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Abstract

This paper deals with the critical quasilinear elliptic problem

“Apju=p ‘“l‘fl;zu +QX) '“'plx(lj?z“ +h()|ul92uin RY, where A,u = div(|VulP~u) is the
p-Laplacian, 1 <p<N,0 < < mwith T = (2,0 < s < p < q < p*(s), p*(5) = G2,

and Q and h are measurable functions satisfying some symmetry conditions with
respect to a closed subgroup G of O(N). By variational methods and the symmetric
criticality principle of Palais, we establish several existence and multiplicity results of
positive G-symmetric solutions under certain appropriate hypotheses on Q, h, and g.
MSC: 35J25;35J60; 35J65
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1 Introduction
In recent years, considerable attention has been paid to the following nonlinear elliptic

problem with singular potential and critical Sobolev exponent:

—Au= Hﬁ +u* Pu+ f(x,u), ing,

u=0, on 092,

(1.1)

where Q@ C RN (N > 3) is a smooth domain (bounded or unbounded) containing the ori-
N

gin, 0 < u < (%)2, 2% & x5 is the critical Sobolev exponent, and f : 2 x R~ R is a
measurable function with subcritical growth. The main reason of interest in singular po-
tentials relies in their criticality: they have the same homogeneity as the Laplacian and
the critical Sobolev exponent and do not belong to the Kato class, hence they cannot be
regarded as the lower order perturbation terms. We also mention that (1.1) is related to
applications in many physical contexts: fluid mechanics, glaciology, molecular physics,
quantum cosmology and linearization of combustion models (see [1] for example). So for
this reason, many existence, nonexistence, and multiplicity results for equations like (1.1)
have been obtained with various hypotheses on the measurable function f(x, «); we re-
fer the readers to [2—8] and the references therein. Moreover, for other results on this
aspect, see [9] for boundary singularities, [10] for high-order nonlinearity, [11] for non-
autonomous Schrédinger-Poisson systems in R3, [12] for singular elliptic systems in R?,
and [13] for large singular sensitivity etc.
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Recently, Deng and Jin [14] studied the existence of nontrivial solutions of the following
singular semilinear elliptic problem:

u u2*(s)—1
—Au=p— +k(x)——, and u>0 inRY, (1.2)
|%]2 |x[*

where u € [0, ( 2)2), s € [0,2), are constants, N > 2, 2*(s) = ;[VZS), and k fulfills cer-
tain symmetry condltlons with respect to a subgroup G of O(N). By the concentration-
compactness principle in Refs. [15, 16] and variational methods, the authors obtained the
existence and multiplicity of G-symmetric solutions under some assumptions on k. Very
recently, Deng and Huang [17-19] extended the results in Ref. [14] to nonlinear singular el-
liptic problems in a bounded G-symmetric domain. We also mention that when t =s=0
“u*©1 is replaced by ! (1<r< 2 orr=2)in
(1.2), the existence and multiplicity of G-symmetric solutions of (1.2) were obtained in
Refs. [20—-22]. Finally, when G = O(N), we remark that Su and Wang [23] established the

existence of nontrivial radial solutions for a class of quasilinear singular equations such as

and the right-hand side term |x|

(1.2) by proving several new embedding theorems.
Motivated by Deng and Jin [14], Bianchi et al. [20], and Su and Wang [23], in this work
we investigate the following critical quasilinear problem with singular potential:

|ulPu Juf” 2 P
—Aju=p TP + Q(x) P +h(x)|u| %y inRN, 1.3)

where A,u = diV(|Vu|1"2u) is the p-Laplacian, 1<p <N, 0 < u < [, with it = (pr)p 0<
* A NP

N-p
is the critical Sobolev exponent Q and /1 are G-symmetric functions (see Section 2 for de-

s<p<q<p*(s),p*(s) = p is the critical Hardy-Sobolev exponent and p*(0) = p

tails) satisfying some appropriate conditions which will be specified later. Problem (1.3) is
in fact a continuation of (1.2). However, due to the nonlinear perturbation /(x)|x|7 21 and

the singularities caused by the terms — and IS’ compared with the semilinear equation

(1.2), the critical quasilinear equatlon| |(1 3) becomes more complicated to deal with and
we have to overcome more difficulties in the study of G-symmetric solutions. As far as we
know, there are few results on the existence of G-symmetric solutions for (1.3) as u # 0,
p #2,and k # 0. Hence, it makes sense for us to investigate problem (1.3) thoroughly. Let
Q > 0 be a constant. Note that here we will try to treat both the cases of /2 = 0, Q(x) # Q,
and 7 #0, Q(x) = Q.

This paper is organized as follows. In Section 2, we will establish the appropriate Sobolev
space which is applicable to the study of problem (1.3), and we will state the main results of
this paper. In Section 3, we detail the proofs of some existence and multiplicity results for
the cases # = 0 and Q(x) # Q in (1.3). In Section 4, we give the proofs of existence results
for the cases /2 # 0 and Q(x) = Q in (1.3). Our methods in this paper are mainly based upon
the symmetric criticality principle of Palais (see [24]) and variational arguments.

