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Abstract
By using the Banach contraction principle and the Leggett-Williams fixed point
theorem, this paper investigates the uniqueness and existence of at least three
positive solutions for a system of mixed higher-order nonlinear singular differential
equations with integral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

u(n1)(t) + a1(t)f1(t,u(t), v(t)) = 0, 0 < t < 1,
v(n2)(t) + a2(t)f2(t,u(t), v(t)) = 0, 0 < t < 1,
u(0) = u′(0) = · · · = u(n1–2)(0) = 0, u(1) = g1(β1[u],β1[v]),
v(0) = v′(0) = · · · = v(n2–2)(0) = 0, v(1) = g2(β2[u],β2[v]),

where the nonlinear terms fi , gi satisfy some growth conditions, βi[·] are linear
functionals given by βi[w] =

∫ 1
0 w(s)dφi(s), involving Stieltjes integrals with positive

measures, and i = 1, 2. We give an example to illustrate our result.
MSC: 34B16; 34B18
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1 Introduction
The purpose of this paper is to establish the uniqueness and existence of at least three pos-
itive solutions for a system ofmixed higher-order nonlinear singular differential equations
with integral boundary conditions,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(n)(t) + a(t)f(t,u(t), v(t)) = ,  < t < ,
v(n)(t) + a(t)f(t,u(t), v(t)) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , u() = g(β[u],β[v]),
v() = v′() = · · · = v(n–)() = , v() = g(β[u],β[v]),

(.)

where ni ≥ , ai(t) ∈ C((, ), [, +∞)), ai(t) are allowed to be singular at t =  and/or t = ,
fi ∈ C([, ]× [, +∞)× [, +∞), [, +∞)), gi ∈ C([, +∞)× [, +∞), [, +∞)), ai(t)fi(t, , )
do not vanish identically on any subinterval of (, ), the functionals βi[·] are linear func-
tionals given by βi[w] =

∫ 
 w(s) dφi(s), involving Stieltjes integrals with positive measures,

and i = , .
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The theory of boundary value problemswith integral conditions for ordinary differential
equations arises in different areas of applied mathematics and physics. For example, heat
conduction, chemical engineering, underground water flow, and plasma physics can be
reduced to boundary value problems with integral conditions, which included, as special
cases, two-point, three-point and multi-point boundary value problems considered by
many authors (see [–]).
In recent years, to the best of our knowledge, although there are many papers concern-

ing the existence of positive solutions for nth order boundary value problems with dif-
ferent kinds of boundary conditions for system (see [–] and the references therein),
results for the system (.) are rarely seen. Moreover, the methods mainly depend on the
Krasonsel’skii fixed point theorem, fixed point index theory, the upper and lower solution
technique, some new fixed point theorem for cones, etc. For example, in [], by applying
the Krasonsel’skii fixed point theorem, Henderson and Ntouyas studied the existence of
at least one positive solution for the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(n)(t) + λh(t)f(v(t)) = ,  < t < ,
v(n)(t) + λh(t)f(u(t)) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , u() = αu(η),
v() = v′() = · · · = v(n–)() = , v() = αu(η).

(.)

In [], by using fixed point index theory, Xu and Yang extended the results of [, ] and
established the existence of at least one and two positive solutions for the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(n)(t) + a(t)f(t,u(t), v(t)) = ,  < t < ,
v(n)(t) + a(t)f(t,u(t), v(t)) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , u() = ,
v() = v′() = · · · = v(n–)() = , v() = ,

(.)

where hi(t) and ai(t) are nonsingular. In [], u() = , v() =  of the system (.) are re-
placed by u() = αu(η), v() = βv(η), and in [], u() = , v() =  of the system (.) are
replaced by u() =

∑m–
i= αiu(ξi), v() =

∑m–
i= βiv(ηi), where ai(t) is singular. By using fixed

point index theory and the Krasonsel’skii fixed point theorem, the existence of one and/or
two positive solutions is established.
On the other hand, Webb [] gave a unified method of tackling many nonlocal bound-

ary value problems, which have been applied to the study of the problem with Stieltjes
integrals,

{
u(n)(t) + g(t)f (t,u(t)) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , u() = α[u].

