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1 Introduction and preliminaries
Recent developments in fixed point theory have been encouraged by the applicability of
the results in the area of boundary value problems for differential and integral equations.
Especially in the last few years, a lot of publications in fixed point theory have presented
results directly related to specific initial or boundary value problems. These problems in-
clude not only ordinary and partial differential equations, but also fractional differential
equations.
In  Ran and Reurings [] investigated the existence of fixed points in partially or-

dered metric spaces. The importance of this study presented itself in the area of boundary
value problems. Nieto and Lopez [] discussed the applications of the fixed point theo-
rems to the problem of existence and uniqueness of solutions of first order boundary value
problems. The results of Ran and Reurings and Nieto and Lopez have been followed soon
by numerous studies concerning fixed points on partially ordered metric spaces [–]. In
the case of partially ordered spaces the continuity condition is no longer needed, however,
the map should be nondecreasing.
In a recent paper, Popescu [] proved two generalizations of a result given by Bogin

[] for a class of non-expansive mappings on complete metric spaces. The idea behind
his work was to replace the non-expansiveness condition with the weaker C-condition
introduced by Suzuki [–]. The existence and uniqueness of fixed points of maps sat-
isfying the C-condition have also been extensively studied; see [–]. We state first
the definition of a non-expansive map and a map satisfying the C-condition on a metric
space.
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Definition  A mapping T on a metric space (X,d) is called a non-expansive mapping if

d(Tx,Ty) ≤ d(x, y), (.)

for all x, y ∈ X.

Definition  A mapping T on a metric space (X,d) satisfies the C-condition if



d(x,Tx)≤ d(x, y) �⇒ d(Tx,Ty) ≤ d(x, y), (.)

for all x, y ∈ X.

Popescu [] stated and proved the following fixed point theorem.

Theorem  Let (X,d) be a nonempty complete metric space and T : X → X be a mapping
satisfying



d(x,Tx)≤ d(x, y) (.)

which implies

d(Tx,Ty) ≤ ad(x, y) + b
[
d(x,Tx) + d(y,Ty)

]
+ c

[
d(x,Ty) + d(y,Tx)

]
, (.)

where a ≥ , b > , c >  and a + b + c = . Then T has a unique fixed point.

In this paper, we investigate the existence and uniqueness of fixed points of maps sat-
isfying the C-condition on metric spaces and on partially ordered metric spaces. As an
application, we study the existence and uniqueness of solutions of a first order periodic
boundary value problem under certain conditions.

2 Existence and uniqueness of fixed points onmetric spaces
Our main results can be considered as a generalization of the result of Popescu [].
We first prove fixed point theorems on complete metric spaces and then we formulate

these results on complete metric spaces endowed with a partial order.

Theorem  Let (X,d) be a complete metric space, T : X −→ X be a map, and ψ :
[,∞)−→ [,∞) be a continuous nondecreasing function such that ψ() =  and ψ(t) > 
for t > . Suppose that



d(x,Tx)≤ d(x, y) ⇒ d(Tx,Ty)≤ M(x, y) –ψ

(
M(x, y)

)
, (.)

where

M(x, y) = max

{
d(x, y),d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]
}
, (.)

for all x, y ∈ X. Then the mapping T has a unique fixed point.
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Proof Let x ∈ X and define the sequence {xn} as follows:

xn = Txn–, n ∈N.

If xn = xn+ for some n ∈ N, then xn is the fixed point of T . Assume that xn 	= xn+, for all
n ∈N.
Substituting x = xn and y = Txn = xn+ in (.) we get



d(xn,Txn) =



d(xn,xn+) ≤ d(xn,xn+)

⇒ d(Txn,Txn+) = d(xn+,xn+) ≤ M(xn,xn+) –ψ
(
M(xn,xn+)

)
, (.)

where

M(xn,xn+)

= max

{
d(xn,xn+),d(xn,Txn),d(xn+,Txn+),



[
d(xn,Txn+) + d(xn+,Txn)

]}

= max

{
d(xn,xn+),d(xn,xn+),d(xn+,xn+),



[
d(xn,xn+) + d(xn+,xn+)

]}

= max

{
d(xn,xn+),d(xn+,xn+),



d(xn,xn+)

}
. (.)

