined between two
infinite disks when both the fluid and the disk were in rigid-body rotation with constant
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angular velocity and one of the disks is used to perform non-torsional oscillations in its
own plane in a rotating frame of reference.
The MHD flow of Newtonian and non-Newtonian fluids between two non-coaxial ro-

tating disks has been one of the subjects which has attracted attention of many workers.
Kasiviswanathan and Rao [] investigated the unsteady MHD flow of a viscous, homo-
geneous, incompressible, electrically conducting fluid between two infinite, parallel, in-
sulated disks rotating with the same angular velocity about two non-coincident axes in
which the disks were subjected to non-torsional oscillations. Using the Laplace transform
two sets of infinite solutions are presented and these solutions reduce to unique solution
when symmetric solutions are looked for. Mohanty [] obtained an exact solution for
the viscous, homogeneous, incompressible, conducting fluid between eccentrically rotat-
ing disks having the same angular velocity in the presence of uniform transverse mag-
netic field. Further, Erkman [] studied the same problem but for an induced magnetic
field. Murthy and Ram [] examined an exact solution for the case of flow due to non-
coaxial rotations of a porous disk and a fluid at infinity under the application of a uniform
transverse magnetic field. Rao and Rao [] also considered the same physical situation as
discussed by [] but they considered the second grade fluid. Ersoy [] obtained an ex-
act solution of an Oldroyd-B fluid between two infinite, parallel, insulated disks rotating
about non-coincident axes in the presence of a uniform transverse magnetic field. More-
over, Rajagopal [] reviewed problems related to both Newtonian and non-Newtonian
fluids between two parallel disks rotating about the same or distinct axes with the same
and different angular velocities.
In this paper we have generalised the work of Rao and Kasiviswanathan [] to the case

of unsteadyMHDflow of a conducting, incompressible viscous fluid between two infinite,
parallel, insulated disks rotating with the same angular velocity about non-coincident axes
normal to the disks. Each point of the parallel planes is subjected to non-torsional oscilla-
tions in their own planes. The streamlines at a given instant are concentric circles in each
plane parallel to a fixed plane π and each point of the plane is performing non-torsional
oscillations. Exact solutions are obtained and the loci of the centres of concentric circles
are discussed. In the geometry of an orthogonal rheometer where non-torsional oscilla-
tions are imposed on the disks relative to the basic rotations, the existence of three infinite
sets of exact solutions is established. Three cases arise i.e. when: (i) ω > δ, (ii) ω < δ and
(iii) ω = δ. These solutions reduce to a single unique solution when symmetric solutions
are looked for.

2 Governing equations
Consider the flow of an incompressible viscous fluid filling the entire three-dimensional
space in which the streamlines at a given instant are concentric circles in each plane paral-
lel to a fixed plane π and each point of the plane is performing non-torsional oscillations.
A uniform magnetic field B is applied along the z-axis. The unsteady flow of an incom-
pressible fluid in the presence of a magnetic field is governed by the following equations:

ρ
DV
Dt

= divT + J×B, ()

∇ ·V = , ()
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where V is the velocity field, T the Cauchy stress tensor, J the electric current density,
ρ the density and D/Dt the material time derivative. In addition, B (= B + b) is the total
magnetic field inwhich b andB denote the inducedmagnetic field and imposedmagnetic
field, respectively. In the absence of displacement currents, theMaxwell equations [, ]
and the modified Ohm law [] can be written as

∇ ·B = , ∇ ×B = μmJ, ∇ × E = – ∂B
∂t ,

J = σ [E +V×B],

}
()

in which E is the electric field, μm the magnetic permeability and σ the electric field con-
ductivity. It is assumed that all the thermo-physical fluid properties are constant through-
out the flow field region. Also, the induced magnetic field b is negligible compared with
the applied magnetic field B. It is further supposed that no energy is added or extracted
from the fluid by the electric field which implies that there is no electric field present in
the fluid flow region. Under these assumptions the electromagnetic force J× B takes the
form

