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Abstract
This paper presents the unsteady magnetohydrodynamic (MHD) flow of a
generalized Burgers’ fluid between two parallel side walls perpendicular to a plate.
The plate applies a shear stress induced by rectified sine pulses to the fluid. The
obtained solutions by means of the Laplace and Fourier cosine and sine transforms
are presented as a sum of the corresponding Newtonian and non-Newtonian
contributions. The effects of the magnetic field, permeability, and the period of the
oscillation have been observed on the fluid motion. Moreover, the influence of the
side walls on the fluid motion and the distance between the walls for which the
velocity of the fluid in the middle of the channel is negligible are presented by
graphical illustrations.
MSC: 76A05; 76A10
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1 Introduction
Motion of non-Newtonian fluids on oscillating plates is not only of fundamental theoreti-
cal interest but it also occurs in many applied problems, e.g., clay rotation, heart pumping,
artificial surfing etc. Erdogan [] obtained a solution as a sum of steady and transient so-
lutions for the flow of a viscous fluid produced by a plane boundary moving in its own
plane with a sinusoidal variation of velocity. Exact solutions for unsteady flow of a gener-
alized Burgers fluid due to a rigid plate between two infinite parallel plates, one of which
is an oscillating and time-periodic plane Poiseuille flow, was established by Fetecau et al.
[]. Zheng et al. [] established an exact solution for the unsteady flow of a generalized
Maxwell fluid over a flat plate. The plate was set into oscillating motion induced by hy-
perbolic sine velocity. Some recent work involving oscillating flows has been presented in
many studies [–].
MHD flow of fluids and motion of fluids through porous media occur in medicine, en-

gineering problems and geophysics, e.g., cardiology, delivery of medicine to affected ar-
eas, regulation of skin, nuclear reactors and geomagnetic dynamo. Khan and Zeeshan
[], and Ghosh and Sana [] investigated the MHD flow of an Oldroyd-B fluid through
a porous space. The motions were generated in the fluid due to the velocity sawtooth
pulses of the plate. Ghosh and Sana [] discussed the unsteady motion of an Oldroyd-
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B fluid in a channel bounded by two infinite rigid parallel plates in the presence of an
external magnetic field acting normal to the plates. The flow is generated from rest due
to rectified sine pulses applied periodically on the upper plate with the lower plate held
fixed.
In the above citations, the conditions on the boundary are given in terms of velocity.

The stress at the boundary gives important information as regards the nature of dis-
sipation at the boundary. Little work is available in the literature where the oscillating
stress is given on the boundary. Vieru et al. [] analyzed the unsteady motion of a sec-
ond grade fluid between two parallel side walls induced by oscillating shear stress. Li et
al. [] presented an analysis for helical flows of a heated generalized Oldroyd-B fluid
subject to a linear time-dependent shear stress in a porous medium, where the motion
is induced by the longitudinal time-dependent shear stress and the oscillating velocity
at the boundary. Jamil et al. [] and Shahid et al. [] determined the starting solu-
tions for the motion of Oldroyd-B fluids induced by quadratic, and cosine and sine os-
cillating time-dependent shear stress, respectively. Sohail et al. [] presented closed-
form expressions for the starting solutions corresponding to the unsteady motion of a
Maxwell fluid due to an infinite plate that applies oscillating shear stresses to the fluid.
Rubbab et al. [] derived the unsteady natural convection flow of an incompressible vis-
cous fluid near a vertical plate that applies a shear stress which is of exponential order of
time.
In spite of all these citations and work in this direction, no attempt is made for oscil-

lations induced by rectified sine pulses stress in a bounded domain. The main objective
of the present investigation is to study the MHD oscillatory flow of a generalized Burg-
ers fluid through a porous medium between two parallel walls. The formulation of the
governing problem is made using the modified Darcy law of a generalized Burgers fluid.
The inducedmagnetic field is assumed to be small as compared with the appliedmagnetic
field. Analytical expressions for the velocity field and the shear stress are determined by
means of the Fourier cosine and sine transforms coupled with Laplace transform. Finally,
a comprehensive study of some physical parameters involved is performed to illustrate the
influence of these parameters on the velocity.

