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Abstract
In this paper we are concerned with the fractional Schrödinger equation
(–�)αu + V(x)u = f (x,u), x ∈ R

N , where 0 < α < 1, N > 2α, (–�)α stands for the
fractional Laplacian of order α, V is a positive continuous potential, and f is a
continuous subcritical nonlinearity. We obtain the existence of infinitely many weak
solutions for the above problem by the fountain theorem in critical point theory.
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1 Introduction
In this paper we consider the following fractional Schrödinger equation:

(–�)αu +V (x)u = f (x,u), x ∈R
N , (.)

where  < α < , N > α, (–�)α stands for the fractional Laplacian of order α, and the
potential V :RN →R is a continuous function satisfying
(V)  < infx∈RN V (x) = V < lim inf|x|→∞ V (x) = V∞ <∞.
The nonlinearity f : RN × R → R is a continuous function, satisfying the subcritical

condition.
(H) There exist d > , d >  and p ∈ (, ∗

α) such that

∣
∣f (x, s)

∣
∣ ≤ d|s| + d|s|p–, ∀(x, s) ∈R

N ×R,

where ∗
α = N

N–α is the fractional critical exponent.
Recently, there have appeared plenty of works on the fractional Schrödinger equations;

for example, see [–] and the references therein. In [], Shang and Zhang considered the
critical fractional Schrödinger equation

εα(–�)αu +V (x)u = |u|∗
α–u + λf (u), x ∈R

N , (.)

where ε and λ are positive parameters, V and f satisfy (V) and (H), respectively. They
obtained the result that (.) has a nonnegative ground state solution and investigated the
relation between the number of solutions and the topology of the set where V attains its
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minimum for all sufficiently largeλ and small ε. In [], Shang et al. considered the existence
of nontrivial solutions for (.) with f (u) = |u|q–u, where  < q < ∗

α .
In [], Hua and Yu studied the critical fractional Laplacian equation

⎧

⎨

⎩

(–�) α
 u = |u|∗

α–u +μu in �,

u =  on ∂�,
(.)

where  < α < , � ⊂ R
N , N > ( +

√
)α is a bounded domain. They obtained the result

that the problem (.) possesses a nontrivial ground state solution for any μ > .
In [], Secchi investigated the existence of radially symmetric solutions for (.) replacing

f (t,u) by g(u), where g satisfies the following conditions.
(g) g :R →R is of class C,γ for some γ > max{,  – α}, and odd,
(g) –∞ < lim inft→+

g(t)
t ≤ lim supt→+

g(t)
t = –m < ,

(g) –∞ < lim supt→+∞
g(t)
t∗α–

≤ ,

(g) for some ξ >  such that G(ξ ) =
∫ ξ

 g(t) dt > .
Inspired by the mentioned papers, we first establish a compact embedding lemma via

a fractional Gagliardo-Nirenberg inequality. Then by virtue of the fountain theorem in
critical point theory, we get two existence results of infinitely many weak solutions for
(.).

2 Preliminary results
In this section we offer some preliminary results which enable us to obtain the main exis-
tence theorems. First, we collect some useful facts of the fractional order Sobolev spaces.
For any  < α < , the fractional Sobolev space Hα(RN ) is defined by

Hα
(

R
N)

=
{

u ∈ L
(

R
N)

:
|u(x) – u(y)|
|x – y|N+α


∈ L

(

R
N ×R

N)
}

,

endowed with the norm

‖u‖Hα (RN ) =
(∫

RN
|u| dx +

∫

RN

|u(x) – u(y)|
|x – y|N+α dxdy

) 

,

where [u]Hα (RN ) = (
∫

RN
|u(x)–u(y)|
|x–y|N+α dxdy)/ is the so-called Gagliardo semi-norm of u. Let

S be the Schwartz space of rapidly decaying C∞ functions in R
N , for any u ∈ S and

α ∈ (, ), and let (–�)α be defined as

(–�)αu(x) = kN ,αP.V.
∫

RN

u(x) – u(y)
|x – y|N+α dy = kN ,α lim

ε→

∫

CBε (x)

u(x) – u(y)
|x – y|N+α dy. (.)

The symbol P.V. stands for the Cauchy principal value, and kN ,α is a dimensional constant
that depends on N and α, precisely given by kN ,α = (

∫

RN
–cos ζ
|ζ |N+α dζ )–.