From the triangle inequality we have



d(xn,xn+) ≤ 


[
d(xn,xn+) + d(xn+,xn+)

] ≤ max
{
d(xn,xn+),d(xn+,xn+)

}
. (.)

Therefore,M(xn,xn+) can be either d(xn+,xn+) or d(xn,xn+). IfM(xn,xn+) = d(xn+,xn+),
then (.) implies

d(xn+,xn+) ≤ d(xn+,xn+) –ψ
(
d(xn+,xn+)

)
, (.)

so that ψ(d(xn+,xn+)) =  and hence, d(xn+,xn+) =  which contradicts the assumption
xn 	= xn+, for all n ∈N. Thus,M(xn,xn+) = d(xn,xn+), which results in

d(xn+,xn+) ≤ d(xn,xn+) –ψ
(
d(xn,xn+)

) ≤ d(xn,xn+). (.)

Therefore, the sequence dn = d(xn,xn+) is non-increasing and bounded belowby .Hence,

lim
n→∞dn = L ≥ . (.)

However, letting n → ∞ in (.) we get

L ≤ L –ψ(L), (.)

and we conclude that L = , since ψ(L) = , and therefore

lim
n→∞dn = lim

n→∞d(xn,xn+) = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/149
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We shall prove next that the sequence {xn} is a Cauchy sequence. Assume the contrary,
that is, {xn} is not Cauchy. Then there exists ε >  for which one can find subsequences
{n(i)} and {m(i)} in N such that

d(xn(i),xm(i)) ≥ ε (.)

form(i) > n(i) > i wherem(i) is the smallest index satisfying (.), that is,

d(xn(i),xm(i)–) < ε. (.)

From the triangle inequality we have

ε ≤ d(xn(i),xm(i)) ≤ d(xn(i),xm(i)–) + d(xm(i)–,xm(i))

< ε + d(xm(i)–,xm(i)). (.)

Taking the limit as i→ ∞ in (.) and using (.) we get

lim
i→∞d(xn(i),xm(i)) = ε. (.)

On the other hand, the convergence of {d(xn,xn+)} implies that for this ε > , there exists
N ∈ N such that d(xn,xn+) < ε, for all n≥ N. LetN = max{m(i),N}. Then, for allm(k) >
n(k) ≥ N, we have

d(xn(k),xn(k)+) < ε ≤ d(xn(k),xm(k)), (.)

wherem(k)≥ n(k) and, hence,



d(xn(k),xn(k)+) ≤ d(xn(k),xm(k)). (.)

Then from (.) with x = xn(k) and y = xm(k) we obtain

d(Txn(k),Txm(k)) = d(xn(k)+,xm(k)+)≤ M(xn(k),xm(k)) –ψ
(
M(xn(k),xm(k))

)
, (.)

where

M(xn(k),xm(k)) = max

{
d(xn(k),xm(k)),d(xn(k),xn(k)+),

d(xm(k),xm(k)+),


[
d(xn(k),xm(k)+) + d(xn(k)+,xm(k))

]
}
. (.)

Regarding (.) and (.), we see that

lim
k→∞

M(xm(k),xn(k)) = max{ε, } = ε. (.)

Letting k → ∞ in (.) we get

ε ≤ ε –ψ(ε), (.)

http://www.boundaryvalueproblems.com/content/2014/1/149
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which implies ψ(ε) =  and hence, ε = . This contradicts the assumption that {xn} is not
a Cauchy sequence. Therefore, {xn} is Cauchy and by the completeness of X it converges
to a limit, say x ∈ X.
Assume now that there exists n ∈ N such that

d(xn,x) <


d(xn,xn+) and

d(xn+,x) <


d(xn+,xn+).

