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1 Introduction
In this paper we investigate the following singular semilinear problem:

Lu – λuρ = –ρf (x,u), x ∈ �, (.)

where

Lu = –Di
(
p/i p/j aijDju

)
+ buρ, (.)

and � ⊆R
N is an open set (possibly unbounded).

In recent years, the existence andmultiplicity of solutions for semilinear equations have
been extensively studied by many authors (see [–]).
In , Shapiro [] studied a series of eigenvalue problems of singular quasilinear el-

liptic and parabolic equations in weighted Sobolev spaces, he obtained many existence
results by using Galerkin method. Then Jia et al. continued to study the quasilinear el-
liptic equations (see [–]). However, their main results are only concerned with the
existence of solutions without considering multiplicity of solutions.
Motivated by previous work, the aim of this paper is to establish the existence of in-

finitely many solutions of the elliptic equations in weighted Sobolev spaces, by using the
Ekeland variation principle and the mountain-pass lemma.
We first assume that

(L – ) aij(x),b(x) ∈ C(�)∩ L∞(�), pi(x),ρ(x) ∈ C(�), i, j = , , . . . ,N .
(L – ) pi(x) > , ρ(x) > , ∀x ∈ �, and there exists ε >  such that b(x)≥ ε, ∀x ∈ �.
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(L – )
∫
�
pi < ∞,

∫
�

ρ < ∞.
(L – ) aij(x) = aji(x), i, j = , , . . . ,N .
(L – ) aijξiξj ≥ a|ξ |, a is a positive constant.
Let � ⊂ ∂� designate a fixed closed set (� may be empty).
We introduce the pre-Hilbert space:

C
p,ρ(�,�) =

{
u ∈ C(�)∩C(�)

∣∣
∣ u(x) = ,∀x ∈ �;

∫

�

(|Diu|pi + uρ
)
< ∞

}
,

with the inner product

〈u, v〉p,ρ =
∫

�

(DiuDivpi + uvρ).

Let H
p,ρ(�,�) denote the Hilbert space completed by the norm ‖u‖p,ρ = 〈u,u〉/p,ρ , Lρ(�)

denote the Hilbert space with the inner product 〈u, v〉ρ =
∫
�
uvρ .

Next, we define the two-form

L(u, v) =
∫

�

(
p/i p/j aijDiuDjv + bρuv

)
. (.)

Definition . We say (�,�) is a VL-region if the following two facts obtain:

(VL – ) There exists a complete orthonormal system {ϕn}∞n= in Lρ(�), andm({x ∈ � | ϕi =
}) = . Also ϕn ∈H

p,ρ(�,�)∩C(�).
(VL – ) There exists a sequence of eigenvalues {λn}∞n= with  < λ ≤ λ ≤ λ ≤ · · · ≤ λn →

∞ such that L(ϕn, v) = λn〈ϕn, v〉ρ , ∀v ∈H
p,ρ(�,�). Also ϕ >  in �.

Remark .

λk+ = inf
{
L(u,u) | u ∈ V⊥

k ,‖u‖Lρ = 
}
,

L(u,u) ≤ λk

∫

�

uρ, u ∈ Vk ,k ≥ ,

L(u,u) ≥ λk+

∫

�

uρ, u ∈ V⊥
k ,k ≥ ,

where Vk = span{ϕ,ϕ, . . . ,ϕk}.

Definition . We say (�,�) is a simple VL-region if (�,�) is a VL-region and the follow-
ing four conditions are satisfied:

(SVL – ) � = � × � × · · · × �N .
(SVL – ) Associatedwith each�i there are positive functions p∗

i and ρ∗
i inC(�) satisfying

∫
�i
(p∗

i + ρ∗
i ) < ∞, for i = , , . . . ,N .