(.)

We mention that Stieltjes integrals are also used in the framework of nonlinear boundary
conditions in several papers (see [–] and the references therein). In particular, Yang
[] studied the existence of positive solutions for the following systemby using fixed point
index theory in a cone:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′(t) + f(t,u(t), v(t)) = ,  < t < ,
v′′(t) + f(t,u(t), v(t)) = ,  < t < ,
u() = , u() =H(

∫ 
 u(s) dB(s)),

v() = , v() =H(
∫ 
 v(s) dB(s)).

(.)
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Infante and Pietramala [] studied the following system as a special case to illustrate the
obtained theory:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′(t) + f(t,u(t), v(t)) = ,  < t < ,
v′′(t) + f(t,u(t), v(t)) = ,  < t < ,
u() =H(β[u]), u() =H(β[u]),
v() =H(β[v]), v() =H(β[v]).

(.)

By constructing a special cone and using fixed point index theory, Cui and Sun [] studied
the existence of at least one positive solution for the system with Stieltjes integrals,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′(t) + f(t,u(t), v(t)) = ,  < t < ,
v′′(t) + f(t,u(t), v(t)) = ,  < t < ,
u() = , u() = β[v],
v() = , v() = β[u].

(.)

By using fixed point index theory and a priori estimates achieved by utilizing some proper-
ties of concave functions, Xu and Yang [] showed the existence andmultiplicity positive
solutions for the system of the generalized Lidstone problems, where the system aremixed
higher-order differential equations.
Motivated by the work of the above papers, we aim to investigate the solvability for the

system (.). Themain features are as follows: Firstly, themethodwe adopt, which has been
widely used, is different from [–, –]. Secondly, the nonlinear terms fi we considered
here satisfy some growth conditions. In [–, , , , ], the sublinear or superlinear
conditions are used for fi. Moreover, the form of the Stieltjes integrals we consider here is
quite general, which involves that of the Stieltjes integrals in [–, , ] and is different
from []. This implies that the case of boundary conditions (.) covers the multi-point
boundary conditions and also the integral boundary conditions in a single framework.
The rest of the paper is organized as follows. In Section , we present some prelimi-

naries and several lemmas. In Section , by applying the fixed-point theorem, we obtain
the uniqueness and existence of at least three positive solutions for the system (.). In
Section , we give an example to illustrate our result.

2 Preliminaries and lemmas
Definition . Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is said
to be a cone, which satisfies the following conditions:
() ∀x ∈ P,λ > ⇒ λx ∈ P;
() x, –x ∈ P ⇒ x = .

Definition . Let E be a real Banach space with cone P. A map β : P → [, +∞) is said
to be a non-negative continuous concave functional on P if β is continuous and

β
(
tx + ( – t)y

) ≥ tβ(x) + ( – t)β(y),

for all x, y ∈ P and t ∈ [, ].
Let a, b be two numbers such that  < a < b and β be a non-negative continuous concave

functional on P. We define the following convex sets:

Pa =
{
x ∈ P : ‖x‖ < a

}
, P(β ,a,b) =

{
x ∈ P : a≤ β(x),‖x‖ ≤ b

}
.

http://www.boundaryvalueproblems.com/content/2014/1/158
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Lemma . (see []) Let A : Pc → Pc be completely continuous operator and β be a non-
negative continuous concave functional on P such that β(x)≤ ‖x‖ for x ∈ Pc. Suppose there
exist  < a < b < d ≤ c such that

(A) {x ∈ P(β ,b,d) : β(x) > b} �= φ and β(Ax) > b for x ∈ P(β ,b,d),
(A) ‖Ax‖ < a for ‖x‖ ≤ a,
(A) β(Ax) > b for x ∈ P(β ,b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x, x, x in Pc such that

‖x‖ < a, b < β(x) and ‖x‖ > a with β(x) < b.