Then we have

dn = d(xn,xn+)≤ d(xn,x) + d(xn+,x) <


[
d(xn,xn+) + d(xn+,xn+)

]

≤ 

(dn + dn+) ≤ dn, (.)

which is a contradiction. Hence, we must have d(xn,x) ≥ 
d(xn,xn+) or d(xn+,x) ≥


d(xn+,xn+), for all n ∈N. Therefore, for a subsequence {n(k)} of N we have



d(xn(k),Txn(k)) =



d(xn(k),xn(k)+) ≤ d(xn(k),x),

for all k ∈N, which implies

d(Txn(k),Tx) = d(xn(k)+,Tx)≤ M(xn(k),x) –ψ
(
M(xn(k),x)

)
, (.)

where

M(xn(k),x) = max

{
d(xn(k),x),d(xn(k),xn(k)+),d(x,Tx),



[
d(x,xn(k)+) + d(xn(k),Tx)

]}
.

Obviously,

lim
k→∞

M(xn(k),x) = max

{
,d(x,Tx),



d(x,Tx)

}
= d(x,Tx). (.)

Letting k → ∞ in (.) we get

d(x,Tx)≤ d(x,Tx) –ψ
(
d(x,Tx)

)
(.)

and, hence, d(x,Tx) = , that is, x = Tx.
Finally, we prove the uniqueness of the fixed point. Assume that x 	= y and x = Tx and

y = Ty. Then

 =


d(x,Tx)≤ d(x, y), (.)

which implies

d(Tx,Ty) = d(x, y)≤ M(x, y) –ψ
(
M(x, y)

)
, (.)
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where

M(x, y) = max

{
d(x, y),d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]}
= d(x, y).

Thus, (.) becomes

d(x, y) ≤ d(x, y) –ψ
(
d(x, y)

)
,

and, clearly, d(x, y) = , that is, x = y. �

We next define a contractive condition similar to that in Theorem . The reason for in-
troducing this new contraction is that in the framework of partially ordered metric spaces
uniqueness of a fixed point requires an additional condition on the space. However, this
condition is not sufficient for the uniqueness of the fixed point for a map satisfying con-
tractive condition defined in Theorem .

Theorem Let (X,d) be a completemetric space,T : X −→ X be amap,andψ : [,∞)−→
[,∞) be a continuous nondecreasing function such that ψ() =  and ψ(t) >  for t > .
Suppose that



d(x,Tx)≤ d(x, y) ⇒ d(Tx,Ty)≤ N(x, y) –ψ

(
N(x, y)

)
, (.)

where

N(x, y) = max

{
d(x, y),



[
d(x,Tx) + d(y,Ty)

]
,


[
d(x,Ty) + d(y,Tx)

]}
, (.)

for all x, y ∈ X. Then the mapping T has a unique fixed point.

The proof of Theorem  can be done by following the lines of the proof of Theorem 
and, hence, is omitted.

3 Fixed points onmetric spaces with a partial order
In this section the fixed point theorems, Theorems  and , are formulated in the frame-
work of partially ordered metric spaces. In what follows, we define a partial order 
 on
the metric space (X,d).
Our first result is a counterpart of Theorem  on a partially ordered metric space.

Theorem  Let (X,d,
) be a partially ordered complete metric space, T : X −→ X be
a nondecreasing map, and ψ : [,∞) −→ [,∞) be a continuous nondecreasing function
such that ψ() =  and ψ(t) >  for t > . Suppose that



d(x,Tx)≤ d(x, y) ⇒ d(Tx,Ty)≤ M(x, y) –ψ

(
M(x, y)

)
, (.)

where

M(x, y) = max

{
d(x, y),d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]}
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/149
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for all x, y ∈ X with x
 y. If there exists x ∈ X satisfying x 
 Tx, then T has a fixed point
in X.

Proof Let x ∈ X satisfy x 
 Tx. Define the sequence {xn} as follows:

xn = Txn–, n ∈N.

If xn = xn+ for some n ∈ N, then xn is the fixed point of T . Assume that xn 	= xn+, for all
n ∈N. Since x 
 Tx = x and T is nondecreasing, then obviously

x 
 x 
 x 
 · · · 
 xn 
 · · · . (.)