2 Preliminaries and main results

Let O(N) be the group of orthogonal linear transformations of RN with natural action and
let G C O(N) be a closed subgroup. For x # 0 we denote the cardinality of G, = {gx;g €
G} by |G,| and set |G| = inf_,gn |G,|. Note that here |G| may be +0co. For any function
f:RN - R, We call f(x) a G-symmetric function if for all g € G and x € RV, f(gx) = f(x)
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holds. In particular, if f is radially symmetric, then the corresponding group G is O(N) and
|G| = +00. Other further examples of G-symmetric functions can be found in Ref. [14].

Let 2'7(RN) denote the closure of CS°(RN) functions with respect to the norm
( f]RN |Vul? dx)VP. We recall that the well-known Hardy-Sobolev inequality (see [3, 25])
asserts that for all u € 2"(RY), there is a constant C = C(N, p,s) > 0 such that

lu |p* (s) pIp*(s)
(/ ™ dx) < C/ |Vul? dx, (2.1)
RN x5 RN
where 1 < p <N, 0 <s < p, and p*(s) = %. If s = p, then p*(s) = p and the following

Hardy inequality holds (see [2, 25]):

s 1
Jul? dx < — |Vul? dx, Yue Ql‘p(RN), (2.2)
RN %l R Jryn

where 1 = (%)p. Now we employ the following norm in 27 (RN):

A Py 1" _
”u”u: |vu|p—l$— dx , O0<wu<nm.
RN |x|?

By the Hardy inequality (2.2), we easily see that the above norm is equivalent to the usual
norm (fpn | Vul? dx)'/?.

The natural functional space to study problem (1.3) is the Banach space Qép (RN) which
is the subspace of 2 (RN) consisting of all G-symmetric functions. In this paper we con-
sider the following problems:

Ay = p e "2y -2,  inRN
(3th) AP” =K +Q(x) PR +h(x)|u|?*u, inRY,
ue Qép(RN), and u > 0, in RN,

To mention our main results, we need to introduce two notations .7, and y. (x), which are,
respectively, defined by

[P
g e IRV sy .
TGN ([ |l Slul )P0
and
N—
Ye(x) = Ce 7 u, (M) (2.4)
€

where € > 0, and the constant C = C(N, p, i1, s) > 0, depending only on N, p, i, and s. From
Kang [5], we see that y.(x) satisfies the equations

/]RN (IVyel =l Plyel?) dxe = 1 (25)

and

P

/ O vd = e, 7
R

/ (Il Vy Ty el Pyl o) d
R
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for all v € 2% (RN). In particular, we have (let v = y,)

_N-s
/R 7y O dx = o, V7. (2.6)

The function U, (x) = U, (|x]) in (2.4) is the unique radial solution of the following limiting
problem (see [5, Lemma 2.3]):

~Apu=pts o2, inRV\(0),

|x[*

ue Z"([RY), andu>0, inRYV\{0},
satisfying

(N =8)(@—p)\ 7o
U“(l)_( N-p ) '

Moreover, the following asymptotic properties at the origin and infinity for U, (r) and

U, () hold [5];
111% MU, (r)=C >0, 1in(1) U (r)| = Cim > 0, (2.7)
lim rU,(r)=Cy >0, lim r”2+1|LIl/L(r)} =Cans >0, (2.8)
r—+00 r—+00

where Cj, C, are positive constants and 7, = n1(N, p, i), 72 = 12(N, p, 0) are the zeros of
the function

nt)=p-DF -(N-p)# ' +pu, t>0,0<pu<p,

which satisfy

N — N —
P op<7P (2.9)
p-1

0<nmc<

We suppose that Q(x) and /(x) fulfill the following conditions.
(@) Qe CRN)NL*®(RYN),and Q(x) is G-symmetric.
(q-2) Q, %0, where Q, = max{0, Q}.
(h.1) A(x) is G-symmetric.
(h.2) h(x) is nonnegative and locally bounded in R¥\{0}, &(x) = O(|x|™) in the bounded

neighborhood & of the origin, k(x) = O(|x|™”) as |x| = 00,0 <s< ¥ < p,
(N-9),

N—pp :
The main results of this paper are the following.

p*(?) <q < p*(s), where p*(¥) =

Theorem 2.1 Suppose that (q.1) and (q.2) hold. If

*(s)
/ Q(x)yic's dxzmax{Q*ff’f,Q*(jf‘j), 1Qu 1 }>0 2.10)
RN

ANt g N G%d%
fh w o 1aGl 0

Jor some € > 0, where Q,(00) = limsupy,_, ., Q.(x), then problem (39(?) has at least one
positive solution in @ép (RN).
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Corollary 2.1 Suppose that (q.1) and (q.2) hold. Then we have the following statements.
(1) Problem (95) has a positive solution if

QO)>0,  Q(0) = max{Q.(00), (/) X7 |GIFF | Qs oo}

and either (i) Q(x) > Q(0) + o |x|™N**12P"®) for some o > 0 and |x| small or

(i) |Q(x) — Q(0)] < C|x|* for some constant C > 0, o > =N + 5 + nop*(s), x| small, and
/ (Q) = Q(0)) |x =" dx > 0. (2.11)
RN

(2) Problem (,@OQ) admits at least one positive solution if lim_, o Q(x) = Q(00) exists
and is positive,
N_:s

Q(00) = max{ Q. (0), (/) 7 |GIF7 Q. oo}

and either (i) Q(x) > Q(00) + & |x|™N**MP*6) for some o > 0 and large |x| or
(i) |Qx) — Q(0)| < Clx|™ for some constants C > 0, a > N —s — n1p*(s), large |x|,
and

/ (Q@) — Q(00)) x|~ dx > 0. (2.12)
RN
(3) If Q(x) > Q(o0) = Q(0) > 0 on RN and

Q(00) = Q(0) > (Hu/ Ap) N7 |G| Q.| oo

then problem (%? ) has at least one positive solution.