2 Governing equations
For the generalized Burgers fluid, the Cauchy stress tensor is given by

τ = –pI + S, S + λ
δS
δt

+ λ
δS
δt

= μ

(
A + λ

δA
δt

+ λ
δA
δt

)
, ()

where –pI denotes the indeterminate spherical stress, S is the extra-stress tensor, A =
L + LT is the first Rivlin-Ericksen tensor (L being the velocity gradient), δ

δt denotes the
upper convective derivative, μ is the dynamic viscosity, λ and λ (< λ) are the relaxation
and retardation times, λ and λ are the material parameters of the generalized Burgers
fluid having the dimension of the square of time, and

δS
δt

=
δ

δt

(
δS
δt

)
=

δ

δt

(
dS
dt

– LS – SLT
)
. ()
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We seek the velocity field V and the stress field S of the form

V =V(x, y, t) = w(x, y, t)k̂, S = S(x, y, t), ()

where k̂ is the unit vector along the z-direction. If the fluid is at rest up to the moment
t = , then

V(x, y, ) = , S(x, y, ) =
∂S(x, y, )

∂t
= . ()

Equations (), (), and () give the trivial stresses Sxx = Sxy = Syy =  and the meaningful
equations

(
 + λ

∂

∂t
+ λ

∂

∂t

)
τ(x, y, t) = μ

(
 + λ

∂

∂t
+ λ

∂

∂t

)
∂w(x, y, t)

∂x

for τ(x, y, ) = , ()
(
 + λ

∂

∂t
+ λ

∂

∂t

)
τ(x, y, t) = μ

(
 + λ

∂

∂t
+ λ

∂

∂t

)
∂w(x, y, t)

∂y

for τ(x, y, ) = , ()

where τ = Sxz(x, y, t) and τ = Syz(x, y, t) are the non-zero shear stresses.
The Darcy resistance R in a generalized Burgers fluid satisfies the following expression:

(
 + λ

∂

∂t
+ λ

∂

∂t

)
R = –

μφ

k

(
 + λ

∂

∂t
+ λ

∂

∂t

)
V, ()

where φ is the porosity and k is the permeability of the medium.
We assume that a uniform magnetic field of strength βo is applied to the fluid. We also

assume that the direction of the magnetic field is perpendicular to the velocity field.
Thus the Lorentz force due to the magnetic field becomes

J×B = –σB
V, ()

where σ is the electrical conductivity of the fluid.
The balance of linear momentum which governs the MHD flow through the porous

medium becomes

ρ
dV
dt

= ∇ · τ + J×B +R, ()

here ρ is the density.
We consider the unsteady flow of an incompressible generalized Burgers fluid over an

infinite flat plate between two parallel side walls separated by a distance d, perpendicular
to the plate. At time t = , the plate and the fluid are at rest. At time t = +, the plate applies
a pulsating shear to the fluid induced by rectified sine pulses.
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In view of Eqs. ()-(), the governing equation leads to

(
 + λ

∂

∂t
+ λ

∂

∂t

)
∂w(x, y, t)

∂t

= ν

(
 + λ

∂

∂t
+ λ

∂

∂t

)(
∂

∂x
+

∂

∂y

)
w(x, y, t)

–�

(
 + λ

∂

∂t
+ λ

∂

∂t

)
w(x, y, t) – ε

(
 + λ

∂

∂t
+ λ

∂

∂t

)
w(x, y, t), ()

where ν = μ

ρ
is the kinematic viscosity, � = σβ


ρ

is the magnetic parameter, and ε = νφ

k is
the porosity parameter.
We use the following appropriate initial conditions:

w(x, y, ) =
∂w(x, y, )

∂t
=

∂w(x, y, )
∂t

= , for x >  and y ∈ [,d], ()

the boundary conditions

(
 + λ

∂

∂t
+ λ

∂

∂t

)
τ(x, y, t)|x= = μ

(
 + λ

∂

∂t
+ λ

∂

∂t

)
∂w(x, y, t)

∂x

∣∣∣
x=

=Uf (t)

for y ∈ (,d) and t > , ()

w(x, , t) = w(x,d, t) =  for x, t > , ()

and the natural conditions

w(x, y, t) =
∂w(x, y, t)

∂x
→  as x→ ∞, y ∈ [,d], t > . ()

According to the nature of the applied stress, we assume that the mathematical form of
the function f (t) is []

f (t) = sin

(
π

T
t
)
H(t) + 

∞∑
p=

(–)p sin

(
π

T
(t – pT)

)
HpT (t), p >  and T > , ()

where H(·) is the Heaviside unit step function of period T and is defined as

HpT (t) =  for t ≤ pT and HpT (t) =  for t > pT .

In order to solve the problem, we use the Laplace transform technique and Fourier co-
sine and sine transforms in this order.

3 Calculation of velocity field
Applying the Laplace transform to Eq. (), we obtain the following problem:

(
 + λq + λq

)
qw̄(x, y,q)

= ν
(
 + λq + λq

)(∂w̄(x, y,q)
∂x

+
∂w̄(x, y,q)

∂y

)

–�
(
 + λq + λq

)
w̄(x, y,q) – ε

(
 + λq + λq

)
w̄(x, y,q). ()

http://www.boundaryvalueproblems.com/content/2014/1/152


Sultan et al. Boundary Value Problems 2014, 2014:152 Page 5 of 25
http://www.boundaryvalueproblems.com/content/2014/1/152

The Laplace transform w̄(x, y,q) of the function w(x, y, t) has to satisfy the conditions