Substituting x = xn and y = Txn = xn+ in (.) we get



d(xn,Txn) =



d(xn,xn+) ≤ d(xn,xn+)

⇒ d(Txn,Txn+) = d(xn+,xn+) ≤ M(xn,xn+) –ψ
(
M(xn,xn+)

)
, (.)

where

M(xn,xn+)

= max

{
d(xn,xn+),d(xn,Txn),d(xn+,Txn+),



[
d(xn,Txn+) + d(xn+,Txn)

]}

= max

{
d(xn,xn+),d(xn,xn+),d(xn+,xn+),



[
d(xn,xn+) + d(xn+,xn+)

]}

= max

{
d(xn,xn+),d(xn+,xn+),



d(xn,xn+)

}
. (.)

For the rest of the existence proof one can follow the lines of the proof of Theorem , since
they are similar. �

Assume now that the space (X,d,
) satisfies the condition

(U) For all x, y ∈ X, there exists z ∈ X such that x 
 z and y 
 z. (.)

Our last result shows that themap given inTheoremhas a unique fixed pointwhenever
it is defined on a partially ordered space (X,d,
), satisfying the condition (U).

Theorem  Let (X,d,
) be a partially ordered complete metric space satisfying the con-
dition (U), T : X −→ X be a nondecreasing map, and ψ : [,∞)−→ [,∞) be a continuous
nondecreasing function such that ψ() =  and ψ(t) >  for t > . Suppose that



d(x,Tx)≤ d(x, y) ⇒ d(Tx,Ty)≤ N(x, y) –ψ

(
N(x, y)

)
, (.)

where

N(x, y) = max

{
d(x, y),



[
d(x,Tx) + d(y,Ty)

]
,


[
d(x,Ty) + d(y,Tx)

]}
, (.)
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for all x, y ∈ X with x 
 y. If there exists x ∈ X satisfying x 
 Tx, then T has a unique
fixed point in X.

Proof The existence proof is done bymimicking the proofs of Theorem  and Theorem .
To prove the uniqueness we assume that there are two different fixed points, x and y, that
is, x 	= y and x = Tx and y = Ty. We consider the following cases:
Case . Suppose that x and y are comparable and, without loss of generality, that x 
 y.

Then

 =


d(x,Tx)≤ d(x, y), (.)

which implies

d(Tx,Ty) = d(x, y)≤ N(x, y) –ψ
(
N(x, y)

)
, (.)

where

N(x, y) = max

{
d(x, y),



[
d(x,Tx) + d(y,Ty)

]
,


[
d(x,Ty) + d(y,Tx)

]}
= d(x, y).

Thus, (.) becomes

d(x, y) ≤ d(x, y) –ψ
(
d(x, y)

)
,

and, clearly, d(x, y) = , that is, x = y.
Case . Assume that x and y are not comparable. From the condition (U) there exists

z ∈ X satisfying x
 z and y
 z. Define the sequence {zn} as

z = z, zn+ = Tzn, n ∈ N. (.)

Notice that since T is nondecreasing and x 
 z, we have

x 
 z �⇒ x = Tx 
 Tz = z �⇒ · · · �⇒ x = Tx 
 Tzn+ = zn, n ∈N.

If x = zn for some n ∈N, then x = Tx = Tzn = zn and, hence, x = Tkz = zk , for all k ≥ n.
Thus, the sequence zn converges to the fixed point x, that is, limn→∞ d(x, zn) = . Assume
that x 	= zn, for all n ∈N. Then we have

d(x, zn) >


d(x,Tx) = , for all n ∈N,

which implies that the contractive condition

d(Tx,Tzn) ≤ N(x, zn) –ψ
(
N(x, zn)

)
, (.)

where

N(x, zn) = max

{
d(x, zn),



[
d(x,Tx) + d(zn, zn+)

]
,


[
d(x,Tzn) + d(zn,Tx)

]}
,

http://www.boundaryvalueproblems.com/content/2014/1/149
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holds for all n ∈N. Observe that

N(x, zn) = max

{
d(x, zn),

d(zn, zn+)


,


[
d(x,Tzn) + d(zn,Tx)

]
}

can be either d(x, zn) or 
 [d(x,Tzn) + d(zn,Tx)] due to the fact that

d(zn, zn+)


≤ 

[
d(x,Tzn) + d(zn,Tx)

]

by the triangle inequality. If N(x, zn) = 
 [d(x,Tzn) + d(zn,Tx)], then we have d(x, zn) ≤