J×B = –σB
V. ()

The velocity field is chosen as follows:

u = u(x, y, z, t), v = v(x, y, z, t), w = , ()

where u, v, w are the components of velocity in the Cartesian coordinate system (x, y, z).
For this motion, the streamlines for all time t are contained in planes parallel to the fixed
plane π and the plane Oxy is parallel to this fixed plane. The constitutive equation of the
viscous fluid is

T = –pI +μA + ρf , ()

with p being the pressure, I the unit tensor, A the Rivilin-Ericksen tensor, μ the dynamic
viscosity and f the body force. The Rivilin-Ericksen tensor A is defined by

A = L + LT , L = ∇V, ()

in whichT denotes the transpose. TheNavier-Stokes equations governing the flow in view
of Eqs. () and ()-() are given by

ψyt +ψyψyx –ψxψyy = –φx + v(ψxx +ψyy +ψzz)y –
σB

ψy

ρ
, ()

ψxt +ψyψxx –ψxψyx = φy + v(ψxx +ψyy +ψzz)x –
σB

ψx

ρ
, ()

u = ψy, v = –ψx, ()

φ =
p
ρ
+�, ()
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where ψ(x, y, z, t) is the stream function, � the potential due to external force and v the
kinematic coefficient of viscosity. The subscript denotes the partial derivatives with re-
spect to corresponding variables throughout the paper. From the equation of motion in
the z-direction one finds φ to be independent of z. In the present analysis the authors are
interested in getting solutions of an unsteadyMHD fluid motion in which the streamlines
at any instant are concentric circles in each plane with normal line parallel to the Oz-axis.
Therefore, consider

x = f (z, t), y = g(z, t), ()

and let these be the loci � of the centres of these circles which are fixed points at a given
instant t and belong to the instantaneous axis of the vortex. The condition that � must
not be a straight line perpendicular to the Oxy plane gives the inequality:

f z + gz � . ()

Following an analysis similar to Berker [], the general form of the stream function for this
type of unsteady MHD flow is given by

ψ = K
[(
x – f (z, t)

) + (
y – g(z, t)

)]. ()

This stream function ψ has to satisfy Eqs. () and (). According to Eq. (), the velocity
components are given by the equations:

u = K
(
y – g(z, t)

)
, v = –K

(
x – f (z, t)

)
. ()

Let c be any constant and let π be the plane z = c. Equation () shows that at a given
time t, the fluid particles belonging to the plane π move like the points of a solid plate
which rotates around a fixed point with coordinates (f (c, t), g(c, t), c) and with constant
angular velocity ω, given by

ω = –K . ()

This angular velocity is same for all planes π which are parallel to the plane Oxy. Thus
() should be interpreted as a motion due to rigid rotation superposed by some unsteady
motion.

3 Exact solutions
Eliminating φ from () and () by differentiating with respect to z and making use of ()
and () we obtain

νWzzz –
(

σB


ρ
+ iω

)
Wz =Wzt , ()

where

W (z, t) = f (z, t) + ig(z, t). ()
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We investigate the unsteady MHD motion generated by subjecting each of the parallel
planes to a non-torsional oscillation of the type eiδt or e–iδt , where δ is the frequency of
oscillation. Letting

W = F(z)e–iδt , ()

Eq. () takes the form

Fzzz –
(
N + i

ω – δ

v

)
Fz = , ()

where

N =
σB


ρν

. ()

The general solutions of the differential equation () are

F(z) = A + B exp(
√
N + iβ

 z) +C exp(–
√
N + iβ

 z), ω > δ,
F(z) = A + B exp(

√
N – iβ

z) +C exp(–
√
N – iβ

z), ω < δ,
F(z) = A + B exp(

√
Nz) +C exp(–

√
Nz), ω = δ,

⎫⎪⎬
⎪⎭ ()

where

β
 = (ω – δ)/v,

β
 = (δ –ω)/v,

}
()

and the arbitrary complex constants A, B and C are assumed to be

A = A + iA, B = B + iB, C = C + iC. ()