(
 + λq + λq

)
τ̄(x, y,q)|x=

= μ
(
 + λq + λq

)∂w̄(x, y,q)
∂x

∣∣∣
x=

=U
π
T

q + π

T

(
 + 

∞∑
p=

(–)p exp(–pTq)

)
for y ∈ [,d], ()

w̄(x, ,q) = w̄(x,d,q) =  for x > , ()

w̄(x, y,q) =
∂w̄(x, y,q)

∂x
→  as x → ∞, y ∈ (,d). ()

Multiplying both sides of Eq. () by
√


π

cos(ξx) sin(λny), where λn = nπ
d , integratingwith

respect to x and y from  to∞ and  to d, respectively, and bearing inmind the conditions
()-(), we find that

w̄n(ξ ,q) =
√


π

U
ρ

((–)n – )
λn

× /
((

λq +
(
λ + νλ

(
ξ  + λ

n
)
+ λ� + λε

)
q

+
(
 + νλ

(
ξ  + λ

n
)
+ λ� + λε

)
q + ν

(
ξ  + λ

n
)
+� + ε

))

×
π
T

(q + ( π
T ))

(
 + 

∞∑
p=

(–)p exp(–pTq)

)
, ()

where

w̄n(ξ ,q) =
√


π

∫ ∞



∫ d


w̄(x, y,q) cos(ξx) sin(λny)dydx; n = , , , . . . . ()

Equation () can also be written as

w̄n(ξ ,q) =
√


π

U
ρ

((–)n – )
λn

[


q + q,n(ξ )

–

λ

(
φ,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))(q – q,n(ξ ))

+
φ,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))(q – q,n(ξ ))

+
φ,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))(q – q,n(ξ ))

–
φ,n(ξ )

(q,n(ξ ) + q,n(ξ ))(q,n(ξ ) + q,n(ξ ))(q,n(ξ ) + q,n(ξ ))(q + q,n(ξ ))

)]

×
π
T

(q + ( π
T ))

(
 + 

∞∑
p=

(–)p exp(–pTq)

)
, ()
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where

q,n(ξ ) = ν
(
ξ  + λ

n
)
+� + ε,

qi,n(ξ ) = si,n(ξ ) –
λ + νλ(ξ  + λ

n) + λ� + λε

λ


,

φi,n(ξ ) = λqi,n(ξ ) +
(
λ + νλ

(
ξ  + λ

n
)
+ λ� + λε

)
qi,n(ξ )

+
(
νλ

(
ξ  + λ

n
)
+ λ� + λε

)
qi,n(ξ ), i = , , , and

φ,n(ξ ) = –λq,n(ξ ) +
(
λ + νλ

(
ξ  + λ

n
)
+ λ� + λε

)
qi,n(ξ )

–
(
νλ

(
ξ  + λ

n
)
+ λ� + λε

)
qi,n(ξ ).

()

In the above relations

s,n(ξ ) =
(
–

β,n(ξ )


+
√
(β,n(ξ ))


+
(α(ξ ))



)/

+
(
–

β,n(ξ )


–
√
(β,n(ξ ))


+
(α,n(ξ ))



)/

, ()

s,n(ξ ) = Z
(
–

β,n(ξ )


+
√
(β,n(ξ ))


+
(α,n(ξ ))



)/

+ Z
(
–

β,n(ξ )


–
√
(β,n(ξ ))


+
(α,n(ξ ))



)/

, ()

s,n(ξ ) = Z
(
–

β,n(ξ )


+
√
(β,n(ξ ))


+
(α,n(ξ ))



)/

+ Z
(
–

β,n(ξ )


–
√
(β,n(ξ ))


+
(α,n(ξ ))



)/

, ()

where

α,n(ξ ) =
 + νλ(ξ  + λ

n) + λ� + λε

λ
–
(λ + νλ(ξ  + λ

n) + λ� + λε)

λ


, ()

β,n(ξ ) =
ν(ξ  + λ

n) +� + ε

λ
+ 

( + νλ(ξ  + λ
n) + λ� + λε)

λ


–
(λ + νλ(ξ  + λ

n) + λ� + λε)( + νλ(ξ  + λ
n) + λ� + λε)

λ


, ()

and

Z =
– + i

√



. ()

To solve Eq. (), let us take

Hn(q) =
π
T

(q + ( π
T ))(q – q,n(ξ ))

+ 
∞∑
p=

(–)p
π
T

(q + ( π
T ))(q – q,n(ξ ))

exp(–pTq), ()
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and

Gn(q) =
π
T

(q + ( π
T ))(q – q,n(ξ ))

, ()

we can prove that

gn(t) = L–
(
Gn(q)

)
= πT

exp(q,n(ξ )t)
π + Tq,n(ξ )

–


π + Tq,n(ξ )

(
Tq,n(ξ ) sin

(
π t
T

)
+ πT cos

(
π t
T

))
. ()