(SVL – ) ρ(x) = ρ∗
 (x) · · ·ρ∗

N (xN ) and

pi(x) = ρ∗
 (x) · · ·ρ∗

i–(xi–)p
∗
i (xi)ρ

∗
i+(xi+) · · ·ρ∗

N (xN )

for i = , . . . ,N .
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(SVL – ) For each�i (i = , . . . ,N ), ∃hi ∈ C(�i)∩Lθ
ρ∗
i
(�i), for  < θ < ∞, with the property

that

∀ψ ∈ C(�i),
∣
∣ψ(s)

∣
∣ ≤ hi(s)‖ψ‖p∗

i ,ρ
∗
i
, ∀s ∈ �i,

where hi is in Lθ
ρ∗
i
(�i) for  < θ , and also, to be quite explicit,

‖ψ‖p∗
i ,ρ

∗
i
=

∫

�i

(
p∗
i (s)

∣
∣ψ ′(s)

∣
∣ + ρ∗

i ψ
(s)

)
.

In fact, there are many examples which use special functions to illustrate the VL-region
or the simple VL-region (see []).
The weak solutions of (.) correspond to the critical points of the functional Iλ(u) :

H
p,ρ(ω,�) →R defined by

Iλ(u) =


L(u,u) –

λ



∫

�

uρ +
∫

�

F(x,u)ρ, u ∈H
p,ρ(�,�), (.)

where F(x, s) ∈ C(� ×R,R) and F(x, s) =
∫ s
 f (x, t)dt.

We define

{
T+ = lim infs→+∞ F(x, s), S+ = lim sups→+∞ F(x, s),
T– = lim infs→–∞ F(x, s), S– = lim sups→–∞ F(x, s).

(.)

Here, the above functions belong to Lρ(�) and the limits are taken a.e. and uniformly in
x ∈ �.
As for f (x, s) and F(x, s), we make the assumptions as follows.

(F – ) There exists a function k(x) > , k(x) ∈ Lρ(�), such that

lim|s|→+∞ f (x, s) = ,
∣∣F(x, s)

∣∣ ≤ k(x), a.e. x ∈ �,∀s ∈R.

(F – ) There exists a constant b ≥  such that

F(x, s)≥ 

(λ – λ)s + b

(∫

�

ρ

)–

.

(F – )
∫
�
S+ρ ≤  and

∫
�
S–ρ ≤ .

(F – ) There exists t ∈ R such that for the first eigenfunction ϕ

∫

�

F(x, tϕ)ρ < min

{∫

�

T+ρ,
∫

�

T–ρ

}
.

(F – ) There exists t± ∈ R such that for the first eigenfunction ϕ

∫

�

F
(
x, t± ϕ

)
ρ < min

{∫

�

T+ρ,
∫

�

T–ρ

}
.
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(F – ) There exist α ∈ (, ) and δ >  such that

F(x, s)≥  – α


λs, ∀x ∈ � and |s| < δ.

(F ′ – ) Let η > , f (x, –s) = –f (x, s) a.e. x ∈R
N , ∀s ∈R and

 >

η
F(x, s)≥ f (x, s)s, a.e. x ∈R

N ,∀s ∈R.

(F ′ – ) There exists  < θ < N+
N– such that

∣∣f (x, s)
∣∣ ≤ C|s|θ , a.e. x ∈R

N ,∀s ∈R

for some positive constant C.
(Fk – )

∫
�∩{ω>} S

+ρ +
∫
�∩{ω<} S

–ρ ≤ , for every ω ∈ V (λk), where V (λk) denotes the
eigenspace associated with the eigenvalue λk .

(Fk – ) There exist γ ∈ ( λk
 – λ

 ,
λk
 ) and δ >  such that

F(x, s)≥ γ s, ∀x ∈ � and |s| < δ.

Remark . We must find the function F(x, s) satisfying (F – )-(F – ). Let � = (,π ),
λ, and λ be the first eigenvalue and second eigenvalue of Laplacian eigenvalue problem
of homogeneous boundary condition on �, and the first eigenfunction be φ = sinx. Let
F(x, s) = 

 (λ – λ)(e–s
 – ). For b ≡ , ρ ≡ , by simple calculation, if t is large enough,

we find that F(x, s) satisfies (F – )-(F – ).
On the other hand, if we take f (x, s) = –|s|k–s, where  < k < N+

N– , then f (x, s) satisfies
(F ′ – ) and (F ′ – ).

The main results of our paper are given by the following theorems.

Theorem . Let � ⊆ R
N be a domain satisfying the requirements of being a VL-region.