The solutions for non-torsional oscillation of the type eiδt are obtained by replacing δ by
–δ at appropriate places in the above equations. The general solutions of the differential
equation () in view of Eqs. (), (), () and () are given by

f = f + (A cos δt +A sin δt) + eβrz
[
B cos(βiz – δt) – B sin(βiz – δt)

]
+ e–βrz

[
C cos(βiz + δt) +C sin(βiz + δt)

]
,

()

g = g + (A cos δt –A sin δt) + eβrz
[
B sin(βiz – δt) + B cos(βiz – δt)

]
+ e–βrz

[
C cos(βiz + δt) –C sin(βiz + δt)

]
,

()

where f and g denote solutions due to steady rotation and

βr + iβi =
√
N + iβ

 . ()

Similarly, expressions for ω < δ and ω = δ can be obtained. It is worthy to mention that
the solutions () and () reduce to the solutions presented by Rao and Kasiviswanathan
[] when B = .
Now we will establish that by making a suitable change of axes, that is, the change that

satisfies the condition that the planeOxy be parallel to the plane π, it is possible to reduce
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the number of arbitrary constants contained in the curve � given in Eqs. () and ().
The change to be made is the result of transformations described below for ω > δ.
(i) A translation parallel to the plane Oxy and defined by the equations:

x = x – (A cos δt +A sin δt), y = y – (A cos δt –A sin δt). ()

This transformation gets rid of the constants A and A contained in Eqs. () and ().
(ii) If B

 + B
 >  and C

 + C
 > , a translation parallel to the axis Oz and a rotation

about this axis. This translation and rotation is so chosen that the equation of the curve �

in the new axes reduces to the following form:

�:
x = ax + a(xB cos δt + yB sin δt),
y = ay + a(yB cos δt – xB sin δt),

}
()

where

x = cosh(βz) cos(βz + n), y = sinh(βz) sin(βz + n),

xB = cosh(βiz) cos(βiz + n), yB = sinh(βiz) sin(βiz + n)
()

with β, a > , β =
√

ω/υ > . Equation () contains only two arbitrary real constants a
and n.
(iii) If B

 + B
 >  and C = C = , a translation parallel to the axis Oz. This translation

is so chosen that the equations of the curve � with respect to the new axes reduce to the
following form:

�:
x = ax + a exp(βrz) cos(βiz – δt),
y = ay + a exp(βrz) sin(βiz + δt),

}
()

where

x = exp(βz) cos(βz), y = exp(βz) sin(βz), ()

with a > , β �= , β �= . Equation () involves only one arbitrary real constant a.
(iv) IfC

 +C
 >  and B =  = B, again a translation parallel to the axisOz. This transla-

tion is so chosen that the equations of the curve � in the new axes reduce to the following
form:

�:
x = ax – a exp(–βrz) cos(βiz + δt),
y = ay – a exp(–βrz) sin(βiz – δt),

}
()

where

x = exp(–βz) cos(βz), y = – exp(–βz) sin(βz), ()

with a > , β �= , β �= . Equation () again contains only one constant a. It is worth
mentioning that the curves �-� reduce to the curves given by Rao and Kasiviswanathan
[] when B = .
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(v) Lastly, when ω = δ the curve � by a proper choice of axes can be written as

�:
x = (az + bz) cos(ωt + n),
y = –(az + bz) sin(ωt + n),

}
()

with a,b > ; n is any arbitrary constant. This transformation has no counterpart in the
corresponding steady problem. Likewise, curves � and �, similar to the curves � and
�, can be obtained for ω < δ.
Equations () of the curve � in cylindrical coordinates can be written in the form

r =
a

e(βz)

[
 + f(β,β, z, t)

]/, ()

where f is negligible for large z or for very small δ. So for large z () reduces to

r =
a

eβz. ()

Let C be the projection of the curve � on the Oxy plane. The equation of C in polar
coordinates is

r =
a

eθ , θ = βz. ()

Therefore, the curve C tends towards the logarithmic spiral () for large value of z, hav-
ing the properties given by Berker []. A similar discussion holds for the curves �-�. It
can be further noted that eβz dominates over the other terms, the curve � is wrapped
around the surface of revolution S the axis of which isOz and themeridian (in cylindrical
coordinates) of which is given in Eq. ().