N(x, zn) ≤ d(x, zn+) for some n ∈ N. In this case, since ψ(t) >  for t > , the inequality
(.) implies

d(x, zn+) ≤ N(x, zn) –ψ
(
N(x, zn)

)
<N(x, zn) ≤ d(x, zn+), (.)

which is not possible. Then we must have N(x, zn) = d(x, zn), for all n ∈ N, and, thus, the
inequality (.) implies

d(x, zn+) ≤ d(x, zn) –ψ
(
d(x, zn)

)
< d(x, zn), (.)

that is, the sequence {d(x, zn)} is positive and decreasing and, therefore, convergent. Let
limn→∞ d(x, zn) = L ≥ . Taking the limit as n→ ∞ in (.) we get

L ≤ L –ψ(L), (.)

from which it follows that ψ(L) = , and, thus, we deduce

L = lim
n→∞d(x, zn) = . (.)

In a similar way we obtain

lim
n→∞d(y, zn) = . (.)

From (.) and (.) it follows that x = y, which completes the proof. �

Some consequences of Theorem  are given next. If we choose ψ as a specific function
we get the following result.

Corollary  Let (X,d,
) be a partially ordered complete metric space satisfying the con-
dition (U) and T : X −→ X be a nondecreasing map. Suppose that the condition



d(x,Tx)≤ d(x, y) ⇒ d(Tx,Ty)≤ kN(x, y), (.)

where

N(x, y) = max

{
d(x, y),



[
d(x,Tx) + d(y,Ty)

]
,


[
d(x,Ty) + d(y,Tx)

]}
(.)

http://www.boundaryvalueproblems.com/content/2014/1/149
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holds, for all x, y ∈ X with x 
 y and some constant  < k < . If there exists x ∈ X satisfying
x 
 Tx, then T has a unique fixed point in X.

Proof Choose ψ(t) = (– k)t. Then the maps ψ and T satisfy the conditions of Theorem 
and, thus, T has a unique fixed point in X. �

The next result is the analog of Theorem . in [] on partially ordered metric spaces.

Corollary  Let (X,d,
) be a partially ordered complete metric space satisfying the con-
dition (U) and T : X −→ X be a nondecreasing map. Suppose that



d(x,Tx)≤ d(x, y)

⇒ d(Tx,Ty)≤ ad(x, y) +
b

[
d(x,Tx) + d(y,Ty)

]
+
c

[
d(x,Ty) + d(y,Tx)

]
, (.)

where

a,b, c > ,  < a + b + c = r < , (.)

for all x, y ∈ X with x 
 y. If there exists x ∈ X satisfying x 
 Tx, then T has a unique
fixed point in X.

Proof Define

N(x, y) = max

{
d(x, y),



[
d(x,Tx) + d(y,Ty)

]
,


[
d(x,Ty) + d(y,Tx)

]}
. (.)

Then, clearly,

ad(x, y) +
b

[
d(x,Tx) + d(y,Ty)

]
+
c

[
d(x,Ty) + d(y,Tx)

]

≤ (a + b + c)N(x, y)≤ rN(x, y). (.)

Then the map T satisfies the conditions of the Corollary  and, thus, T has a unique fixed
point in X. �

4 Applications
In this section we investigate the existence and uniqueness of solutions of periodic bound-
ary value problems of first order. These problems have been studied under different con-
ditions in [, –]. However, the existence and uniqueness conditions obtained here are
weaker than those in the previous studies.
Define the partial ordering and the metric in X = C[,T] as follows:

u 
 v ⇒ u(t) ≤ v(t), for all t ∈ [,T],

d(u, v) = sup
{∣∣u(t) – v(t)

∣
∣, t ∈ [,T]

}
.

(.)

The space (X,d,
) satisfies the condition (U). Indeed, it is obvious that for every pair u(t),
v(t) in X, we have u(t) 
 max{u(t), v(t)} and v(t) 
 max{u(t), v(t)}. We will consider the

http://www.boundaryvalueproblems.com/content/2014/1/149
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following first order periodic boundary value problem:

{
u′(t) = f (t,u(t)), t ∈ [,T],
u() = u(T).