Indeed, the fractional Laplacian (–�)α can be viewed as a pseudo-differential operator
of symbol |ξ |α , as stated in the following.
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Lemma . (see []) Let α ∈ (, ) and (–�)α :S → L(RN ) be the fractional Laplacian
operator defined by (.). Then for any u ∈ S ,

(–�)αu(x) =F –(|ξ |α(Fu)
)

(x), ∀ξ ∈R
N ,

where F is the Fourier transform, i.e.,

F (φ)(ξ ) =


(π )N/

∫

RN
exp{–π iξ · x}φ(x) dx.

Now we can see that an alternative definition of the fractional Sobolev space Hα(RN )
via the Fourier transform is as follows:

Hα
(

R
N)

=
{

u ∈ L
(

R
N)

:
∫

RN

(

 + |ξ |α)|Fu| dξ < +∞
}

.

It can be proved that

k–N ,α

∫

RN
|ξ |α|Fu| dξ = k–N ,α

∥
∥(–�)

α
 u

∥
∥

L(RN ) = [u]Hα (RN ). (.)

As a result, the norms on Hα(RN ),

u �→ ‖u‖Hα (RN ),

u �→ (‖u‖L(RN ) +
∥
∥(–�)

α
 u

∥
∥

L(RN )

) 
 ,

u �→
(

‖u‖L(RN ) +
∫

RN
|ξ |α|Fu| dξ

) 

,

(.)

are all equivalent.
In this paper, in view of the presence of potential V (x), we consider its subspace

E =
{

u ∈Hα
(

R
N)

:
∫

RN
V (x)u dx < ∞

}

.

We define the norm in E by

‖u‖E =
(∫

RN

(|ξ |αû + û
)

dξ +
∫

RN
V (x)u dx

) 

,

where û =F (u). Moreover, by [], E is a Hilbert space with the inner product

〈u, v〉E =
∫

RN

(|ξ |αû(ξ )v̂(ξ ) + û(ξ )v̂(ξ )
)

dξ +
∫

RN
V (x)u(x)v(x) dx, ∀u, v ∈ E.

Note that by (.) and (.), together with the condition (V), we know that ‖ · ‖E is equiv-
alent to the norm

‖u‖ =
(∫

RN

(∣
∣(–�)

α
 u

∣
∣
 +V (x)u

)

dx
) 


. (.)
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The corresponding inner product is

〈u, v〉 =
∫

RN

(

(–�)
α
 u(x)(–�)

α
 v(x) +V (x)u(x)v(x)

)

dx.

Throughout out this paper, we will use the norm ‖ · ‖ in E.

Definition . We say that u ∈ E is a weak solution of (.), if

∫

RN

(

(–�)
α
 u(–�)

α
 φ +V (x)uφ

)

dx =
∫

RN
f (x,u)φ dx, ∀φ ∈ E.

Lemma . (see [] and []) E is continuously embedded into Lp(RN ) for p ∈ [, ∗
α] and

compactly embedded into Lploc(R
N ) for p ∈ [, ∗

α).

Lemma . E is compactly embedded into Lp(RN ) for p ∈ [, ∗
α) with ∗

α = N
N–α .

Proof By [], we know E is compactly embedded into L(RN ), i.e., if there exists a sequence
{un} ⊂ E and u ∈ E such that un ⇀ u weakly in E, passing to a subsequence if necessary,
we have un → u strongly in L(RN ). Therefore, we only consider p ∈ (, ∗

α). In order to
do this, we need the following fractional Gagliardo-Nirenberg inequality, see [, Corol-
lary .]. Let  ≤ p,p < ∞,  < s < p < ∞,  < α <N and  < p <N/α. Then

∥
∥u(x)

∥
∥
Lp(RN ) ≤ η

s
p
∥
∥(–�)α/u(x)

∥
∥

s
p
Lp (RN )

∥
∥u(x)

∥
∥
– s

p
Lp (RN ) (.)

with

s
(


p

–
α

N

)

+
p – s
p

=  and η = –απ–α/ �((N – α)/)
�((N + α)/)

(
�(N)

�(N/)

)α/N

.

Note that the dimension N > α, we can take p = p = , and then s(  – α
N ) +

p–s
 = 

whence s = (p–)N
α ∈ (,p) as p ∈ (, ∗

s ). Consequently, from (.) we have

‖u‖Lp(RN ) ≤ η
s
p
∥
∥(–�)α/u

∥
∥

s
p
L(RN )‖u‖–

s
p

L(RN ).