The inverse Laplace transform of Eq. (), using Eq. (), is given by

Hn(ξ , t) = πT
exp(q,n(ξ )t)
π + Tq (ξ )

H(t)

–


π + Tq,n(ξ )

(
Tq(ξ ) sin

(
π t
T

)
+ πT cos

(
π t
T

))
H(t) + 

∞∑
p=

(–)p

×
[
πT

exp(q,n(ξ )(t – pT))
π + Tq,n(ξ )

–


π + Tq,n(ξ )

(
Tq,n(ξ ) sin

(
π (t – pT)

T

)

+ πT cos

(
π (t – pT)

T

))]
HpT (t). ()

Inversion of Eq. () by means of the Laplace formula and Fourier cosine and sine trans-
forms and using Eq. () result in

w(x, y, t) =

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

[
πT

{
exp[–q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
–q,n(ξ )(t – pT)

)
HpT (t)

)}

+
T

π + Tq,n(ξ )
(
Tq,n(ξ )F(t) – πF(t)

)]
dξ

–

d

∞∑
n=

√

π

sin(λny)
∫ ∞


An(ξ ) cos(ξx)

[
πT

{
ψ,n(ξ )

exp[q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

+ψ,n(ξ )
exp[q,n(ξ )t]

π + Tq,n(ξ )

(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

+ψ,n(ξ )
exp[q,n(ξ )t]

π + Tq,n(ξ )

(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

–ψ,n(ξ )
exp[–q,n(ξ )t]
π + Tq,n(ξ )
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×
(
H(t) + 

∞∑
p=

(–)p exp
(
–q,n(ξ )(t – pT)

)
HpT (t)

)}

– F(t)T
(

q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

–
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

)

– F(t)πT
(

ψ,n(ξ )
π + Tq,n(ξ )

+
ψ,n(ξ )

π + Tq,n(ξ )

+
ψ,n(ξ )

π + Tq,n(ξ )
+

ψ,n(ξ )
π + Tq,n(ξ )

)]
dξ , ()

where

ψ,n(ξ ) =
φ,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

ψ,n(ξ ) =
φ,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

ψ,n(ξ ) =
φ,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

ψ,n(ξ ) =
φ,n(ξ )

(q,n(ξ ) + q,n(ξ ))(q,n(ξ ) + q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

()

F(t) = sin

(
π t
T

)
H(t) + 

∞∑
p=

(–)p sin

(
π

T
(t – pT)

)
HpT (t),

Bn(ξ ) =
√


π

U
ρ

((–)n – )
λn

,

()

F(t) = cos

(
π t
T

)
H(t) + 

∞∑
p=

(–)p cos

(
π

T
(t – pT)

)
HpT (t),

An(ξ ) =
√


π

U
ρ

((–)n – )
λnλ

.

()

The first part of Eq. () gives the corresponding solution for a Newtonian fluid, while the
second part gives the corresponding non-Newtonian contribution.
The transient part of velocity forRe(q,n(ξ )),Re(q,n(ξ )),Re(q,n(ξ )) < ,Re(q,n(ξ )) >  is

wt(x, y, t)

=

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

×
[

πT
π + Tq,n(ξ )

(
H(t) + 

∞∑
p=

(–)pHpT (t)

)]

–

d

∞∑
n=

√

π

sin(λny)
∫ ∞


An(ξ ) cos(ξx)
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×
[
πT

{
ψ,n(ξ )

π + Tq,n(ξ )
+

ψ,n(ξ )
π + Tq,n(ξ )

+
ψ,n(ξ )

π + Tq,n(ξ )
–

ψ,n(ξ )
π + Tq,n(ξ )

}(
H(t) + 

∞∑
p=

(–)pHpT (t)

)]
dξ , ()

while the steady state part is given by

ws(x, y, t) =

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

×
[

T
π + Tq,n(ξ )

(
Tq,n(ξ )F(t) – πF(t)

)]
dξ

+
T
d

∞∑
n=

√

π

sin(λny)
∫ ∞


An(ξ ) cos(ξx)

×
[

ψ,n(ξ )
π + Tq,n(ξ )

(
TF(t)q,n(ξ ) + πF(t)

)

+
ψ,n(ξ )

π + Tq,n(ξ )
(
TF(t)q(ξ ) + πF(t)

)

+
ψ,n(ξ )

π + Tq,n(ξ )
(
TF(t)q,n(ξ ) + πF(t)

)

–
ψ,n(ξ )

π + Tq,n(ξ )
(
TF(t)q,n(ξ ) – πF(t)

)]
dξ . ()

4 Calculation of tangential stresses
Toobtain the expressions for the shear stresses τ(x, y, t) and τ(x, y, t), applying the Laplace
transform to Eqs. () and (), we have the expressions

τ̄(x, y,q) = μ
( + λq + λq)
( + λq + λq)

∂w̄(x, y,q)
∂x

,

τ̄(x, y,q) = μ
( + λq + λq)
( + λq + λq)