4 UnsteadyMHD flow in an orthogonal rheometer
Consider the unsteady MHD flow of a conducting, incompressible viscous fluid between
two infinite, parallel, insulated disks D and D rotating with the same angular velocity
ω about non-coincident axes z′ and z′′ normal to the planes of the disks and performing
non-torsional oscillations in their own planes. This model represents the motion of the
fluid in the instrument called an orthogonal rheometer.
We choose the Cartesian coordinate system with the z-axis perpendicular to the disks

and the lower and the upper disks are located at z = –h and z = h, respectively. Let the lower
disk rotate about the point P(–x, –y, –h) and the upper disk about P(x, y,h). Taking
the middle point O of PP as the origin and perpendicular axes Ox and Oy lying in the
plane z =  so that the z-axis is perpendicular to these axes. The superposed unsteady
motion is created by subjecting each point of the lower and upper disk to non-torsional
oscillations of the type aeiδt + be–iδt and ceiδt + de–iδt , respectively, where a, b, c and d,
are given complex constants. The governing equation for this motion is given by Eq. ()
whereas the boundary conditions are

W = –(x + iy) + aeiδt + be–iδt , on z = –h, ()

W = (x + iy) + ceiδt + de–iδt , on z = h. ()

http://www.boundaryvalueproblems.com/content/2014/1/146
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Assume the solution for Eq. () to be of the form

W = aF(z)eiδt + bF(z)e–iδt + F(z), ()

where the first two terms correspond to the oscillatory motion and the third term gives
the solution due to the basic rigid rotation. The corresponding boundary conditions are

F(–h) = , F(–h) = , F(–h) = –(x + iy), ()

and

F(h) =
c
a
, F(h) =

d
b
, F(h) = x + iy. ()

The governing differential equation () is of the third order, giving three sets of infinite
solutions; one corresponding to the steady part and the other two corresponding to the
oscillatory parts, proportional to eiδt and e–iδt . As there are only two boundary conditions
() and () to determine each complex function, therefore its solution is not unique.
We introduce one more arbitrary boundary condition in addition to the boundary condi-
tions () and () in order to determine the solution. Let xp and yp be the coordinates
of the point of intersection of the curve � and the plane Oxy and also the non-torsional
oscillations are prescribed on the plane Oxy. Then the boundary conditions will be of the
form

W () = xP + iyP + aeiδt + be–iδt

giving

F() =
a
a
, F() =

b
b
, F() = xp + iyp. ()

The solutions of the differential equation (), satisfying the boundary conditions ()-
(), are given by

W =
{
c + a – a



cosh
√
N + λ

z – 

cosh
√
N + λ

h – 
+
c – a


sinh
√
N + λ

z

sinh
√
N + λ

h
+ a

}
eiδt

+
{
d + b – b


cosh

√
N + λ

z – 
cosh

√
N + λ

h – 
+
d – b


sinh
√
N + λ

z
sinh

√
N + λ

h
+ b

}
e–iδt

+ (xp + iyp)
{
 –

cosh
√
N + λ

z – 

cosh
√
N + λ

h – 

}
+ (x + iy)

sinh
√
N + λ

z

sinh
√
N + λh

, ()

where

λ
 = iβ

 , λ
 = iβ

 = –iβ
 , λ

 = iβ
 , β

 =
ω

ν
,

β
 = (ω – δ)/ν, β

 = (δ –ω)/ν, β
 = (ω + δ)/ν.