Definition . (u, v) ∈ Cn ([, ], [, +∞))×Cn ([, ], [, +∞)) is said to be a positive so-
lution of the system (.) if and only if (u, v) satisfies the system (.) and u(t)≥ , v(t)≥ ,
for any t ∈ [, ].

Lemma . Let x(t), y(t) ∈ C[, ], then the boundary value problem

⎧
⎪⎨

⎪⎩

u(n)(t) + x(t) = , v(n)(t) + y(t) = ,  < t < ,
u() = u′() = · · · = u(n–)() = , u() = g(β[u],β[v]),
v() = v′() = · · · = v(n–)() = , v() = g(β[u],β[v]),

(.)

has the integral representation

{
u(t) =

∫ 
 K(t, s)x(s) ds + tn–g(β[u],β[v]),

v(t) =
∫ 
 K(t, s)y(s) ds + tn–g(β[u],β[v]),

(.)

where

Ki(t, s) =


(ni – )!

{
tni–( – s)ni– – (t – s)ni–,  ≤ s ≤ t ≤ ,
tni–( – s)ni–,  ≤ t ≤ s ≤ ,

i = , . (.)

Proof By Taylor’s formula, we have

u(t) = u() + tu′() + · · · + tn–

(n – )!
u(n–)()

+


(n – )!

∫ t


(t – s)n–u(n)(s) ds,

v(t) = v() + tv′() + · · · + tn–

(n – )!
v(n–)()

+


(n – )!

∫ t


(t – s)n–v(n)(s) ds,

so, we reduce the equation of problem (.) to an equivalent integral equation,

u(t) = –


(n – )!

∫ t


(t – s)n–x(s) ds +

tn–

(n – )!
u(n–)(), (.)

v(t) = –


(n – )!

∫ t


(t – s)n–y(s) ds +

tn–

(n – )!
v(n–)(). (.)

http://www.boundaryvalueproblems.com/content/2014/1/158
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By (.) and (.), combining with the conditions u() = g(β[u],β[v]), v() = g(β[u],
β[v]), and letting t = , we have

u(n–)() =
∫ 


( – s)n–x(s) ds + (n – )!g

(
β[u],β[v]

)
,

v(n–)() =
∫ 


( – s)n–y(s) ds + (n – )!g

(
β[u],β[v]

)
.

Substituting u(n–)() and v(n–)() into (.) and (.), we have

u(t) = –


(n – )!

∫ t


(t – s)n–x(s) ds +


(n – )!

∫ 


tn–( – s)n–x(s) ds

+ tn–g
(
β[u],β[v]

)

=


(n – )!

∫ t



[
tn–( – s)n– – (t – s)n–

]
x(s) ds

+


(n – )!

∫ 

t
tn–( – s)n–x(s) ds + tn–g

(
β[u],β[v]

)

=
∫ 


K(t, s)x(s) ds + tn–g

(
β[u],β[v]

)
,

v(t) =
∫ 


K(t, s)y(s) ds + tn–g

(
β[u],β[v]

)
,

which is equivalent to the boundary value problem (.). �

Lemma . (see []) The function Ki(t, s), i = ,  defined by (.) has the following prop-
erties:
() Ki(t, s)≥ , for t, s ∈ [, ];
() ci(t)Gi(s)≤ Ki(t, s)≤ Gi(s), for t, s ∈ [, ],

where

Gi(s) :=
τi(s)ni–s( – s)ni–

(ni – )!
, τi(s) :=

s

( – ( – s)
ni–
ni– )

and

ci(t) := min

{
(ni – )ni–tni–( – t)

(ni – )ni–
, tni–

}

.

Throughout this paper, we assume that the following condition is satisfied.

(H) ai(t) does not vanish identically on any subinterval of (, ),  <
∫ 
 Gi(s)ai(s) ds < +∞,

i = , , where Gi(s) is defined by Lemma . and there exists t ∈ (, ) such that
ai(t) > .