Let λ = λ in (.).Assume that F(x, s) ∈ C(�×R,R). Furthermore, if the conditions (F –),
(F – ), and (F – ) are satisfied, then the problem (.) has at least one nontrivial solution
in H

p,ρ(�,�).

Theorem . Let � ⊆ R
N be a domain satisfying VL-region. And λ = λ in (.). Assume

that F(x, s) ∈ C(� × R,R). Furthermore, if the conditions (F – )-(F – ) and (F – ) are
satisfied, then the problem (.) has at least two nontrivial solutions in H

p,ρ(�,�).

Theorem . Let � ⊆ R
N be a domain satisfying simple VL-region, (aij) = E, and λ = λ.

Assume that F(x, s) ∈ C(� ×R,R). Furthermore, if the conditions (F – ), (F – ), (F – ),
and (F – ) are satisfied, then the problem (.) has at least two nontrivial solutions in
H

p,ρ(�,�).

Theorem . Let � ⊆ R
N be a domain satisfying simple VL-region, (aij) = E, and λ = λ.

Assume that F(x, s) ∈ C(� ×R,R). Furthermore, if the conditions (F – )-(F – ), (F – ),
and (F – ) are satisfied, then the problem (.) has at least three nontrivial solutions in
H

p,ρ(�,�).
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Theorem. Let� ⊆R
N be a domain satisfying simple VL-region, λ < λ and (aij) = E.As-

sume that F(x, s) ∈ C(�×R,R). Furthermore, suppose the conditions (F ′ –) and (F ′ – ).
Then the problem (.) has infinitely many solutions in H

p,ρ(�,�).

Theorem . Let � ⊆ R
N be a domain satisfying simple VL-region, (aij) = E. λ = λk

(k ≥ ). Assume that F(x, s) ∈ C(� × R,R). Furthermore, suppose the conditions (F – ),
(Fk – ), and (Fk – ). Then the problem (.) has two nontrivial solutions in H

p,ρ(�,�).

The paper is organized as follows. In Section , we provide and establish some lemmas
which are necessary in the proof of our main theorems. In Section , we will prove Theo-
rem .-Theorem .. In the last section, we establish Lemma . and Lemma ., and we
give the proof of Theorem ..

2 Preliminary results
In this section, we prove some lemmas which will be used in the proof of our main theo-
rems. For simplicity, we denote Iλ(·) by I(·) in the following.

Lemma . Let L be defined as (.). Then

c‖u‖p,ρ ≥ L(u,u) ≥ c‖u‖p,ρ , ∀u ∈H
p,ρ(�,�)

for some positive constants c, c.

To get Lemma . and Lemma ., we first introduce a corollary of the Ekeland variation
principle (see [], Theorem .).

Lemma . Let X be a Banach space. Assume that E ∈ C(X,R) is bounded from below,
which satisfies the (PS)c condition. Then c = infx∈X E(x) is a critical value.

Lemma . Assume that L is given by (.), and the assumptions (L – )-(L – ) hold,
and that (�,�) is a VL-region. Then H

p,ρ(�,�) is compactly embedding in Lρ .Moreover, if
(�,�) is a simple VL-region and (aij) = E, then for N ≥ ,H

p,ρ(�,�) is compactly embedded
in Lθ

ρ ,  < θ < N
N– .

Proof See Lemma  and Theorem  in []. �

To establish themultiplicity of solutions for problem (.), we need to apply the following
fundamental theorem (see [], Theorem .).

Lemma . Let X be an infinite-dimensional Banach space and let E : X → R be contin-
uous, even and satisfying (PS)c for every c ∈ R. Assume, also, that:
() There exist ρ > , α > E(), and a subspace V ⊂ X of finite codimension such that

∀u ∈ V : ‖u‖ = ρ ⇒ E(u)≥ α.

() For every finite-dimensional subspaceWn ⊂ X , dim(Wn) = n, there exists Rn >  such
that

∀u ∈Wn: ‖u‖ = Rn ⇒ E(u)≤ E().

Then there exists a sequence {hn} of critical values of E with hn → +∞.

http://www.boundaryvalueproblems.com/content/2014/1/156
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Next, we describe some results under the geometry for functional I .