∂w̄(x, y,q)
∂y

.
()

From Eq. (), with inverse Fourier cosine and sine transforms, we have

w̄(x, y,q) =

d

∞∑
n=

√

π
An(ξ ) sin(λny)

∫ ∞


cos ξx


(q – q,n(ξ ))(q – q,n(ξ ))(q – q,n(ξ ))

×
π
T

(q + ( π
T ))

(
 + 

∞∑
p=

(–)p exp(–pTq)

)
dξ . ()

Using Eq. () in the set of Eq. (), we have

τ̄(x, y,q) = –
μ
d

∞∑
n=

√

π
An(ξ ) sin(λny)

×
∫ ∞



ξ sin ξx( + λq + λq)
( + λq + λq)(q – q,n(ξ ))(q – q,n(ξ ))(q – q,n(ξ ))

http://www.boundaryvalueproblems.com/content/2014/1/152
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×
π
T

(q + ( π
T ))

(
 + 

∞∑
p=

(–)p exp(–pTq)

)
dξ , ()

τ̄(x, y,q) =
μ
d

∞∑
n=

√

π

λnAn(ξ ) cos(λny)

×
∫ ∞



cos ξx( + λq + λq)
( + λq + λq)(q – q,n(ξ ))(q – q,n(ξ ))(q – q,n(ξ ))

×
π
T

(q + ( π
T ))

(
 + 

∞∑
p=

(–)p exp(–pTq)

)
dξ . ()

Let us take

Ā(q) =
 + λq + λq

 + λq + λq
, ()

which can also be written in the form

Ā(q) = a + a
q + a

(q + a) – b
+ a

b
(q + a) – b

, ()

where

a =
λ

λ
, a =

λ

λ
, a =

λλ – λλ

λ


,

a =
λ(λ – λ) – λ(λλ – λλ)

λ

√

λ
 – λ

, b =
√

λ
 – λ

λ
,

()

where λ
 – λ > .

Applying the inverse Laplace transform to Eq. (), we obtain

A(t) = a + a cosh(bt) exp(–at) + a sinh (bt) exp(–at). ()

Let

τ (M,N , t) = (A ∗ B)(t) =
∫ t


A(t – q)B(M,N ,q)dq. ()

Employing the methodology as for the velocity field, the inverse Laplace transform of Eqs.
() and () results in

τ(x, y, t) = –
μ
d

∞∑
n=

√

π
An(ξ ) sin(λny)

∫ ∞


ξ sin ξx

∫ t



(
a +

(
a cosh

(
b(t – q)

)

+ a sinh
(
b(t – q)

))
exp

(
–a(t – q)

))

×
[
πT

{
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

http://www.boundaryvalueproblems.com/content/2014/1/152
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×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)}

– F(q)T
(

q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q(ξ )η,n(ξ )
π + Tq(ξ )

)

– F(q)πT
(

η,n(ξ )
π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )

)]
dqdξ , ()

τ(x, y, t) =
μ
d

∞∑
n=

√

π

λnAn(ξ ) cos(λny)
∫ ∞


cos ξx

∫ t



(
a +

(
a cosh

(
b(t – q)

)

+ a sinh
(
b(t – q)

))
exp

(
–a(t – q)

))

×
[
πT

{
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)}

– F(q)T
(

q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q(ξ )η,n(ξ )
π + Tq(ξ )

)

– F(q)πT
(

η,n(ξ )
π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )

)]
dqdξ , ()

where

η,n(ξ ) =


(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))
,

η,n(ξ ) =


(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))
,

η,n(ξ ) =


(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) – q,n(ξ ))
,

the shear stresses for the generalized Burgers fluid.

http://www.boundaryvalueproblems.com/content/2014/1/152
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5 Limiting cases
5.1 Burgers fluid
Letting λ = , we obtain the velocity field and the associated shear stresses corresponding
to a Burgers fluid performing the same motion.

5.2 Oldroyd-B fluid
Letting λ = λ =  into Eq. (), and following the same way as before, the velocity and
tangential stresses expressions for Oldroyd-B fluid take the form

wO(x, y, t) =

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

[
πT

{
exp[–q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
–q,n(ξ )(t – pT)

)
HpT (t)

)}

+
T

π + Tq,n(ξ )
(
Tq,n(ξ )F(t) – πF(t)

)]
dξ

–

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

×
[
πT

{
ψ,n(ξ )

exp[q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

+ψ,n(ξ )
exp[q,n(ξ )t]

π + Tq,n(ξ )

(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

–ψ,n(ξ )
exp[–q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
–q,n(ξ )(t – pT)

)
HpT (t)

)}

– F(t)T
(
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

–
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

)

– F(t)πT
(

ψ,n(ξ )
π + Tq,n(ξ )

+
ψ,n(ξ )

π + Tq,n(ξ )
+

ψ,n(ξ )
π + Tq,n(ξ )