(.)

Definition  A lower solution of the problem (.) is a function u(t) ∈ C[,T] satisfying

{
u′(t)≤ f (t,u(t)), t ∈ [,T],
u() ≤ u(T).

(.)

An upper solution to the problem (.) is a function u(t) ∈ C[,T] satisfying

{
u′(t)≥ f (t,u(t)), t ∈ [,T],
u() ≥ u(T).

(.)

Observe that the problem (.) can be written as

{
u′(t) + λu(t) = f (t,u(t)) + λu(t), t ∈ [,T],
u() = u(T).

(.)

This problem is equivalent to the integral equation

u(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds, (.)

where G(t, s) is the Green function defined by

G(t, s) =

{
eλ(T+s–t)
eλT– ,  ≤ s < t ≤ T ,

eλ(s–t)
eλT– ,  ≤ t < s≤ T .

(.)

In what follows, we give a theorem for the existence and uniqueness of a solution of the
problem (.).

Theorem  Consider the periodic boundary value problem (.). Assume that f is con-
tinuous and that there exists λ >  such that, for all u, v ∈ C[,T] satisfying u ≤ v, the
following condition holds:

{
v′(t) ≥ f (t,u(t)), t ∈ [,T],
v()≥ v(T)

}

�⇒  ≤ f
(
t, v(t)

)
+ λv(t) – f

(
t,u(t)

)
– λu(t) ≤ k(v – u), (.)

for some k,λ ∈ [,∞), such that  < k < λ. If the problem (.) has a lower solution, then it
has a unique solution.

Proof Define the map F : C[,T] →R as follows:

Fu(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds, (.)

http://www.boundaryvalueproblems.com/content/2014/1/149
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where G(t, s) is the Green’s function given in (.). Then the solution of the problem (.)
is the fixed point of F . Assume that u≤ v are functions in C[,T] satisfying (.). Rewrite
the inequality v′(t)≥ f (t,u(t)) as

v′(t) + λv(t)≥ f
(
t,u(t)

)
+ λu(t).

Multiplying both sides by eλt and integrating from  to t we obtain

eλtv(t) ≥ v() +
∫ t


eλs[f

(
s,u(s)

)
+ λu(s)

]
ds, (.)

which, due to the condition v()≥ v(T), gives

eλTv()≥ eλTv(T)≥ v() +
∫ T


eλs[f

(
s,u(s)

)
+ λu(s)

]
ds.

Hence,

v()≥
∫ T



eλs

eλT – 
[
f
(
s,u(s)

)
+ λu(s)

]
ds.

Employing this inequality and (.) we get

eλtv(t) ≥
∫ T



eλs

eλT – 
[
f
(
s,u(s)

)
+ λu(s)

]
ds +

∫ t


eλs[f

(
s,u(s)

)
+ λu(s)

]
ds. (.)

Hence, we obtain

v(t)≥
∫ t



eλ(s–t+T)

eλT – 
[
f
(
s,u(s)

)
+ λu(s)

]
ds +

∫ T

t

eλ(s–t)

eλT – 
[
f
(
s,u(s)

)
+ λu(s)

]
ds, (.)

which can be written as

v(t)≥
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds. (.)

This implies

sup
{∣∣v(t) – u(t)

∣
∣, t ∈ [,T]

} ≥ sup
{∣∣Fu(t) – u(t)

∣
∣, t ∈ [,T]

}
, (.)

or, in terms of the metric,

d(u, v) ≥ d(Fu,u) ≥ 

d(Fu,u). (.)