Theorem 2.2 Suppose that Q,(0) = Q,(00) = 0 and |G| = +oo. Then problem (QZOQ) has
infinitely many G-symmetric solutions.

Theorem 2.3 Let Q > 0 be a constant. Suppose that Q(x) = Q and (h.1) and (h.2) hold. If

s (2N - p—S—Pﬂz)P} (2.13)

{ (), N2
> max , ,
1 P 7 N-p

then problem (f@hQ) possesses at least one positive solution in @ép (RM).

Throughout this paper, we denote by @é‘p (RY) the subspace of 2'*(RN) consisting of
all G-symmetric functions. The dual space of Z.7(RN) (2"7(RYN), resp.) is denoted by
@;‘p/(]RN) (27 (RN), resp.), where 1% + 1% = 1. In a similar manner, we define 7. ()
for an open and G-symmetric subset of RY, that is, if x € 2, then gx € Q for allg € G. In
the case where 2 is bounded, we set WS:‘&(Q) = .@é’p (£2). The ball of center x and radius r
is denoted by B(x,r). We employ C, C; (i = 1,2,...) to denote the positive constants, and
denote by ‘—’ convergence in norm in a given Banach space X and by ‘—~’ weak conver-
gence. A functional J € C1(X, R) is said to satisfy the (PS), condition if each sequence {u,}
in X satisfying J(u,) — ¢, J'(4,) — 0 in X* has a subsequence which strongly converges
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to some element in X. Hereafter, L($2, |x|™5) denotes the weighted L”(£2) space with the
norm ( fQ |%|=¢ |u|" dx)Y'". Also, for nonnegative measurable function k(x), we denote by
L' (RN, k(x)) the space of measurable functions u satisfying ( fRN k(x)|u|” dx)V'" < 0.

3 Existence and multiplicity results for problem (935)
We associate with problem (@(? ) a functional .% : Qé'p (RN) — R given by

1 |u|? 1 lu |p*(s)

= — P _ o — _
F(u) p/RN(WuI ,u|x|p>dx 70 RNQ(x) e dx. (3.1)

By (q.1) and (2.1), we easily see that the functional .# € Cl(@é’p (RN),R). Now it is well
known that there exists a one-to-one correspondence between the weak solutions of prob-

lem (Wg) and the critical points of .%. More precisely, the weak solutions of (@3) are
exactly the critical points of .% by the principle of symmetric criticality of Palais (see
Lemma 3.1), namely u € Qép (RN) satisfies (@(? ) if and only if for all v € Z'7(RN), there
holds

p-2 p*(s)-2
/ |VulP2VuVy — MM—W dx — Q(x)|u|—uv dx=0. (3.2)
RN | [? RN |c[*

Lemma 3.1 Let Q(x) be a G-symmetric function; F'(u) =0 in .@él’p/ RN) implies F'(u) =
0 in 7 (RN).

Proof Similar to the proof of [20, Lemma 1] (see also [17, Lemma 3.1]). O

Lemma 3.2 Let {u,} be a weakly convergent sequence to u in @ép (RN) such that |Vu,|P —
S x5 77O — v, and x| P |u,|P — 7V in the sense of measures. Then there exists some at
most countable set 7, {s; > O}jc_gujo)s (v = O}je_sugop Vo = 0, {wj}je # C RN\ {0} such
that

@) ¢ =1[Vul’ + 3 ; oy + Sodo,

(b) v =[x |uf"® + Zje/ Vibx; + VoS0,

(© V= x| Pul? + Vb0,

(@ " <,

(&) A" < ¢o - Ty,
where 850 ] € J U0}, is the Dirac mass of 1 concentrated at x; RN,

Proof The proofis similar to that of the concentration-compactness principle in Refs. [15,
16] and is omitted here. O

To find critical points of % we need the following local (PS), condition which is crucial
for the proof of Theorem 2.1.

Lemma 3.3 Suppose that (q.1) and (q.2) hold. Then the (PS), condition in @ép (RN) holds
for F(u) if

N-s N-s N-s
- A a2 G|,
s P53 min{ = = Gl }

W= 0.0 Q.(00) Qs

) (3.3)

*
c<c, N
p-s
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Proof The proof is similar to that in [20, Proposition 2]. We sketch the argument here
for completeness. Let {u,} be a (PS), sequence for .# with ¢ < ¢§j. Then we easily deduce
from (2.1) and (3.3) that {x,} is bounded in @ép(RN) and we may assume that u, — u in
9};’1’ (RN). By Lemma 3.2 there exist measures ¢, v, and V such that relations (a)-(e) of this
lemma hold. Let x; # 0 be a singular point of measures ¢ and v. As in paper [14], we define a
function ¢ € C'(RY) such that ¢. =1in B(x},€/2), ¢ = 0 on RV \B(x),€) and |V | < 4/e.
By Lemma 3.1, limy,—, o0 (%" (1), unde) = 0, hence, using (2.1), the Holder inequality, and
the fact that p*(0) = p*, we get