)]
dξ , ()

τO(x, y, t) = –
μ
d

∞∑
n=

√

π
An(ξ ) sin(λny)

∫ ∞


ξ sin ξx

×
[
πT

{
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

http://www.boundaryvalueproblems.com/content/2014/1/152
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+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[– q

λ
]

π + ( T
λ
)

(
H(q) + 

∞∑
p=

(–)p exp

(
pT
λ

)
HpT (q)

)}

– F(q)T
(

q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

–

λ

η,n(ξ )
π + ( T

λ
)

)

– F(q)πT
(

η,n(ξ )
π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )
+

η,n(ξ )
π + ( T

λ
)

)]
dξ , ()

τO(x, y, t) =
μ
d

∞∑
n=

√

π

λnAn(ξ ) cos(λny)
∫ ∞


cos ξx

×
[
πT

{
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[– q

λ
]

π + ( T
λ
)

(
H(q) + 

∞∑
p=

(–)p exp

(
pT
λ

)
HpT (q)

)}

– F(q)T
(

q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

–

λ

η,n(ξ )
π + ( T

λ
)

)

– F(q)πT
(

η,n(ξ )
π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )
+

η,n(ξ )
π + ( T

λ
)

)]
dξ , ()

where

ψ,n(ξ ) =
λq,n(ξ ) + (νλ(ξ  + λ

n) + λ� + λε)q,n(ξ )
(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))

,

ψ,n(ξ ) =
λq,n(ξ ) + (νλ(ξ  + λ

n) + λ� + λε)q,n(ξ )
(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))

,

ψ,n(ξ ) =
λq,n(ξ ) – (νλ(ξ  + λ

n) + λ� + λε)q,n(ξ )
(q,n(ξ ) + q,n(ξ ))(q,n(ξ ) + q,n(ξ ))

,

()

q,n(ξ ),q,n(ξ )

=
(
–
(
 + νλ

(
ξ  + λ

n
)
+ λ� + λε

)

±
√(

 + νλ
(
ξ  + λ

n
)
+ λ� + λε

) – λ
(
νλ

(
ξ  + λ

n
)
+ λ� + λε

))/
(λ),

()
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η,n(ξ ) =
λ – λ

( + λq,n(ξ ))( + λq,n(ξ ))
,

η,n(ξ ) =
 + λq,n(ξ )

( + λq,n(ξ ))(q,n(ξ ) – q,n(ξ ))
,

()

η,n(ξ ) =
 + λq,n(ξ )

( + λq,n(ξ ))(q,n(ξ ) – q,n(ξ ))
. ()

5.3 Maxwell fluid
Letting λ =  in the set of equations for Oldroyd-B fluid, we obtain the corresponding
expressions for the Maxwell fluid:

wM(x, y, t) =

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

[
πT

{
exp[–q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
–q,n(ξ )(t – pT)

)
HpT (t)

)}

+
T

π + Tq,n(ξ )
(
Tq,n(ξ )F(t) – πF(t)

)]
dξ

–

d

∞∑
n=

√

π

sin(λny)
∫ ∞


Bn(ξ ) cos(ξx)

[
πT

{
ψ,n(ξ )

exp[q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

+ψ,n(ξ )
exp[q,n(ξ )t]

π + Tq,n(ξ )

(
H(t) + 

∞∑
p=

(–)p exp
(
(t – pT)q,n(ξ )

)
HpT (t)

)

–ψ,n(ξ )
exp[–q,n(ξ )t]
π + Tq,n(ξ )

×
(
H(t) + 

∞∑
p=

(–)p exp
(
–q,n(ξ )(t – pT)

)
HpT (t)

)}

– F(t)T
(
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

–
q,n(ξ )ψ,n(ξ )
π + Tq,n(ξ )

)

– F(t)πT
(

ψ,n(ξ )
π + Tq,n(ξ )

+
ψ,n(ξ )

π + Tq,n(ξ )

+
ψ,n(ξ )

π + Tq,n(ξ )

)]
dξ , ()

τM(x, y, t) = –
μ
d

∞∑
n=

√

π
An(ξ ) sin(λny)

∫ ∞


ξ sin ξx

×
[
πT

{
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)
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+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[– q

λ
]

π + ( T
λ
)

(
H(q) + 

∞∑
p=

(–)p exp

(
pT
λ

)
HpT (q)

)}

– F(q)T
(

q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

–

λ

η,n(ξ )
π + ( T

λ
)

)

– F(q)πT
(

η,n(ξ )
π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )
+

η,n(ξ )
π + ( T

λ
)

)]
dξ , ()

τM(x, y, t) =
μ
d

∞∑
n=

√

π

λnAn(ξ ) cos(λny)
∫ ∞


cos ξx

×
[
πT

{
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

×
(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[q,n(ξ )q]

π + Tq,n(ξ )