()
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Setting

c – a


= a + ia,
c + a – a


= b + ib, a = a′

 + ia′
,

d – b


= c + ic,
d + b – b


= d + id, b = b′

 + ib′
,

()

in Eq. () and equating the real and imaginary parts, we get for ω > δ

f =
[
(cR + cQ + dT + dS) – (aR + aQ + bS + bT) – a′

 + b′

]

sin δt

+
[
(aR – aQ + bS – bT) + (cR – cQ + dS – dT) + a′

 + b′

]

cos δt

+ xR – yQ + xp( – S) + ypT ()

and

g =
[
(aR – aQ + bS – bT) – (cR – cQ + dS – dT) + a′

 – b′

]

sin δt

+
[
(aR + aQ + bS + bT) + (cR + cQ + dT + dS) + a′

 + b′

]

cos δt

+ xQ + yR – xpT + yp( – S), ()

where

sinh
√
N + λ

j z

sinh
√
N + λ

j h
= Rj ± iQj,

cosh
√
N + λ

j z – 

cosh
√
N + λ

j h – 
= Sj ± iTj, j = , , . ()

The minus sign is taken when j = . Thus we have

Rj =
[
ξj(z)ξj(h) + ηj(z)ηj(h)

]
/�j, Qj =

[
ηj(z)ξj(h) – ξj(z)ηj(h)

]
/�j,

Sj =
[
φj(z)φj(h) + χj(z)χj(h)

]
/�j, Tj =

[
χj(z)φj(h) – φj(z)χj(h)

]
/�j,

()

ξj(z) = sinh(βrjz) cos(βιjz), ηj(z) = cosh(βrjz) sin(βιjz),

φj(z) = cosh(βrjz) cosβijz – , χj(z) = sinh(βrjz) sin(βijz),

�j = ξ 
j (h) + η

j (h), �j = φ
j (h) + χ

j (h),

()

where j = , , , . Similarly, we can get the solutions for ω < δ. The solution for the case
ω = δ is obtained from Eqs. () and () by taking the limit δ −→ ω. In this case we obtain

R = R =
sinh

√
Nz

sinh
√
Nh

, S = S =
cosh

√
Nz – 

cosh
√
Nh – 

, Q =Q = T = T = . ()

We have thus obtained the unsteady MHD motion of viscous fluid in the orthogonal
rheometer for the three different cases of ω, i.e., (i) ω > δ, (ii) ω < δ, (iii) ω = δ. The so-
lutions for f and g contain six arbitrary constants, namely a, a, b, b, xp and yp, giving
three sets of infinite solutions. Hence the existence of three sets of infinite solutions for the
unsteadyMHDmotion of the fluid in an orthogonal rheometer in which the non-torsional
oscillations are superposed on the disks are established. These solutions for f and g reduce
to the solutions of Rao and Kasiviswanathan [] for B → .

http://www.boundaryvalueproblems.com/content/2014/1/146
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5 Results and discussion
In view of Eqs. () and () the velocity components are given by

u = –ω
(
y – g(z, t)

)
, v = ω

(
x – f (z, t)

)
, w = . ()

Then the components (ξ ,η, ζ ) of the vorticity are given by

ξ = ωfz, η = ωgz, ζ = ω, ()

where f and g are given by Eqs. () and (). Substituting Eqs. () and () in Eqs. ()
and (), we get

φx = ωx +ω

(
vgzz –ωf – gt –

σB


ρ
g
)
+

σB


ρ
ωy,

φy = ωy –ω

(
vfzz +ωg – ft –

σB


ρ
f
)
–

σB


ρ
ωx.