/ b ds - f . v / Q). dv
]RN ]RN ]RN

/ N U |V P2V u,V . dx
R

< limsup
n—00

p-1

p-1 1
§sup</ |wn|pdx> ' limsup(/ Iun|p|V¢>€|pdx>p
n>1 \JRN n—00 RN
1 1 1
» * r* N
SC(/ |M|p|V¢e|pdx) SC</ |ul? dx) (/ |V¢e|Ndx>
RN B(xj€) RN
1
»
< C(/ |Vul? dx> . (3.4)
B(xj,e)

Passing to the limit as € — 0, we deduce from (3.4) and Lemma 3.2 that

Qv = gj. (3.5)

The above inequality says that the concentration of the measure v cannot occur at points
where Q(x;) <0, that s, if Q(x;) < 0 then g; = v; = 0. Combining (3.5) and (d) of Lemma 3.2
we find that either (i) v; = 0 or (ii) v; > (%/IIQJ,IIOO)II%. For the point x = 0, similarly to
the case x; # 0, we have ¢y — v — Q(0)vo < 0. This, combined with (e) of Lemma 3.2,
implies that either (iii) vy = 0 or (iv) vy > (27,/ Q+(O))%. To study the concentration of
the sequence {u,} at infinity we need to consider the following quantities:

Coo = lim limsup/ (|Vun|p —u|x|‘P|un|p) dx,
|x|>R

R—00 ;500

R=0 ysco

Voo = lim limsup/ 1% |sn P .
|x|>R

Obviously, ¢ and v both exist and are finite. For R > 1, let ¢z be a regular function such
that 0 < ¥ <1, Yr(x) =1 for |x| > R + 1, Yz(x) = 0 for |x| < R and |Viz| < 4/R. Then we
deduce from the definition of .¢7, that

»

|t UrIP | e P 76
/N (WRVM,, +u, VYrlf — I;CT; ) dx > o, </N 71{;113 dx . (3.6)
R R

We now claim that

lim limsup / (1R Vity + 1w VYrl? — Y| Vi, |P) dx = 0. (3.7)
RN

R—00 y 00
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In fact, using the elementary inequality ||z + w|? —|z|P| < C(|z[P7}|w| + |w|P) forall z,w € RN
and p > 1, we get

[ (000, 0,0 = 0190) < [ (W, + 10,5 )
R R

On the other hand, by the Holder inequality and the Sobolev inequality, we have

R—0o0 5500

1 p-1
p p
< lim limsup (/ |, P | Vg |P dx) (/ |Vu,|P dx)
R—00 00 R<|x|<R+1 RN

1

P
<C lim (f |u|P|v1/fR|de)
R—00 R<|x|<R+1
1 1
* p* N
<C lim (/ |ul? dx) (/ |VI//R|Ndx>
R—00\ JR<|x|<R+1 RN

1
p
<C lim (/ IVulpdx) =0.
R—00\ JRe|x|<R+1

Similarly, we have limg o limsup,_, f]RN lu, |P|VyrlPdx = 0. The claim (3.7) is
thereby proved. From (3.6) and (3.7), we derive ¢o, > &, V5 P,
limg_, oo limsup,,_, . (F'(uy), un¥r) = 0, we get Q,(00)vs > G- Therefore we conclude
that either (v) vo = 0 or (vi) veo > (27,/ Q+(oo))N-S We now rule out the cases (ii), (iv),
and (vi). For every continuous nonnegative function v such that 0 < (x) <1 on RY, we
obtain from (3.1) and (3.2) that

lim llmsup/ [WR VP 1, V| dx
RN

Moreover, since

n—0o0

11 e
( > 1'mf <|Vun|1’—uﬂ) dx
p  p*s) ) n—oo Jgn x|
pP—S . | n|
> limsu / w(x)<|Vu,,|p - p— ) dx
(N —s) nﬁoop RN |cl?

If (ii) occurs, then the set # must be finite because the measure v is bounded. Since

c¢= lim (ﬁ(un)— L (f’(un),un)>

functions u, are G-symmetric, the measure v must be G-invariant. This means that if
x; # 0 is a singular point of v, so is gx; for each g € G, and the mass of v concentrated at
gx; is the same for each g € G. If we assume the existence of j € ¢ with x; # 0 such that
(ii) holds, then we choose ¥ with compact support so that ¥ (gx;) = 1 for each g € G and
we obtain

Z

p-

G N5
(N )II IIQII

. e

ez 2615 >
T WN=-s)p (N )

a contradiction with (3.3). Similarly, if (iv) holds for x = 0, we choose ¥ with compact
support, so that 1(0) = 1, and we obtain

= pN
2 Qu(0) 7=

p-s -~ p-s =
> - > v
€= (N—s)p(g0 W) = (N-s)p nbo



http://www.boundaryvalueproblems.com/content/2014/1/154

Deng and Huang Boundary Value Problems 2014, 2014:154
http://www.boundaryvalueproblems.com/content/2014/1/154

which contradicts (3.3). Finally, if (vi) holds we take v = Y to get

p-s p-s Fo . P-s AR N
c= (N_S)pgoo = (N_S)pdp_voo() = mdp}y Q. (c0) 7,

which is impossible. Hence v; = 0 for all j € _# U {0,00}, and consequently we have
u, — uin PO (RN, |x|~). Finally, observe that .%’(u) = 0 and, thus by lim,,_, oo (. (,,) —
F'(u), u, — u) = 0 we obtain u,, — u in 2" (RYN). O

As an easy consequence of Lemma 3.3 we obtain the following result.