Lemma . Under hypotheses (F – ) and (F – ), (�,�) is a VL-region, the functional I
has the following saddle geometry for λ = λ:
() I(u) → ∞ if ‖u‖p,ρ → ∞ with u ∈ V⊥

 .
() There is α ∈R such that I(u) ≤ α, ∀u ∈ V.
() I(u) ≥ b, ∀u ∈ V⊥

 , where b is given by (F – ).

Proof () By Remark ., we have

I(u) ≥ 


(
 –

λ

λ

)
L(u,u) +

∫

�

F(x,u)ρ

≥ c


(
 –

λ

λ

)
‖u‖p,ρ +

∫

�

F(x,u)ρ, u ∈ V⊥
 .

Using (F – ), we have I(u) → ∞, as ‖u‖p,ρ → ∞.
() By a simple calculation, we get

I(u) =
∫

�

F(x,u), u ∈ V.

By using (F – ) we have

I(u) =
∫

�

F(x,u)≤
∫

�

k(x)ρ.

So we choose α =
∫
�
k(x)ρ .

() By (F – ) and Remark ., we get

I(u) ≥ 

L(u,u) –

λ



∫

�

uρ + b ≥ b, ∀u ∈ V⊥
 ,

the proof of this lemma is completed. �

Next, we will prove the Palais-Smale properties for the functional I . We recall that I :
E → R satisfies the Palais-Smale conditions at the level c ∈ R ((PS)c in short). For any
sequence {hn} ⊂ E such that

I(hn) → c, I ′(hn) → ,

as n→ ∞, the sequence {hn} possesses a convergent subsequence in E. Moreover, we say
that I satisfies (PS) conditions when we have (PS)c for all c ∈R (see []).

Lemma . Assume the condition (F – ) holds, λ = λ, and (�,�) is a VL-region.
Then the functional I has the (PS)c conditions whenever c < min{∫

�
T+ρ,

∫
�
T–ρ} or

c > max{∫
�
S+ρ,

∫
�
S–ρ}.

Proof We only prove the lemma for c < min{∫
�
T+ρ,

∫
�
T–ρ}. For the case c > max{∫

�
S+ρ,

∫
�
S–ρ}, we can use similar methods.

http://www.boundaryvalueproblems.com/content/2014/1/156
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. The boundedness of (PS) sequence.
If this is not the case, there exists a (PS)c unbounded sequence {un} ∈ H

p,ρ(�,�) such
that c < min{∫

�
T+ρ,

∫
�
T–ρ}. Without loss of generality, we may assume that, as n → ∞,

the following expressions hold:

‖un‖p,ρ → ∞, I(un) → c, I ′(un) → .

Define un = un
‖un‖p,ρ . Hence by Lemma ., there is an u ∈ H

p,ρ(�,�) with the following
properties:

un ⇀ u in H
p,ρ(�,�),

un → u in Lρ(�),
un → u a.e. in �.

For any � ∈ H
p,ρ(�,�), it is obvious that I′(un)�

‖un‖p,ρ → . By the convergence of {un} and
(F – ), we have

L(u,�) = λ

∫

�

u�ρ.

According to the definition of λ, we obtain u = ±ϕ. So, we suppose initially that u = ϕ.
Because ϕ > , it is obvious that un → +∞, a.e. x ∈ � as n→ ∞.
Hence, taking un = tnϕ +ωn, {tn} ⊂R, {ωn} ⊂ V⊥

 , by Remark ., we have

I(un) ≥ 


(
 –

λ

λ

)
L(ωn,ωn) +

∫

�

F(x,un)ρ. (.)

Since I(un)→ c, it can easily be concluded that the sequence {ωn} is bounded. Because of
‖un‖ → ∞, on a subsequence |tn| → ∞, without loss of generality, we assume tn → +∞.
Now, by the Hölder inequality and (F – ), we have

∣∣
∣∣

∫

�

f (x,un)ωnρ

∣∣
∣∣ ≤ C

(∫

�

∣
∣f (x,un)

∣
∣ρ

) 

.