Furthermore, note that (.); we see that

‖u‖Lp(RN ) ≤ η
s
p ‖u‖ s

p ‖u‖–
s
p

L(RN ). (.)

Then by (.) and E ↪→↪→ L(RN ), we find

‖un – u‖Lp(RN ) ≤ η
s
p ‖un – u‖

s
p ‖un – u‖–

s
p

L(RN )

≤ η
s
p
(‖un‖

s
p + ‖u‖

s
p
)‖un – u‖–

s
p

L(RN ) → .

Therefore, E is compactly embedded into Lp(RN ) for p ∈ [, ∗
α) with ∗

α = N
N–α , as re-

quired. This completes the proof. �
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The functional associated with (.) is defined by

J(u) =



∫

RN

(∣
∣(–�)

α
 u

∣
∣
 +V (x)u

)

dx –
∫

RN
F(x,u) dx, ∀u ∈ E, (.)

where F(x,u) =
∫ u
 f (x, s) ds.

Now, we list our assumptions on f and F .
(H) lim|s|→∞ F(x,s)

|s| = +∞ uniformly for x ∈R
N .

(H) There exist d >  and ϕ >  such that
∫

RN ϕ(x) dx < +∞ and

tf (x, t) – F(x, t)≤ sf (x, s) – F(x, s) + dϕ, ∀ < t < s or s < t < ,x ∈ R
N .

(H) F(x, s)≥  for (x, s) ∈R
N ×R.

(H) There exist β > , r >  such that

–βF(x, s) + sf (x, s)≥ , |s| ≥ r,uniformly for x ∈R
N .

(H) F(x, s) = F(x, –s) for all (x, s) ∈R
N ×R.

Remark . () Let F(x, s) = s ln(|s| + ), for all x ∈ R
N and s ∈ R. Then (H), (H), (H),

and (H) hold. Moreover, we easily have f (x, s) = s ln(|s|+)+ s[|s|(|s|+)]– and sf (x, s)–
F(x, s) = |s|(|s| + )–, so (H) is satisfied.
However, we can see that F(x, s) does not satisfy the Ambrosetti-Rabinowitz condition

(see [, (f)]):
(AR) there is a constant μ >  such that

 < μF(x, s)≤ sf (x, s) for all x ∈R
N and s ∈R\{}.

Indeed, sf (x, s) – μF(x, s) = s[( – μ) ln(|s| + ) + |s|(|s| + )–] ≥  is impossible for all
x ∈R

N and s ∈R\{}.
() Let β >  and F(x, s) = |s|β ln(|s| + ), for all x ∈ R

N and s ∈ R. Then (H), (H), (H),
and (H) hold. Moreover, from –βF(x, s) + sf (x, s) = |s|β+(|s| + )–, and (H) holds.

Note that from Theorem  in [] we have (H) and (H) imply (H).

Lemma. (see [, Lemma ]) Let (V) and (H) hold.Then J ∈ C(E,R) and its derivative

(

J ′(u),φ
)

=
∫

RN

(

(–�)
α
 u(–�)

α
 φ +V (x)uφ

)

dx –
∫

RN
f (x,u)φ dx, ∀u,φ ∈ E.

Moreover, the critical points of J are weak solutions of (.).

To complete the proofs of our theorems, we need the following critical point theorems
in [–].

Definition . Let (X,‖ ·‖) be a real Banach space, J ∈ C(X,R).We say that J satisfies the
(Cc) condition if any sequence {un} ⊂ X such that J(un) → c and ‖J ′(un)‖( + ‖un‖) →  as
n→ ∞ has a convergent subsequence.

http://www.boundaryvalueproblems.com/content/2014/1/159
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LetX be aBanach space equippedwith the norm ‖·‖ andX =
⊕

j∈NXj, where dimXj < ∞
for any j ∈N. Set Yk =

⊕k
j=Xj and Zk =

⊕∞
j=k Xj.

Lemma . Let (X,‖ · ‖) be a real reflexive Banach space, J ∈ C(X,R) satisfies the (Cc)
condition for any c >  and J is even. If for each sufficiently large k ∈N, there exist ρk > rk > 
such that the following conditions hold:

(i) ak := inf{u∈Zk ,‖u‖=rk} J(u) → +∞ as k → ∞,
(ii) bk := max{u∈Yk ,‖u‖=ρk} J(u) ≤ ,

then the functional J has an unbounded sequence of critical values, i.e., there exists a se-
quence {uk} ⊂ X such that J ′(uk) =  and J(uk) → +∞ as k → ∞.