Corollary 3.1 If Q. (0) = 0 and |G| = +00, then the functional .F satisfies (PS). condition
forevery ce R.

Proof of Theorem 2.1 Let y. be the extremal function satisfying (2.4)-(2.9). We choose
€ > 0 such that the assumption (2.10) holds. It is easy to check that there exist constants
oo >0 and p > 0 such that .# (1) > «q for all ||u||,, = p. Simple arithmetic shows that there

exists £ > 0 such that

p-N

o pes 2O\
mx P30 = F ) = P ( [ dx) . (38)

We now choose ¢ > 0 such that .# (tyy) < 0 and [|Zoyc|l,. > p and set

= inf F(y (1)), 3.9
¢o = Inf max (@) (3.9)

where ' = {y € C([0,1], 27 (RN)); (0) = 0, Z (y(1)) < 0, [y (V]l,. > p}. From (2.10), (3.8),
(3.9), and the definition of ¢jj, we deduce that

pos PO =
co < F(t e)=7< Q)= dx)
O TN o e
-
- + 0 + +1loo =
5(1\1]9_5) <maX{Q1(\1_—s)’Q (g)’ IISS I N__})
p dMN*P %MN*P |G|N7—P%N7p
Nes Nes N-s
p-s . ! L |Gl *
= (N ~ S)p min Ny’ Np’ Np = Co.
Q(0) 7= Q)7 Q|1 Z°

If ¢y < ¢, then by Lemma 3.3, the (PS), condition holds and the conclusion follows from
the mountain pass theorem in Ref. [26] (see also [27]). If ¢y = ¢, then y () = ttyye, with
0 <t <1,isapathin " such that max;c[o1] -Z (¥ (£)) = co. Consequently, either .’ (¢y,) = 0
and we are done, or y can be deformed to a path § € I' with max,c[o,1] % (¥ (£)) < ¢o and we
get a contradiction. This part of the proof shows that a nontrivial solution #, € Qé’p (RN)
of (BZOQ) exists. We now show that the solution #, can be chosen to be positive on RV,
Since .7 (uo) = .F (luo|) and 0 = (F'(uo), uo) = l|uoll} — [on Q)|x|~*|uo " dix, we ob-
tain f]RN Q) |x| ™ |uo [P dix = luo |l > 0, which implies co = .Z (Jug|) = max;=o Z (t|uo|).

Hence, either |ug| is a critical point of % or y(t) = tty|ug|, with F (t]ug|) < 0, can be

Page 9 of 18
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deformed, as above of the proof, to a path ¥(¢) with max;cjo17-# (¥ (¢)) < co, which is im-
possible. Therefore, we may assume that # is nonnegative on RY and the fact that #y > 0
on RN follows by the strong maximum principle. O

Proof of Corollary 2.1 First of all, we observe that due to the identity (2.6), inequality (2.10)
is equivalent to fRN(Q(x) - Q)le‘syf © gy > 0 for some € > 0, or equivalently

i

T / QW -Q)lur® ( 'x') dx>0 (3.10)
R

€
for some € > 0, where
~ N-s P
Q = max{Q,(0), Q.(00), (/) N7 |G| N7 | Q, || oo .
Part (1), case (i). According to (3.10), we need to show that

Il

Sl NCOR Q(o))|x|-sug*<s>< ) dx= 0 (311)
RN

€

for some € > 0. We choose & > 0 so that Q(x) > Q(0) + o |x| N*s+12¢") for |x| < §. This,
combined with (2.8), implies that

P () _ I— M)
e /|x|<a(Q(x) Q) L ( ) ax
2 *(s)
L ]
Ix|<6 |x|5+'7217*(5) € €
N m n2 m p*(s)
ZU/MSS || [( . ) UM< . )] dx — 0o (3.12)

as € — 0. On the other hand, for all € > 0, we obtain from (2.8) and the fact s + n,p*(s) > N
that

e [ () - Q)i ("6‘—') dx’
|x|>68

1Q(x) — Q)| [ ( 1«1\ lx\ 777 _
SfaW[(?) ”ﬂ(?)} dx=Cs (313)

for some constant C3 > 0 independent of €. Combining (3.12) and (3.13), we get (3.11) for
€ sufficiently small.

Part (1), case (ii). We choose § > 0 so that |Q(x) — Q(0)| < C|x|* for |x| <. Since « >
=N + 5+ nyp*(s) > 0, we deduce from (2.8) and the fact —s — nyp*(s) < =N that

e”m’*(s)/ wuﬁ(&)(m> dx
RN €

|x|s I3

_ P*(s) _
:/ Q) g(on[(m)“w(m)} dxfC/ Q0 -Q0)l .
RN |x[stm2p (s) € € RN |x|STm2P (s)

= C(/ || 522" 6) gy 4 / |Q(x) - Q(O)||x|’s”721’*(3) dx) -c
lxl<8 e
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So by (2.8), (2.11), and the Lebesgue dominated convergence theorem we obtain

Qx) - Q(0) s ( x| ) dxeC Q) - Q(0)

lim e~ 22" ® lad}
w RN |x[stm2pt(s)

>0 T

dx > 0.