Remark . By (H), we can choose a subinterval [ξ ,η] ⊂ (, ) such that t ∈ [ξ ,η]. Let
γ := min{ci(t) : t ∈ [ξ ,η], i = , }; it is easy to see that  < γ < . By Lemma ., we have
mint∈[ξ ,η]Ki(t, s)≥ γGi(s), ∀s ∈ [, ].

http://www.boundaryvalueproblems.com/content/2014/1/158
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By Lemma ., it is easy to prove that (u, v) ∈ Cn [, ]×Cn [, ] is a positive solution of
the system (.) if and only if (u, v) ∈ C[, ]×C[, ] is a positive solution of the following
integral system:

{
u(t) =

∫ 
 K(t, s)a(s)f(s,u(s), v(s)) ds + tn–g(β[u],β[v]),

v(t) =
∫ 
 K(t, s)a(s)f(s,u(s), v(s)) ds + tn–g(β[u],β[v]).

Let E = C([, ],R) × C([, ],R) be a Banach space endowed with the norm ‖(u, v)‖ :=
‖u‖+ ‖v‖, where ‖u‖ = max≤t≤ |u(t)|, ‖v‖ = max≤t≤ |v(t)| and define the cone K ⊂ E by

K :=
{
(u, v) ∈ E : u(t)≥ , v(t)≥ , t ∈ [, ], min

t∈[ξ ,η]
(
u(t) + v(t)

) ≥ γ
∥
∥(u, v)

∥
∥
}
.

It is easy to prove that E is a Banach space and K is a cone in E.
Define the operator T : K → E by

T(u, v)(t) =
(
T(u, v)(t),T(u, v)(t)

)
, ∀t ∈ [, ],

where

T(u, v)(t) =
∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds + tn–g

(
β[u],β[v]

)
, (.)

T(u, v)(t) =
∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds + tn–g

(
β[u],β[v]

)
. (.)

Lemma . The operator T : K → K .

Proof For any (u, v) ∈ K , considering Ki(t, s) ≥ , i = , , we have T(u, v)(t) ≥ , T(u,
v)(t)≥ , for ∀t ∈ [, ]. From (.) and Lemma ., we have

∥
∥T(u, v)

∥
∥ ≤

∫ 


G(s)a(s)f

(
s,u(s), v(s)

)
ds + g

(
β[u],β[v]

)
. (.)

It follows from (.) and Lemma . that we have

min
t∈[ξ ,η]

T(u, v)(t)

= min
t∈[ξ ,η]

[∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds + tn–g

(
β[u],β[v]

)
]

≥ γ

∫ 


G(s)a(s)f

(
s,u(s), v(s)

)
ds + γ g

(
β[u],β[v]

)

≥ γ
∥
∥T(u, v)

∥
∥.

Similarly, it follows from (.) and Lemma . that we have

min
t∈[ξ ,η]

T(u, v)(t)≥ γ
∥
∥T(u, v)

∥
∥.
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Therefore,

min
t∈[ξ ,η]

(
T(u, v)(t) + T(u, v)(t)

)

≥ min
t∈[ξ ,η]

T(u, v)(t) + min
t∈[ξ ,η]

T(u, v)(t)

≥ γ
∥
∥T(u, v)

∥
∥ + γ

∥
∥T(u, v)

∥
∥

= γ
∥
∥
(
T(u, v),T(u, v)

)∥
∥.

From the above, we conclude that T(u, v) = (T(u, v),T(u, v)) ∈ K , that is, T : K → K . �

3 Main result
For convenience, we use the following notation:

Mi = max
t∈[,]

∫ 


Ki(t, s)ai(s) ds, mi = min

t∈[ξ ,η]

∫ η

ξ

Ki(t, s)ai(s) ds,

Li =


βi[]
, i = , .

Then  ≤ mi ≤ Mi, i = , .

Theorem . Suppose that the condition (H) is satisfied and there exist non-negative
numbers hi, ki, di, ei, i = ,  such that for all t ∈ [, ] and (u, v), (u, v) ∈ K :

∣
∣fi(t,u, v) – fi(t,u, v)

∣
∣ ≤ hi|u – u| + ki|v – v|, i = , , (.)