()

Using Eqs. (), () and () in () we obtain

p + ρ� =
ρω



(
 –

σ B


ρω

)[
(x –X)

( + σB
ρω

)
+
(y – Y)

( – σB
ρω

)

]
+ p, B

 <
ρω

σ
,

p + ρ� =
ρω



(
σ B


ρω – 

)[
(y – Y)

( σB
ρω

– )
–
(x +X)

( σB
ρω

+ )

]
+ p, B

 >
ρω

σ
, ()

p + ρ� = ρω[(x –X) – Yy
]
+ p,

σ B


ρω = ,

where p is an arbitrary constant, X(h, t), Y(h, t) are given by

X = xp
(
 + φ(h)/�

)
+ ypχ(h)/�

–
[(

 +
δ

ω

){(
bχ(h) + bφ(h)

)
/� – a′


}

+
(
 –

δ

ω

){(
dφ(h) + dχ(h)

)
/� – b′


}]

cos δt

–
[(

 +
δ

ω

){(
bχ(h) – bφ(h)

)
/� + a′


}

+
(
 –

δ

ω

){(
dφ(h) – dχ(h)

)
/� – b′


}]

sin δt

–
Nν

ω

[
–yp

(
 – φ(h)/�

)
– xpχ(h)

+
{(
bφ(h) – bχ(h)

)
/� +

(
dχ(h) – dφ(h)

)
/� – a′

 – b′

}

cos δt

+
{(
bφ(h) + bχ(h)

)
/� –

(
dφ(h) + dχ(h)

)
/� – a′

 + b′

}

sin δt
]
, ()

Y = yp
(
 + φ(h)/�

)
– xpχ(h)/�

+
[(

 +
δ

ω

){(
bχ(h) – bφ(h)

)
/� + a′


}

http://www.boundaryvalueproblems.com/content/2014/1/146


Rana et al. Boundary Value Problems 2014, 2014:146 Page 11 of 14
http://www.boundaryvalueproblems.com/content/2014/1/146

+
(
 –

δ

ω

){(
dχ(h) – dφ(h)

)
/� + b′


}]

cos δt

+
[(

 +
δ

ω

){
a′
 –

(
bχ(h) + bφ(h)

)
/�

}

+
(
 –

δ

ω

){(
dφ(h) + dχ(h)

)
/� – b′


}]

sin δt

+
Nν

ω

[
–xp

(
 + φ(h)/�

)
– ypχ(h)/�

+
{(
bφ(h) + bχ(h)

)
/� +

(
dφ(h) + dχ(h)

)
/� – a′

 – b′

}

cos δt

+
{(
dφ(h) – dχ(h)

)
/� –

(
bφ(h) – bχ(h)

)
/� + a′

 – b′

}

sin δt
]
. ()

The results ()-() reduce to the results of Rao and Kasiviswanathan [] in the absence
of MHD and Berker [] in the absence of MHD and oscillations.
The components of stress t applied by the fluid at any point (x, y,h) on the upper disk

in (x, y, z) directions are given by

tx = –μ(uz +wx), ty = –μ(νz +wy), tz = p – μwz, ()

where p is the pressure and μ the coefficient of viscosity. Using the values of (u, v,w) given
in Eq. (), we obtain from Eq. ()

tx = –μωgz(t,h), ty = μωfz(t,h), tz = p, ()

where f and g are defined in Eqs. () and (). Similarly, the stress applied on the lower
plate at any point (x, y, –h) can be calculated.
A number of interesting special cases can be derived from the general solutions given

by Eq. (). A solution is said to be symmetric solution with respect to a given point O,
if the velocity field is a symmetric vector field with respect to the point O. Therefore, the
symmetric solution has to satisfy the following condition:

V(x, y, z) = –V(x, y, z). ()

Among the solutions obtained for the motion in the orthogonal rheometer, we need to
find whether there exist solutions which are symmetric with respect to: (i) the point O,
(ii) the mid point of the line segment PP. The velocity field given by Eq. () satisfies the
condition (), provided

f (–z, t) = –f (z, t) and g(–z, t) = –g(z, t), ()

which implies that f and g are odd functions of z and

f () = , g() = . ()