Thus (3.11) holds for € sufficiently small.
Part (2), case (i). From (3.10) it is sufficient to show that

e / (QM) - Q(oo)) Ix Uz (":—') dx >0 (314)
RN

for some € > 0. We choose R > 0 such that Q(x) > Q(c0) + o || N++mP*6) for all |x| > R.
This, combined with (2.7), implies that

) _ 57 () M)
e~mr /MZR(Q(x) Q(oo))|x| ur (e dx
1 *(s)
_ M[(M)" UH(M)]’] dx
[x|=R |x|S+U1P*(5) € €

mn p*(s)
>0 || N Ll u L dx — 00
TR € "\ e

as € — 00. Moreover, for all € > 0, we get from (2.7) and the fact that —s — n1p*(s) > -N

E—ﬂlp*(s)/ (Q(x) _ Q(oo))|x|_suﬁ*(s) (If_') dx
|x[<R

1 *(s)
_ Q) - Q) [(M>n uu(ﬂ)]p dx
lxl<R | |s+mp (s) € €
<c f Q) = Q(00)) |50 dx < T,
[x|<R

for some constant C4 > 0 independent of € > 0. These two estimates combined together
give (3.14) for € > 0 large.

Part (2), case (ii). We choose R > 0 such that |Q(x) — Q(c0)| < Clx|™ for all |x| > R. Since
a >N —s—np*(s) >0, we have

/ Q) — Q(o0) x| *1"
RN
<C / x| ¢SmO g 4 / | Q) — Q(00)|Ix[™7MP" ) dx < co.
|x|>R [x|<R

Thus by (2.7), (2.12), and the Lebesgue dominated convergence theorem, we obtain

€—>00

1 *(s)
- elirgo /]RN (Q(x) - Q(OO)) |x|_s_’71P*(S) |:(|ZC_|>n u, (|JEC_|>:|p dx

=C / (Q) - Q(00)) x| =P dx > 0
RN

im 20 [ ()~ Qoo () s
RN

and (3.14) holds for € > 0 large. Similarly to above, we find that part (3) holds. (]
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To prove Theorem 2.2 we need the following version of the symmetric mountain pass
theorem (cf [28, Theorem 9.12]).

Lemma3.4 LetE be an infinite dimensional Banach space and let F € C*(E,R) be an even
functional satisfying (PS). condition for each ¢ and .7 (0) = 0. Further, we suppose that:
(i) there exist constants & > 0 and p > 0 such that F (u) > & for all ||u| = p;
(i) there exists an increasing sequence of subspaces {E,,} of E, with dim E,, = m, such
that for every m one can find a constant Ry, > 0 such that % (u) <0 for allu € E,,
with |ul| = R,.

Then F possesses a sequence of critical values {c,,} tending to oo as m — oo.

Proof of Theorem 2.2 Applying Lemma 3.4 with E = @é’p (RN), we deduce from (q.1), (2.3),
and (3.1) that

1 Qs -2 .
T _ P o_ P p*(s)
F () = = |lull®, 0 CAR A

Since p*(s) > p > 1, there exists @ > 0 and p > 0 such that % (u) > @ for all u with
llzll,. = p. To find a suitable sequence of finite dimensional subspaces of @éﬁp (RN), we set
Q = {x € RY; Q(x) > 0}. Since the set Q is G-symmetric, we can define @ép (2), which is the
subspace of G-symmetric functions of Z'*(2) (see Section 2). By extending functions in
@ép(Q) by 0 outside 2 we can assume that @ép(Q) C .@ép(RN). Let {E,,} be an increasing
sequence of subspaces of Qép (2) with dim E,,, = m for each m. Then there exists a constant
&(m) > 0 such that

1 [V|P*®
/ Q) dx>&(m) forallv € E,, with |v], =L
p*(s) Ja |x[*

Consequently, if u € E,,, with u # 0, then we write u = tv, with ¢ = |u||, and ||v|, = 1.

Therefore we obtain

1 1 . P 1 .
Fu)=—tF — ——tF <s>/ Q(x)'”' dx < -t/ —£(m)t""Y <0
r P Q |x[* p

for ¢t large enough. By Corollary 3.1 and Lemma 3.4 we conclude that there exists a se-

quence of critical values c,, — 00 as m — 0o and the result follows. g

4 Existence results for problem (33,,6)
The aim of this section is to discuss problem (9,?) and prove Theorem 2.3; here Q(x) =
Q > 0 is a constant. First, we give the following compact embedding result which is indis-

pensable for the proof of Theorem 2.3.

Lemma 4.1 Suppose that (h.2) holds. Then 2"?(RN) is compactly embedded in L1(RN,
h(x)). Furthermore, if h satisfies (h.1) and (h.2) and G C O(N) is closed, then the inclusion
of @éﬁp (RN) in L1(RN, h(x)) is compact.
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Proof We follow the argument of [4, Lemma 2.2]. Let R; > 0 and R, > 0 such that 0 <
R; < R;. By (h.2), we can define the following integrals:

_ q _ q
1(u) /RN h(x)|ul dx, Ii(u) /x<R1h(x)|u| dx,
Ly(u) = fx>R2 h(x)|u|? dx, I3(u) = /Rlslxlskz h(x)|ul? dx.