∣
∣gi(u, v) – gi(u, v)

∣
∣ ≤ di|u – u| + ei|v – v|, i = ,  (.)

and

A +A < , (.)

where Ai = (hi + ki)Mi + (di + ei)βi[], i = , . Then the system (.) has a unique positive
solution in K .

Proof By Lemma ., the system (.) has a unique positive solution if and only if the
operator T has a unique fixed point in K .
Define supt∈[,] fi(t, , ) =Ni < ∞, i = ,  and gi(, ) =Gi <∞, i = ,  such that

r ≥ MN +G +MN +G

 –A –A
.

First we show that TBr ⊂ Br , where Br = {(u, v)|(u, v) ∈ K ,‖(u, v)‖ ≤ r}. For (u, v) ∈ Br , we
have

∣
∣T(u, v)(t)

∣
∣ ≤

∫ 


K(t, s)a(s)

[∣
∣f

(
s,u(s), v(s)

)
– f(s, , )

∣
∣ +

∣
∣f(s, , )

∣
∣
]
ds

+ tn–
[∣
∣g

(
β[u],β[v]

)
– g(, )

∣
∣ +

∣
∣g(, )

∣
∣
]

http://www.boundaryvalueproblems.com/content/2014/1/158
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≤ M
(
h‖u‖ + k‖v‖ +N

)
+ β[]

(
d‖u‖ + e‖v‖

)
+G

≤ Ar +MN +G,

hence

∥
∥T(u, v)

∥
∥ ≤ Ar +MN +G.

In the same way, we obtain

∥
∥T(u, v)

∥
∥ ≤ Ar +MN +G.

Consequently, ‖T(u, v)‖ = ‖T(u, v)‖ + ‖T(u, v)‖ ≤ r.
Now we shall prove that T is a contraction. Let (u, v), (u, v) ∈ K ; applying (.) we get

T(u, v)(t) – T(u, v)(t) =
∫ 


K(t, s)a(s)

[
f
(
s,u(s), v(s)

)
– f

(
s,u(s), v(s)

)]
ds

+ tn–
[
g

(
β[u],β[v]

)
– g

(
β[u],β[v]

)]
.

With the help of (.) and (.) we obtain

∣
∣T(u, v)(t) – T(u, v)(t)

∣
∣ ≤ hM max

t∈[,]
∣
∣u(t) – u(t)

∣
∣ + kM max

t∈[,]
∣
∣v(t) – v(t)

∣
∣

+ dβ[] max
t∈[,]

∣
∣u(t) – u(t)

∣
∣ + eβ[] max

t∈[,]
∣
∣v(t) – v(t)

∣
∣

=
(
hM + dβ[]

)‖u – u‖ + (
kM + eβ[]

)‖v – v‖,

this together with (.) implies

∥
∥T(u, v) – T(u, v)

∥
∥ ≤ A

(‖u – u‖ + ‖v – v‖). (.)

Similarly, applying (.), with the help of (.) and (.) we have

∥
∥T(u, v) – T(u, v)

∥
∥ ≤ A

(‖u – u‖ + ‖v – v‖). (.)

Taking (.) and (.) into account we have

∥
∥T(u, v) – T(u, v)

∥
∥ =

∥
∥T(u, v) – T(u, v)

∥
∥ +

∥
∥T(u, v) – T(u, v)

∥
∥

≤ (A +A)
(‖u – u‖ + ‖v – v‖),

where A + A < . So, T is a contraction, hence it has a unique point fixed in K which is
the unique positive solution of the system (.). The proof is completed. �

Define the non-negative continuous concave functional on K by

β(u, v) = min
t∈[ξ ,η]

(
u(t) + v(t)

)
.

We observe here that β(u, v)≤ ‖(u, v)‖, for each (u, v) ∈ K .
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Throughout this section, we assume that pi, qi, i = ,  are four positive numbers satis-
fying 

p
+ 

p
+ 

q
+ 

q
≤ .