Thus, by applying the dominated convergence theorem, we conclude that

lim
n→∞

∫

�

f (x,un)ωnρ = . (.)

On the other hand,

I ′(un)ωn = L(ωn,ωn) – λ

∫

�

ω
nρ +

∫

�

f (x,un)ωnρ,

by (.) and Remark ., we obtain

(
 –

λ

λ

)
L(ωn,ωn) ≤

∣∣I ′(un)ωn
∣∣ +

∣
∣∣
∣

∫

�

f (x,un)ωnρ

∣
∣∣
∣ → ,

as n→ ∞. Therefore, due to Remark ., we have

L(ωn,ωn) – λ

∫

�

ω
nρ → , as n→ ∞.

http://www.boundaryvalueproblems.com/content/2014/1/156
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Consequently, by virtue of Fatou’s lemma and assumption (F – ), we get

c = lim
n→∞

(
L(ωn,ωn) – λ

∫

�

ω
nρ +

∫

�

F(x,un)ρ
)

≥
∫

�

T+ρ,

which contradicts with the condition c < min{∫
�
T+ρ,

∫
�
T–ρ}. Hence, the (PS)c sequence

of the functional I is bounded.
. Various convergences of {un}.
Since {un} is a bounded sequence, there is an u ∈ H

p,ρ(�,�) with the following proper-
ties:

un ⇀ u in H
p,ρ(�,�),

un → u in Lρ(�),
un → u a.e. in �.

. {un} converges to u in H
p,ρ(�,�).

From the definition of (PS)c sequence, we have, as n→ ∞,

I ′(un)u = L(un,u) – λ

∫

�

unuρ +
∫

�

f (x,un)uρ → ,

I ′(un)un = L(un,un) – λ

∫

�

unρ +
∫

�

f (x,un)unρ → .

By Fatou’s lemma and the above convergence of {un}, it is easy to show that
∫

�

unuρ →
∫

�

uρ,
∫

�

f (x,un)uρ →
∫

�

f (x,u)uρ,
∫

�

unρ →
∫

�

uρ,
∫

�

f (x,un)unρ →
∫

�

f (x,u)uρ,

as n→ ∞. Hence, we get

L(un,u) → λ

∫

�

uρ –
∫

�

f (x,u)uρ, as n → ∞, (.)

L(un,un) → λ

∫

�

uρ –
∫

�

f (x,u)uρ, as n → ∞. (.)

By the weak convergence, it follows that

L(un,u) → L(u,u), as n→ ∞. (.)

By using (.), (.), (.), and a simple calculation, we obtain

L(un – u,un – u) → , as n → ∞.

From Lemma ., the proof is completed. �

http://www.boundaryvalueproblems.com/content/2014/1/156
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Lemma . Suppose that (F – ) and (F – ) are satisfied, λ = λ and (�,�) is a simple
VL-region. Then the origin is a local minimum for the functional I .

Proof From (.), it is easy to see that I() = . By (F – ), we can choose q ∈ (, N
N– ) and

a constant C >  such that

F(x, s)≥  – α


λs –C|s|q, ∀(x, s) ∈ � ×R.

Consequently, by Remark . and Lemma ., we have

I(u) ≥ 

( – α)c‖u‖p,ρ –C‖u‖qp,ρ ≥ 


( – α)c‖u‖p,ρ , ‖u‖p,ρ < r,

where r is small enough and  < r < t, t is provided by (F – ). Therefore the proof is
completed. �

To complete the mountain-pass geometry, we also need the following result.

Lemma . Let the hypotheses (F – ), (F – ), (F – ), and (F – ) hold, λ = λ and let
(�,�) be a VL-region. Then there exists u ∈H

p,ρ(�,�) such that I(u) <  and ‖u‖p,ρ > r,
where r is given by Lemma ..

Proof By (F – ) and (F – ), we take u = tϕ where t is provided by (F – ). Thus, we
obtain

I(tϕ) < min

{∫

�

T+ρ,
∫

�

T–ρ

}
< max

{∫

�

S+ρ,
∫

�

S–ρ
}

≤ ,

and ‖t�‖ = t. By Lemma ., we have  < r < t, then the conclusion follows. �

Lemma. If hypotheses (F –), (F –), and (F –) are satisfied, λ = λ and (�,�) is a VL-
region. Then problem (.) has at least one nontrivial solution u ∈ H

p,ρ(�,�). Moreover,
u has negative energy, i.e. I(u) < .