For Ry > 0 sufficiently small, we deduce from (h.2), (2.1), (2.2), the Holder inequality, and

thefactN—l—pSqu >—1,N(1—l%)—s>0that

*

P
(/ — dx)
P
|| <Ry |x|p*,q

Juld Y
L(u)<C —dx<C |ul? dx
li<ky 1% Ixl<Ry
r*—q

q
1 1 -
< C(/ IVu|de>p(/ — dx> 7
|x| <Ry || <Ry |x|p*__q

*_,
r —q q

R N—l—ﬁ r* N(1--%)-s
§C||u||Z/ A dr <ClulllR, 7 >0 (4.1)
0

as Ry — 0. Also, for R, > 0 large enough, we obtain from (h.2), the Holder inequality, and

the fact N — 1 — 1;1{2 <1, N(1-£) -9 <0 that

*

q* 1 r ;q
p
(/ — dx)
rpr
|x|>R2 |x|p*_q

Jul? Y
Lu)<C —ydx<C |ul? dx
>Ry 1% #l>Rs
r*-q

q
r 1 *
|x|>Ro |%|>Ro |x| r*—q

)

R YA/ G N(1-T)-0
< Cllull? rradr < Cllull%iR, -0 (4.2)
Ry

as Ry — oo. Suppose that w = {x € RV; R, < |x| < Ry} and {u,,} is bounded in 2'7(RN). We
may assume u, — u in 2% (RN). By the compactness of the inclusion of 27 (w) in LI (w)
and the local boundedness of /(x), we easily see that lim,,_,  I3(#, — #) = 0. Therefore, by
taking R; — 0 and R, — oo, we conclude from (4.1) and (4.2) that lim,_, o I (¢, — u) = 0.
This implies the compactness of the inclusion of 27 (RY) in L1(RV, h(x)).

On the other hand, since G C O(N) is closed and O(N) is a compact Lie group, G is com-
pact. Consequently, by using the first part of the proof and the methods in Schneider [29,
Corollaries 3.4 and 3.2], we deduce that _@ép (RN) is compactly embedded in LI(RY, k(x))
and the results follow. a

Since we are interested in positive G-symmetric solutions of (@f), we define a func-
tional Jj, : .@gp (RN) — R given by

Q [ ¥

p*(s) Jrn |l

1 1
) =~ - ds— [ hlur |, (43)
R
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where u* = max{0, u«}. By (2.1), (h.1), (h.2), and Lemma 4.1, we easily see that J, is well
defined and of C!. Thus there exists a one-to-one correspondence between the weak solu-
tions of (@?) and the critical points of /. Moreover, an analogously symmetric criticality
principle of Lemma 3.1 clearly holds; hence the weak solutions of problem (,@ha) are ex-
actly the critical points of Jj,.

Recall that the extremal function y(x) satisfies (2.4)-(2.9). By (h.2), we can choose ¢ > 0
such that B(0,2¢) C & and define a function ¢ € C}(RN) such that 0 < ¢(x) <1, p(x) =1
for |x| < @, ¢(x) = 0 for |x| > 20 and |V¢)| < 4/0 on RN, Using the methods in [3, 27], we
deduce from (2.4)-(2.9) that

|dyel? -
lpye iz =/ IV(pye)]” - 220 ) dx =1+ O(eN#Pm), (4.4)
RN |x|?
19" 7 ! dx = %_5\%’3’ + O(G_N”wzp*(s)) (4.5)
RN |l g ’ ’
qln+1-3) N-s
PR PEas
1oyt .o _ N-s+(1-8)g N 16
AN |x|3 X O(e » |1n6|)) q 2 ’ ( )

O(eN15)), N5 <a<p(s).

Set Ve = ¢yc/ll¢yell,; then by (4.4), (4.5), and (4.6) we have

. X —S p*(s} 7N_:S
/ x| 5| Ve PO dx = / M dx=ol, "7 + O(e NP, (4.7)
RN BV (lgyells @
N N
Cleq(nzﬂfg) < f]RN \};ellq dx < Czeq(nzﬂ—?), 1 §q< %’
N N
Coe™ 0 Ine| < [ Yol dx < Coe™ 0 Ine), g =2, (4.8)
N N
CseN 0701 < S lmq dx < Cee™ 070, % <q <p*(s).

Lemma 4.2 Suppose that (h.1), (h.2), and (2.13) hold. Then there exists some vy €
D (RN)\{0}, vo > 0 and vo % 0 on RN, such that

sup J,(tvo) < Al QP (4.9)

p-5
t>0 (N-s)p

Proof Recall that V = ¢yc/ll¢pyell,., which satisfies (4.7) and (4.8). In the following, we will
show that V, satisfies (4.9) for € > 0 sufficiently small. Set

Q. . ¢
WO 5wV =5 - [ v as- S [ vy
p P RN q JrN
and
~ Q. R
-2 Lp @/ x|V P dx
p P RN

with ¢ > 0; we deduce from p*(s) > g > p > 1 and (h.2) that ¥(0) = 0, ¥(¢) > 0 for ¢t — 0%,
and limy_, ;o W(¢) = —00. Therefore sup,., ¥(¢) can be achieved at some ¢, > 0 for which
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we obtain
1" O-1Q / x| Ve P dx — 47 / h(x)| Ve |9 dx = 0. (4.10)
RN RN
Consequently, we deduce from (h.2), (4.7), and (4.10) that
1
— s *(s) O
0<t.<[Q x| 5| Ve P ¥ dx £t <C. (4.11)
RN