The latter equation shows that the curve � must pass through the origin O of the axes.
Therefore, for a symmetric solution the constants in Eq. () should satisfy

c + a – a = d + b – b = , a = b = xp = yp = . ()
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Thus, for a symmetric solution all the arbitrary constants given in the boundary condition
() vanish and the solution thus obtained is unique. This symmetric solution is given by

W =
{
c – a


sinh
√
N + λ

z

sinh
√
N + λ

h

}
eiδt +

{
d – b


sinh
√
N + λ

z
sinh

√
N + λ

h

}
e–iδt

+ (x + iy)
sinh

√
N + λ

z

sinh
√
N + λh

. ()

This solution includes the symmetric solution of Kasiviswanathan andRao [] as a special
case. Taking y =  and yP =  in Eq. (), we obtain the solutions of the MHD flow due to
non-torsionally oscillating eccentric rotating disks given byKasiviswanathan andRao [].
In the limitB →  in Eq. (), we obtain solutions given by Rao andKasiviswanathan [].
By taking B → , δ →  (together with the amplitudes of the oscillations) in Eq. (), we
get

W (z) = (x + iy)
sinhλz
sinhλh

+ (xP + iyP)
[
 –

coshλz – 
coshλz – 

]
, ()

which corresponds to the solutions given by Berker []. As δ → , B → , ω →  in
Eq. (), we get

W (z) =
[
c + a – a


+
d + b – b


– (xP + iyP)

]
z

h

+
[
c – a


+
d – b


+ x + iy
]
z
h
+ (xP + iyP + a + b), ()

and the corresponding boundary conditions are

W (h) = x + iy + c + d, W (–h) = –(x + iy) + a + b,

W () = xP + iyP + a + b.
()

This case corresponds to the flow of a fluid confined between two plates moving with
velocities of different magnitudes and direction. It reduces to the solutions given by Ka-
siviswanathan and Rao [] for yP =  and y = . Since in the limit ω → , all the velocity
components given in Eq. () become zero; therefore we cannot take this velocity field for
the above problem. However, in order to understand the nature and physical significance
of this case, we choose the velocity field given by Kasiviswanathan and Rao []. We have

u = f (z), v = g(z), w = . ()

In the absence of a magnetic field, Eq. () in view of Eq. () yields

μfzz – px = , μgzz – py = , pz = . ()

Eliminating the pressure gradient we obtain

Wzzz = . ()
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The boundary conditions are given by

W (h) = u + iu′
 =U, W (–h) = u + iu′

 =U,

W () = u + iu′
 =U,

()

whereU is chosen arbitrarily. The solution of Eq. () subject to the boundary conditions
() yields

W (z) =


[U +U – U]

z

h
+


[U –U]

z
h
+U, ()

which is similar to the solution given in Eq. (). The solution given by the above equation
yields a set of infinite number of solutions as U is chosen arbitrarily. For U = –U and
U = , Eq. () reduces to a simple shearing motion and the solution so obtained is a
symmetric solution. The stream function for this flow is given by

ψ(z) = yf (z) – xg(z) +C, ()

and the streamlines are given by a family of parallel straight lines in each of the planewhere
z = constant. In Eq. (), C denotes an arbitrary constant.

6 Conclusion
In this study we have considered the unsteady MHD flow of a viscous fluid in which each
point of the parallel planes is subjected to the non-torsional oscillations in their own
planes. Exact solutions for the described model are presented. The major findings of the
present work are summarised as follows:
• The existence of three sets of infinite numbers of solutions for the unsteady MHD
motion of a viscous fluid in an orthogonal rheometer in which the non-torsional
oscillations are superposed on the disks is established. These solutions reduce to a
single unique solution when symmetric solutions are looked for.

• The results of Rao and Kasiviswanathan [] are recovered for B =  and Berker []
in the absence of MHD and oscillations.

• The present work also includes the solutions of Kasiviswanathan and Rao [] as a
special case.
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