Proof By (F – ) and Remark ., we have

I(u) ≥
∫

�

F(x,u)ρ ≥ –
∫

�

k(x)ρ.

Therefore, the functional I is bounded below. In this case, we would like to mention that
the functional I satisfies the (PS)c conditions with c = inf{I(h) : h ∈H

p,ρ(�,�)}. To see this,
by Lemma ., we take t ∈R provided by (F – ), we obtain

c≤ I(tϕ) =
∫

�

F(x, tϕ) < min

{∫

�

T+ρ,
∫

�

T–ρ

}
≤ .

Consequently, applying Lemma . we have one critical point u ∈ H
p,ρ(�,�) such that

I(u) = inf{I(h) : h ∈H
p,ρ(�,�)} ≤ I(tϕ) < . The proof of this lemma is completed. �

To prove Theorem ., we establish the following lemma.

http://www.boundaryvalueproblems.com/content/2014/1/156
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Lemma . Assume that the conditions (F – ), (F – ), (F – ), and (F – ) are satisfied,
λ = λ and (�,�) is a VL-region.Then the problem (.) has at least two nontrivial solutions
with negative energy.

Proof Define

M+ =
{
tϕ +ω, t ≥ ,ω ∈ V⊥


}
, M– =

{
tϕ +ω, t ≤ ,ω ∈ V⊥


}
.

We have ∂M+ = ∂M– = V⊥
 . Hence, we minimizer the functional I restrict toM+ andM–.

Firstly, we consider the functionals I± = I|M± . By the assumption (F – ), we have

c± = inf
{
I±,h ∈ E

} ≤ I±
(
t± ϕ

)
=

∫

�

F
(
x, t± ϕ

)
ρ

< min

{∫

�

T+ρ,
∫

�

T–ρ

}
≤ .

By Lemma ., I± satisfy the (PS)c conditions whenever c < min{∫
�
T+ρ,

∫
�
T–ρ}. There-

fore, we find that I± satisfy the (PS)c conditions with c± = inf{I±(h) : h ∈ E}.
In this way, by using Lemma . for the functionals I+ and I–, we obtain two critical

points denoted by u+ and u– , respectively. Thus, we have c+ = I+(u+) = infh∈M+{I(h)} and
c– = I–(u–) = infh∈M–{I(h)}.
Moreover, we affirm that u+ and u– are nonzero critical points. Based on (F – ) and

(F – ), we obtain

I±
(
u±

) ≤ I±

(
t± ϕ

)
< min

{∫

�

T+ρ,
∫

�

T–ρ

}
≤ ,

and I is restricted to V⊥
 being nonnegative. More specifically, given ω ∈ V⊥

 and () in
Lemma ., we have

I(ω) ≥ b ≥ . (.)

Next, we prove that u+ and u– are distinct. The proof of this affirmation is by contra-
diction. If u+ = u– , then u+ = u– ∈ V⊥

 . By (.), we obtain I(u+) <  ≤ I(u+). Therefore,
we have a contradiction. Consequently, we get u+ �= u– . Thus the problem (.) has at least
two nontrivial solutions. Moreover, these solutions have negative energy. �

To prove Theorem ., we need the following lemma. The proof is similar to that of
Lemma ..

Lemma . Assume that the conditions (F ′ – ) and (F ′ – ) hold, λ < λ, (aij) = E and
(�,�) is a simple VL-region. Then functional I satisfies the (PS)c conditions.