(
H(q) + 

∞∑
p=

(–)p exp
(
–pTq,n(ξ )

)
HpT (q)

)

+
η,n(ξ ) exp[– q

λ
]

π + ( T
λ
)

(
H(q) + 

∞∑
p=

(–)p exp

(
pT
λ

)
HpT (q)

)}

– F(q)T
(

q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

+
q,n(ξ )η,n(ξ )
π + Tq,n(ξ )

–

λ

η,n(ξ )
π + ( T

λ
)

)

– F(q)πT
(

η,n(ξ )
π + Tq,n(ξ )

+
η,n(ξ )

π + Tq,n(ξ )
+

η,n(ξ )
π + ( T

λ
)

)]
dξ , ()

where

ψ,n(ξ ) =
λq,n(ξ ) + λ�q,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

ψ,n(ξ ) =
λq,n(ξ ) + λ�q,n(ξ )

(q,n(ξ ) – q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

ψ,n(ξ ) =
λq,n(ξ ) – λ�q,n(ξ )

(q,n(ξ ) + q,n(ξ ))(q,n(ξ ) + q,n(ξ ))
,

()

q,n(ξ ),q,n(ξ ) =
–( + λ�)± √

( + λ�) – λ
�

λ
, ()

η,n(ξ ) =
λ

( + λq,n(ξ ))( + λq,n(ξ ))
,

η,n(ξ ) =


( + λq,n(ξ ))(q,n(ξ ) – q,n(ξ ))
,

()

η,n(ξ ) =


( + λq,n(ξ ))(q,n(ξ ) – q,n(ξ ))
. ()
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Figure 1 Velocity profile for generalized Burgers fluid for different values of x and d. Other
parameters and values are taken as ρ = 975, x = 0.01, y = d

2 , μ = 3.9, T = π
4 , U = 15, λ1 = 3, λ2 = 2,

λ3 = 0.5, λ4 = 2, ε = 1.7, and � = 3.
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Figure 2 Velocity profile for a generalized Burgers fluid for different values of x and y. Other
parameters and values are taken as ρ = 975, d = 0.2, μ = 3.9, T = π

4 , U = 15, λ1 = 3, λ2 = 2, λ3 = 0.5,
λ4 = 2, ε = 0.3, and � = 0.5.
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Figure 3 Diagrams of the velocity for different values of the parameter �. Comparison between five
models.

6 Results and discussion
The present problem is concerned with unsteady motion of the generalized Burgers fluid
generated from rest induced by rectified sine pluses shear stress. The Laplace transform
technique and Fourier cosine and sine transforms have been used as mathematical tools
in this order. The obtained expression for the velocity field has been written as the sum of
Newtonian and non-Newtonian contributions.
By using the numerical calculations and graphical illustrations, the following physical

aspects of the fluid behavior have been analyzed:
(a) Influence of side walls on the velocity field.
In order to study the influence of the side walls on the fluid velocity we prepared the

diagrams contained in Figures  and . These diagrams present the velocity field w(x, y, t)
for three values of the distance x at the bottomplate. It is seen that if d = . (small distance
between walls), the amplitude of oscillation of velocity in the middle of the channel is

http://www.boundaryvalueproblems.com/content/2014/1/152
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Figure 4 Diagrams of the velocity for different values of the parameter ε . Comparison between five
models.

small. By increasing the value of d, the amplitude of oscillation of velocity increases. But it
exists up to a value of . (in our case) after which the velocity remains the same (velocity
profiles are almost identical) if d increases. Therefore, in the considered case, after d = .
the influence of the side walls on the velocity is negligible. In Figure  have been sketched
the velocity profiles for different positions in the channel, starting from the side walls till
the middle of the channel, i.e. for different values of the variable y, for a fixed distance
between the side walls. The amplitude of oscillations decreases far from the plate. It is
also observed that, if the bottom plate is set into oscillation, the velocity increases with
respect to the y-coordinate, from zero to a maximum in the middle of the channel.
(b) Comparative study of various models.
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Figure 5 Diagrams of the velocity for different values of the parameter T . Comparison between five
models.

Figures , , and  are sketched in order to compare the various fluid types. Also, the in-
fluence of the magnetic field, permeability and the period of oscillation of sawtooth pulses
on the velocity field can be observed from these diagrams. In these figures, we have con-
sidered the following values of the parameters:U = , λ = ., λ = , λ = ., λ = .,
x = ., d = ., y = d/, ν = ., μ = ..
Figure  shows the diagrams of velocity w(x, y, t), versus t, for the porosity parame-

ter ε = ., the pulse period T = π
 , and for three values of the magnetic parameter,