Theorem . Suppose that the condition (H) is satisfied and there exist non-negative
numbers: a, b, c such that  < a < b ≤ min{γ , m

pM
, m
pM

}c and fi(t,u, v), gi(x, y) satisfy the
following growth conditions:

(H) gi(x, y) ≤ 
qi
Li(x + y), ∀x + y ∈ [, cβi[]], i = , ;

(H) fi(t,u, v) ≤ 
pi

· c
Mi

, ∀t ∈ [, ], u + v ∈ [, c], i = , ;
(H) fi(t,u, v) > b

mi
, ∀t ∈ [ξ ,η], u + v ∈ [b, b

γ
], i = , ;

(H) fi(t,u, v) < 
pi

· a
Mi

, ∀t ∈ [, ], u + v ∈ [,a], i = , .

Then the system (.) has at least three positive solutions (u, v), (u, v), (u, v) such that
‖(u, v)‖ < a, b < mint∈[ξ ,η](u(t) + v(t)) and ‖(u, v)‖ > a with mint∈[ξ ,η](u(t) + v(t)) < b.

Proof It is clear that the existence of positive solutions for the system (.) is equivalent to
the existence of fixed points of T in K .
Wefirst prove thatT : Kc → Kc is a completely continuous operator. In fact, if (u, v) ∈ Kc,

then ‖(u, v)‖ ≤ c and by condition (H), we have

gi
(
βi[u],βi[v]

) ≤ 
qi
Liβi[u + v] ≤ 

qi
Licβi[] =


qi
c, i = , .

Thus, by condition (H), we have

∥
∥T(u, v)

∥
∥ = max

t∈[,]
∣
∣T(u, v)(t)

∣
∣ + max

t∈[,]
∣
∣T(u, v)(t)

∣
∣

= max
t∈[,]

[∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds + tn–g

(
β[u],β[v]

)
]

+ max
t∈[,]

[∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds + tn–g

(
β[u],β[v]

)
]

≤ max
t∈[,]

∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds +


q
c

+ max
t∈[,]

∫ 


K(t, s)a(s)f

(
s,u(s), v(s)

)
ds +


q

c

≤ 
p

· c
M

M +

q
c +


p

· c
M

M +

q

c ≤ c.

Therefore, ‖T(u, v)‖ ≤ c, that is, T : Kc → Kc. Standard applications of the Arzelà-Ascoli
theorem imply that T is a completely continuous operator.
Now, we show that conditions (A)-(A) of Lemma . are satisfied.
Firstly, let u(t) = b

 , v(t) =
b
γ , it follows that β(u, v) > b, ‖(u, v)‖ < b

γ
, which shows that

{(u, v) ∈ P(β ,b, b
γ
) : β(u, v) > b} �=∅, and, for (u, v) ∈ P(β ,b, b

γ
), we have b ≤ u(s) + v(s)≤ b

γ
,

s ∈ [ξ ,η]. By condition (H) of Theorem ., we obtain

β
(
T(u, v)(t)

)
= min

t∈[ξ ,η]
(
T(u, v)(t) + T(u, v)(t)

)

≥ min
t∈[ξ ,η]

∫ η

ξ

K(t, s)a(s)f
(
s,u(s), v(s)

)
ds + γ g

(
β[u],β[v]

)
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+ min
t∈[ξ ,η]

∫ η

ξ

K(t, s)a(s)f
(
s,u(s), v(s)

)
ds + γ g

(
β[u],β[v]

)

>
b
m

min
t∈[ξ ,η]

∫ η

ξ

K(t, s)a(s) ds =
b
m

·m = b.

Similarly, by condition (H) of Theorem ., we can obtain

β
(
T(u, v)(t)

)
= min

t∈[ξ ,η]
(
T(u, v)(t) + T(u, v)(t)

)

>
b
m

min
t∈[ξ ,η]

∫ η

ξ

K(t, s)a(s) ds =
b
m

·m = b.