3 Proofs of Theorem 1.1-Theorem 1.5
In this section, we prove Theorems ., ., ., ., and ..

Proof of Theorem . By Lemma., we get a solution u which satisfies I(u) < . It follows
that the problem (.) has at least one nontrivial solution. The proof is completed. �
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Proof of Theorem . Using Lemma ., we obtain two distinct critical points u+ and u–
such that I(u+) <  and I(u–) < . Therefore, the problem (.) has at least two nontrivial
solutions. The proof is completed. �

Proof of Theorem . From Lemma . and Lemma ., we know that the functional I
satisfies the geometric conditions of themountain-pass theorem.Moreover, the functional
I satisfies the (PS)c conditions for all c≥ . Thus, we have a solution u ∈H

p,ρ(�,�) given
by the mountain-pass theorem. Obviously, the solution u satisfies I(u) > .
On the other hand, by Lemma ., we get another solution u satisfying I(u) < . It

follows that the problem (.) has at least two nontrivial solutions. �

Proof of Theorem . The conditions (F – ), (F – ), (F – ), and (F – ) imply that Lem-
ma . and Lemma . hold. Thus, we have one solution u which satisfies I(u) > .
On the other hand, using Lemma ., we obtain two distinct critical points u±

 such
that I(u±

 ) < . In other words, the problem (.) has at least three nontrivial solutions.
The proof is completed. �

Proof of Theorem . It is easy to see that functional I is continuous and even. Moreover,
by Lemma ., I satisfies (PS)c condition for every c ∈R. To prove Theorem ., we only
need to test and verify the conditions () and () in Lemma ..
. By (F ′ – ) and Remark ., we have

I(u) ≥ 


(
 –

λ

λ

)
c‖u‖p,ρ –C‖u‖θ+

p,ρ .

Hence there exist r >  small enough and δ >  such that I(u) ≥ δ, for ‖u‖p,ρ = r. That is to
say the condition () in Lemma . holds with V =H

p,ρ(�,�).
. We verify the condition () in Lemma .. LetW be a finite-dimensional subspace of

H
p,ρ(�,�). Let u ∈W such that I(u) ≥ , i.e.



L(u,u) –

λ



∫

�

uρ +
∫

�

F(x,u)ρ ≥ . (.)

By (F ′ – ), there existm(x) ∈ L∞(�) satisfyingm(x) >  a.e. x ∈ � and a positive constant
c such that

F(x, s)≤ –m(x)|s|η + cs, a.e. x ∈ � and ∀s ∈R.

The inequality (.) implies

c‖u‖p,ρ ≥
∫

�

m(x)|u|ηρ – c
∫

�

uρ. (.)

Since (
∫
�
m(x)|u|η) η is a norm on W and W is finite-dimensional, then, by (.), there

exists c >  such that ‖u‖η
p,ρ ≤ c‖u‖p,ρ . Since η > , we deduce that the set {u ∈ W , I(u)≥ }

is bounded in H
p,ρ(�,�) and the condition () in Lemma . holds. �

4 Proof of Theorem 1.6
In this section, we consider the problem (.) in λ = λk . In order to prove Theorem ., we
first establish the following lemmas.

http://www.boundaryvalueproblems.com/content/2014/1/156
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Lemma . Assume that the condition (F – ) holds, and that (�,�) is a VL-region.
Then the functional I satisfies the (PS)c conditions whenever c < infω∈V (λk ){

∫
�∩{ω>} T

+ρ +
∫
�∩{ω<} T

–ρ} or c > supω∈V (λk ){
∫
�∩{ω>} S

+ρ +
∫
�∩{ω<} S

–ρ}.

Proof We only prove the lemma for all c < infω∈V (λk ){
∫
�∩{ω>} T

+ρ +
∫
�∩{ω<} T

–ρ}. For the
case c > supω∈V (λk ){

∫
�∩{ω>} S

+ρ +
∫
�∩{ω<} S

–ρ}, we can use similar methods.
The boundedness of (PS)c sequence.
Let us prove by contradiction. Suppose that there exists a (PS)c unbounded sequence

{un} ∈ H
p,ρ(�,�) such that c < infω∈V (λk ){

∫
�∩{ω>} T

+ρ +
∫
�∩{ω<} T

–ρ}. For ease of nota-
tion and without loss of generality, we assume that

‖un‖p,ρ → ∞, I(un) → c, I ′(un) → , n→ ∞.

Define un = un
‖un‖p,ρ . Hence by Lemma ., there is an u ∈ H

p,ρ(�,�) with the following
properties:

un ⇀ u in H
p,ρ(�,�), un → u in Lρ(�), un → u, a.e. in �.