� = ., ., .. It is observed that there is a time interval in which the velocity has an os-
cillating behavior for all kinds of fluids. After thismoment, the velocity tends to a common
value (the differences between velocities of different fluids are insignificant). For low val-
ues of themagnetic field strength, the amplitudes of the velocity oscillations are smaller for
the generalized Burgers, Oldroyd-B, and Newtonian fluids, and much larger for Maxwell
and Burgers fluids (see diagrams for � = .). If the magnetic field is stronger, the ve-
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Figure 6 The influence of the parameter λ1 on the velocity field for x = 0.25, d = 0.50, y = 0.25 and
λ2 = 2, λ3 = 0.5, λ4 = 2.

locity amplitudes of Maxwell and Burgers fluids decrease while, the velocity amplitudes
of generalized Burgers and Newtonian fluids increase (case � = .). It is important to
note that velocities of the fluids tend to a common value in shorter time if the magnetic
field is stronger. Figure  is plotted for � = ., T = π

 and for three values of the porosity
parameter ε = ., ., .. In this case, amplitudes of the velocity oscillations of the gen-
eralized Burgers, Oldroyd-B, and Newtonian fluids are lower than those corresponding to
the Burgers and Maxwell fluids.
Increasing permeability leads to increase the velocity amplitudes. The effect of the pulse

period T on the velocity field is shown in Figure  for � = ., ε = . and three values of
the parameterT = ., ., .. The Burgers fluid oscillates with larger amplitude, while
other fluids have oscillations with amplitude close as order of magnitude. For low values
of the parameter T , velocities tend to a common value in a shorter time than in the case
of large values of the parameter T .
(c) Influence of parameters λ, λ, λ, λ on the velocity field.
In order to study the behavior of the fluid for various values of the material parameters

λ, λ, λ, λ, the diagrams of the velocity field from Figures , ,  and  were plotted. In
these figures we used the numerical valuesU = , x = ., d = ., y = π

 , T = π
 , ρ = ,

μ = ., ε = , and three values for the magnetic parameter, namely � = ., ., ..
Therefore, the influence of the magnetic parameter on the velocity field is also analyzed
and, similar conclusions to those from the case b) were obtained. In Figure  the param-
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Figure 7 The influence of the parameter λ2 on the velocity field for x = 0.25, d = 0.50, y = 0.25 and
λ1 = 2, λ3 = 0.5, λ4 = 2.

eter λ is variable and parameters λ, λ, λ are constant. It can be seen that, if the values
of the parameter λ increase, the fluid flows more slowly. Also, be noted that for the same
value of the parameter λ, the increasing of magnetic parameter values result in decreas-
ing velocity of fluid flow (the velocity amplitudes decrease if the values of the magnetic
parameter increase). Figure  corresponds to the variation of the parameter λ. Unlike
the previous case when λ is variable, in this case the velocity amplitudes are higher in
the early period of the movement. Another difference appears in the behavior of the fluid,
namely, velocity amplitudes increase if the parameter λ increases. In this case, for a con-
stant value of the parameter λ, the increasing of the magnetic field strength leads to at-
tenuated fluid motion. The diagrams of Figure  correspond to the variable parameter
λ. It is clear that the fluid behavior is similar to the case of the variation of the param-
eter λ. For increasing values of the parameter λ, the fluid velocity amplitudes decrease
and, also, if λ remains constant and the values of the magnetic parameter increase, then
the fluid flowsmore slowly. The influence of the parameter λ on the fluid velocity is shown
in Figure . The fluid behavior is similar like in the cases of variations of parameters λ

and λ.

7 Conclusions
The purpose of this work is to provide exact solutions for the velocity field as well as
shear stresses corresponding to the oscillating flow of a generalized Burgers fluid be-
tween two parallel side walls over a plate. The oscillation is induced by rectified sine
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Figure 8 The influence of the parameter λ3 on the velocity field for x = 0.25, d = 0.50, y = 0.25 and
λ1 = 2, λ2 = 2, λ4 = 2.

pulses shear stress applied to the bottom plane. These solutions, presented as a sum of
the Newtonian and non-Newtonian contributions, are obtained by using Fourier cosine
and sine transforms, and the Laplace transform. The main findings are summarized as
follows:
• The amplitude of oscillation of velocity in the middle of the channel is small. With the
increase of distance between the walls, the amplitude of oscillation of velocity
increases.

• Amplitude of oscillations decreases far from the plate. As the bottom plate is set into
oscillation, with respect to y-coordinate, the velocity increases from zero to a
maximum in the middle of the channel.

• Velocities of all the fluids tend to a common value in shorter time if the magnetic field
is stronger.

• Increasing permeability leads to the increasing magnitudes of amplitudes of velocity.
• For low values of the time period T , velocities tend to a common value in a shorter
time as compared to large values of the parameter T .

• As the values of the parameters λ, λ, and λ increase, the fluid flows more slowly
whereas behavior of λ is opposite.
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Figure 9 The influence of the parameter λ2 on the velocity field for x = 0.25, d = 0.50, y = 0.25 and
λ1 = 2, λ2 = 2, λ3 = 0.5.
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