Therefore, condition (A) of Lemma . is satisfied.
Secondly, in a completely analogous argument to the proof of T : Kc → Kc, by condition

(H) of Theorem ., condition (A) of Lemma . is satisfied.
Finally, we show that condition (A) of Lemma . is satisfied. If (u, v) ∈ P(β ,b, b

γ
) and

‖T(u, v)(t)‖ > b
γ
, then

β
(
T(u, v)(t)

)
= min

t∈[ξ ,η]
(
T(u, v)(t) + T(u, v)(t)

) ≥ γ
∥
∥T(u, v)(t)

∥
∥ > b.

Therefore, condition (A) of Lemma . is satisfied.
Thus, all conditions of Lemma . are satisfied. By Lemma ., the system (.) has

at least three positive solutions (u, v), (u, v), (u, v) such that ‖(u, v)‖ < a, b <
mint∈[ξ ,η](u(t)+v(t)) and ‖(u, v)‖ > a, withmint∈[ξ ,η](u(t)+v(t)) < b. The proof is com-
pleted. �

4 Example
Example . Consider the following system of nonlinear mixed-order ordinary differen-
tial equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u()(t) + a(t)f(t,u(t), v(t)) = ,  < t < ,
v()(t) + a(t)f(t,u(t), v(t)) = ,  < t < ,
u() = u′() = , u() = g(β[u],β[v]),
v() = v′() = v′′() = , v() = g(β[u],β[v]).

(.)

Then the system (.) is equivalent to the following system of nonlinear integral equations:

{
u(t) =

∫ 
 K(t, s)a(s)f(s,u(s), v(s)) ds + tg(β[u],β[v]),

v(t) =
∫ 
 K(t, s)a(s)f(s,u(s), v(s)) ds + tg(β[u],β[v]),

where

K(t, s) =



{
t( – s) – (t – s),  ≤ s ≤ t ≤ ,
t( – s),  ≤ t ≤ s ≤ ,

K(t, s) =



{
t( – s) – (t – s),  ≤ s ≤ t ≤ ,
t( – s),  ≤ t ≤ s ≤ .
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We choose a(t) = √
t , a(t) = , β[u] =

∫ 
 u(s) ds, β[u] = 

∫ 
 u(s) ds, β[v] =

∫ 
 v(s) ds,

β[v] = 
∫ 
 v(s) ds, and

f(t,u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

.t + .(u + v), t ∈ [, ],  ≤ u + v≤ ,
.t + [(u + v) – (u + v)] + ., t ∈ [, ],  < u + v < ,
.t + [ log(u + v) + (u + v)/] + ., t ∈ [, ], ≤ u + v ≤ ,
.t + ., t ∈ [, ],u + v > 

and

f(t,u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

.t + .(u + v), t ∈ [, ], ≤ u + v ≤ ,
.t + [(u + v) – (u + v)] + ., t ∈ [, ],  < u + v < ,
.t + [ log(u + v) + (u + v)/] + ., t ∈ [, ], ≤ u + v≤ ,
.t + ., t ∈ [, ],  < u + v < +∞,

and

g
(
β[u],β[v]

)
=

{
. ln(β[u] + β[v] + ), ≤ u + v≤ ,
. ln,  < u + v < +∞,

g
(
β[u],β[v]

)
=

{
. ln(β[u] + β[v] + ),  ≤ u + v ≤ ,,
. ln ,, , < u + v < +∞.

By Lemma ., we have

c(t) =

{
t,  ≤ t ≤ .,
t( – t), .≤ t ≤ ,

c(t) =

{
t, ≤ t ≤ .,
t( – t)/, .≤ t ≤ .

Choose [ξ ,η] = [., .]; by Remark ., we obtain γ = .. Then by direct calculation
we obtain

M ≈ ., m ≈ ., M ≈ ., m ≈ .,

L = , L = ., β[] = , β[] = .

It is easy to verify that the condition (H) holds. Let q = , q = , p = , p = , a = ,
b = , c = . Also, it is easy to verify that f, f, g, g satisfy conditions (H)-(H).
Thus, by Theorem ., the system (.) has at least three positive solutions (u, v),

(u, v), (u, v) such that ‖(u, v)‖ < ,  < mint∈[.,.](u, v) and ‖(u, v)‖ >  with
mint∈[.,.](u, v) < .
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