Moreover, since f satisfies (.), we have

Fu(t) =
∫ T


G(t, s)

[
f
(
s,u(s)

)
+ λu(s)

]
ds

≤
∫ T


G(t, s)

[
f
(
s, v(s)

)
+ λv(s)

]
ds = Fv(t), (.)

http://www.boundaryvalueproblems.com/content/2014/1/149
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that is, F is nondecreasing. Consider now

d(Fv,Fu) = sup

∣
∣∣
∣

∫ T


G(t, s)

[
f
(
s, v(s)

)
+ λv(s) – f

(
s,u(s)

)
– λu(s)

]
ds

∣
∣∣
∣

≤ sup
∫ T


G(t, s)k

∣
∣v(s) – u(s)

∣
∣ds

≤ kd(u, v)
∫ T


G(t, s)ds

=
k
λ
d(u, v) ≤ k

λ
N(u, v),

where N(u, v) = max{d(x, y),  [d(x,Tx) + d(y,Ty)],  [d(x,Ty) + d(y,Tx)]}. Choosing λ in a
way that  < k < λ we see that the nondecreasing map F satisfies the condition (.) of
Corollary . We next show that u ≤ Fu for some u ∈ X. Since the problem (.) has a
lower solution, there exists u ∈ X satisfying (.). Hence, we have

u′
(t) + λu(t)≤ f

(
t,u(t)

)
+ λu(t), t ∈ [,T],

u()≤ u(T).
(.)

Multiplying both sides by eλt and then integrating from  to t we obtain

u(t)eλt ≤ u() +
∫ t


eλs[u(s) + f

(
s,u(s)

)]
ds. (.)

Employing the inequality u()≤ u(T) we get

u()eλT ≤ u(T)eλT ≤ u() +
∫ T


eλs[u(s) + f

(
s,u(s)

)]
ds,

or equivalently,

u() ≤
∫ T



eλs

eλT – 
[
u(s) + f

(
s,u(s)

)]
ds. (.)

Combining (.) and (.) we get

u(t) ≤
∫ T



eλ(s–t)

eλT – 
[
u(s) + f

(
s,u(s)

)]
ds +

∫ t


eλ(s–t)[u(s) + f

(
s,u(s)

)]
ds

=
∫ T


G(t, s)

[
u(s) + f

(
s,u(s)

)]
ds, (.)

where G(s, t) is the Green’s function given in (.). Hence, we have

u(t) ≤ Fu(t)

for the lower solution u(t) of (.). Then, by the Corollary , themap F has a unique fixed
point; thus, the boundary value problem (.) has a unique solution. �

http://www.boundaryvalueproblems.com/content/2014/1/149
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Example  Consider the BVP

u′(t) =



sin
t

–


u, t ∈ [, π ],

u() = u(π ).

It can easily be verified by direct calculation that the unique solution is

u(t) =
[

sin
t

– cos

t


]
.

For this specific example the function f (t,u) = 
 sin t

 –

u satisfies the condition

 ≤ f
(
t, v(t)

)
+ λv(t) – f

(
t,u(t)

)
– λu(t) ≤ k

(
v(t) – u(t)

)
,

not only for u≤ v, with

{
v′(t) ≥ 

 sin t
 –


u, t ∈ [, π ],

v()≥ v(π )

}

but for all u≤ v, where λ – 
 = k < . Indeed,

f
(
t, v(t)

)
+ λv(t) – f

(
t,u(t)

)
– λu(t) =

(
λ –




)(
v(t) – u(t)

) ≤ k
(
v(t) – u(t)

)
,

for λ – 
 = k < . Observe that u(t) = – is a lower solution of the BVP. Clearly,

u′
(t) =  ≤ 



(
sin

t

+ 

)
, t ∈ [, π ],

and

u() = – = u(π ).

By Theorem , the BVP has a unique solution.

Next, we give the following example of a nonlinear equation.

Example  Consider the BVP

u′(t) = (t + ) – u, t ∈ [, ],

u() = u().

The function f (t,u) = (t + ) – u satisfies the condition

 ≤ f (t, v) + λv – f (t,u) – λu

= –v + λv + u – λu≤ (λ –M)(v – u)

= k(v – u),

http://www.boundaryvalueproblems.com/content/2014/1/149
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for u ≤ v where u and v are nonnegative functions continuous on [, ], the positive con-
stant M is defined as M = maxt∈[,](u(t) + v(t)), and λ is chosen such that λ –M = k < .
The existence of M >  is verified by the fact that u and v are continuous on the closed
interval [, ]. Observe that u(t) =  is a lower solution of the BVP. Clearly,

u′
(t) =  ≤ (t + ), and u() =  ≤ u().

By Theorem , the BVP has a unique solution.
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