On the other hand, the function ‘-AIJ(t) attains its maximum at £° and is increasing on the
interval [0, £°], together with (4.3), (4.7), (4.11),and /(x) > C|x|~ which is directly got from
(h.2), we obtain

q q
sup (V) = W(t.) = B(t) - < / h)|V. | dx < B (1) - / h(x)| V. |7 dx
q JRN q JRN

t>0
1 1 p*()
_ * p=ps
5(—— - )(Q/ IxI_SIVelp(S)dx) —c/ IV, |9 dx
p ps) RN RN

N-s p-N

p-s P A ps —N+p+ -5
= AL QPF +0 prem) _ C V|9 dx. 4.12
QP w0y [ prvirde. @)
Furthermore, we easily check from (2.13) that
N
~N+p+pn>N-s+(1-—|q. (4.13)
p

Consequently, choosing € > 0 small enough, we deduce from (4.8), (4.12), and (4.13) that

=

p_s N-s _ p-

ol

Elzlg]h(tve) =W(t) < (N—S)p

Therefore we conclude that V, satisfies (4.9) for € > 0 sufficiently small and the result
follows. O

Lemma 4.3 Suppose that (h.1) and (h.2) hold. Then the (PS). condition in .@é’p (RN) holds
Jor Jn if

(4.14)

Proof Let {u,} C @é’p (RY) be a (PS). sequence for J, with c satisfying (4.14). Then by (4.3)
and the fact that 1 < p < p*(¢) < g < p*(s), there exists ny > 1 such that for n > ngy, we have

1 1
1 n) — s n)r»¥n —; n)r“%n
c+1=>Ju(u,) q(]h(” ) u >+ LI(]h(u ), u >

(1 1 |t P76 1,
+Q<Zz_p*(s))/RN i+ Uit e

1 1
> <_ - —) o ll?, + o2t l -
p 4
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This implies that {u,} is bounded in @ép (RN). Consequently, just as in Lemma 3.3, we may
assume that %, — u in @é’p(RN) and in ZZ"O (RN |x|~*); moreover, u, — u in LY(RY, h(x))
(see Lemma 4.1) and a.e. on RV, A standard argument shows that u is a critical point of

Ji, and hence

—(1 1 |u+|p*(s) 1 1 q
=Q{ -~ d ——= h 1M . .
e (P p*(S)) /RN s <p q> /RN @lu'[*dx =0 (4.15)

Now we set v, = u, — u; then we apply the Brezis-Lieb lemma [30] to the sequence

o] = u, [P"®) and use the condition (h.2) and the fact that « is a critical point of J;, to obtain

Il =Q f xl*[u3 " dx + o) (4.16)
]RN
and
1 o) *
() + = v, 12 — Q / i 0 © dx = ¢ + 0(1). (4.17)
p p(s) Jrn

Consequently, for a subsequence of {v,} one gets
[[vallf, — k>0 and G/N |x|_s|v;|p Ddx—k asn— oo
R

It follows from (2.3) that k > <7, (k/a)P*L@ , which implies either k = 0 or k > .7/~ Q7.
N-s p-N

If k> %Mﬁaﬁ , we deduce from (4.15), (4.16), and (4.17) that

N-s  p-N

N-s

_ 1 1 p-s Rk
C‘]”(”)+<p p*(s))kz(zv—s)p% Q

which contradicts (4.14). Therefore, we obtain ||v,|/%, — 0 as # — oo, and hence, u,, — u
in 27 (RN). The proof of this lemma is completed. O

Proof of Theorem 2.3 For any u € .@é’p(RN)\{O}, we obtain from (h.2), (2.1), (2.3), (4.3),
and the Holder inequality

6 e ‘o
e WO = Clal,

1
) 2wl -

Therefore, there exist constants & > 0 and p > 0 such that Jj, () > @ for all ||u|, = p. More-
over, since Jj,(tu) — —oco as t — 00, there exists 7 > 0 such that ||?u||u > p and J;,(fu) < 0.

Now we set

¢y, = inf max t)),
h yel"te[o,l]]h(y( ))

where I' = {y € C([O,l],.@ép(RN));y(O) =0,/u(y(1)) <0, [lyMIl, > p}. By the mountain
pass theorem in Ref. [26] (see also [27]), we conclude that there exists a sequence {u,} C
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QSP(RN) such that J, (u,) = ¢, > @, J;(4,) — 0 as 1 — 00. Let vy be the function obtained

in Lemma 4.2. Then we have

~ p_s —S N p—
0<a <c¢, < sup Ju(tvg) < ——— &,/ Q7=
te[0,1] N-sp "

Combining the above inequality and Lemma 4.3, we obtain a critical point u; of J, satisfy-
ing (3”?). Taking u; = min{0, #;} as the test function, we get 0 = (J; (u1), u7) = |luy |- This
implies #; > 0 in RV, By the strong maximum principle, we obtain ; > 0 in R¥. This, com-
bined with the symmetric criticality principle, implies that #; is a positive G-symmetric
solution of (@?). O
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