For any � ∈H
p,ρ(�,�), we have I′(un)�

‖un‖p,ρ → . By the convergence of {un} and (F – ), we
have

L(u,�) = λk

∫

�

u�ρ.

By the definition of λk , we obtain u ∈ V (λk). It is obvious that un(x) → +∞, x ∈ {x ∈ � |
u(x) > } as n → ∞, and un(x) → –∞, x ∈ {x ∈ � | u(x) < } as n → ∞. By (VL – ), we
havem({x ∈ � | u(x) = }) = .
Hence, we can take un = ω

()
n + ϕn + ω

()
n , where ω

()
n ∈ V, ϕn ∈ V (λk), ω

()
n ∈ V. Lρ =

V ⊕ V (λk) ⊕ V, V denotes the eigenspace associated to the eigenvalue λ < λk and V

denotes the eigenspace associated to the eigenvalue λ > λk . Set

ũn = –ω()
n +ω()

n .

By Remark ., we have

I ′(un )̃un ≥ min

{
λk

λk–
– ,  –

λk

λk+

}
L(un – ϕn,un – ϕn) +

∫

�

f (x,un )̃unρ.

Hence, by Lemma ., we get

L(un – ϕn,un – ϕn) ≤ C‖̃un‖p,ρ ≤ C · L 
 (un – ϕn,un – ϕn),

and un – ϕn is bounded in H
p,ρ(�,�), i.e., ω

()
n + ω

()
n is bounded in H

p,ρ(�,�). Letting
ωn = ω

()
n +ω

()
n , one has

I ′(un)ωn = L(ωn,ωn) – λk

∫

�

ω
nρ +

∫

�

f (x,un)ωnρ.
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By (F – ), the Hölder inequality, and the Lebesgue dominated theorem, it is easy to show

∫

�

f (x,un)ωnρ → , as n→ ∞.

Since I ′(un) →  and ωn is bounded in H
p,ρ(�,�), we have I ′(un)ωn →  and

L(ωn,ωn) – λk

∫

�

ω
nρ → , as n→ ∞. (.)

Consequently, by virtue of Fatou’s lemma, (.) and (F – ), we have

c≥
∫

�

lim inf
n→∞ F(x,un)ρ =

∫

�∩{u>}
T+ρ +

∫

�∩{u<}
T–ρ,

which contradicts with the condition c < infω∈V (λk ){
∫
�∩{ω>} T

+ρ +
∫
�∩{ω<} T

–ρ}. Hence,
the (PS)c sequence of the functional I is bounded.
We can argue as the proof of Lemma ., so the proof has been completed. �

Lemma . Suppose that (F – ) and (Fk – ) are satisfied, (�,�) is a simple VL-region
and (aij) = E. Then the origin is a local minimum for the functional I .

Proof By (Fk – ), we can choose q ∈ (, N
N– ) and a constant C >  such that

F(x, s)≥ γ s –C|s|q, ∀(x, s) ∈ � ×R.

Consequently, by Remark . and Lemma ., we have

I(u) ≥ 


(
 +

γ
λ

–
λk

λ

)
c‖u‖p,ρ ,

‖u‖p,ρ < r, where r is small enough. Therefore the proof is completed. �

Proof of Theorem . Since

I(tϕ) ≤ (λ – λk)
t


+

∫

�

kρ → –∞,

as t → ∞, we can choose t+ >  and t– < , satisfying ‖t+ϕ‖p,ρ > r and ‖t–ϕ‖p,ρ > r such
that I(t+ϕ) <  and I(t–ϕ) < , where r is given by Lemma ..
On the other hand, since ϕ > , we know t+ϕ >  and t–ϕ < . Let P+ = {u ∈H

p,ρ(�,�) |
u ≥ } and P– = {u ∈ H

p,ρ(�,�) | u ≤ }. Consider the functionals I±, which are the re-
strictions of I on P±. By Lemma . and (Fk – ), for c ≥ , we get I± satisfying (PS)c con-
ditions. So by the mountain-pass lemma, we get two critical points z± ∈ P±. It is obvious
that z± �= . The proof has been completed. �
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