In the following, we will introduce a variant fountain theorem by Zou []. Let X and
the subspace Yk and Zk be defined above. Consider the followingC-functional Jλ : X →R

defined by

Jλ(u) := A(u) – λB(u), λ ∈ [, ]. (.)

Lemma . If the functional Jλ satisfies
(T) Jλ maps bounded sets to bounded sets uniformly for λ ∈ [, ], and,moreover, Jλ(–u) =

Jλ(u) for all (λ,u) ∈ [, ]×X,
(T) B(u)≥  for all u ∈ X;moreover, A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞,
(T) there exist rk > ρk >  such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Jλ(u) > bk(λ) := max
u∈Yk ,‖u‖=rk

Jλ(u), ∀λ ∈ [, ],

then

ak(λ)≤ ζk(λ) = inf
γ∈�k

max
u∈Bk

Jλ
(

γ (u)
)

, ∀λ ∈ [, ],

where Bk = {u ∈ Yk : ‖u‖ ≤ rk} and �k = {γ ∈ C(Bk ,X) : γ is odd,γ |∂Bk = id}. Moreover, for
a.e. λ ∈ [, ], there exists a sequence {ukn(λ)}∞n= such that

sup
n

∥
∥ukn(λ)

∥
∥ < ∞, J ′λ

(

ukn(λ)
) →  and Jλ

(

ukn(λ)
) → ζk(λ) as n→ ∞.

Remark . Asmentioned in [], E is a Hilbert space. Let {ej} be an orthonormal basis of
E and define Xj := span{ej}, Yk :=

⊕k
j=Xj, and Zk :=

⊕∞
j=k+Xj, k ∈ N. Clearly, E =

⊕

j∈NXj

with dimXj < ∞ for all j ∈ N.

3 Existence of weak solutions for (1.1)
Theorem . Assume that (V), (H)-(H), and (H) hold. Then (.) has infinitely many
weak solutions {uk} satisfying




∫

RN

(∣
∣(–�)

α
 uk

∣
∣
 +V (x)uk

)

dx –
∫

RN
F(x,uk) dx → +∞ as k → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/159
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Proof We first prove that J satisfies the (Cc) condition for any c > . Let {un} ⊂ E be a (Cc)
sequence, i.e.,

J(un) → c > ,
∥
∥J ′(un)

∥
∥
(

 + ‖un‖
) →  when n→ ∞, (.)

which implies that

c = J(un) + o(), J ′(un)un = o() as n→ ∞. (.)

In what follows, we shall show that {un} is bounded. Otherwise, up to a subsequence,
{un} is unbounded in E, and we may assume that ‖un‖ → ∞ as n → ∞. We define the
sequence {wn} by wn = un

‖un‖ , n = , , . . . . Clearly, {wn} ⊂ E and ‖wn‖ =  for any n. Going
over, if necessary, to a subsequence, we may assume that

wn ⇀ w weakly in E,

wn → w strongly in Lp
(

R
N)

for p ∈ [, ∗
s ),

wn(x)→ w(x) a.e. x ∈R
N .

(.)

Suppose that w �=  in E. Dividing by ‖un‖ in both sides of (.), noting that J(un) → c,
we obtain

∫

RN

F(x,un)
‖un‖ dx =



+ o

(‖un‖–
)

< +∞. (.)

On the other hand, denote � �= := {x ∈R
N : w(x) �= }, by (H), for all x ∈ � �=, and we find

F(x,un)
‖un‖ =

F(x,un)
|un|

|un|
‖un‖ =

F(x,un)
|un| |wn| → +∞ when n → ∞.

If |��=| > , using Fatou’s lemma, we obtain

∫

RN

F(x,un)
‖un‖ dx → +∞ as n → ∞.

This contradicts (.). Hence, � �= has zero measure, i.e., w =  a.e. in R
N . Let tn ∈ [, ]

such that

J(tnun) = max
t∈[,]

J(tun).

Then we claim J(tnun) is bounded. If tn = , J() = ; if tn = , J(tnun) = J(un) → c. There-
fore, J(tnun) is bounded when tn = , . If  < tn <  for n large enough

∫

RN

(

(–�)
α
 tnun(–�)

α
 tnun +V (x)tnun · tnun

)

dx –
∫

RN
f (x, tnun)tnun dx

=
(

J ′(tnun), tnun
)

= tn
d
dt

∣
∣
∣
t=tn

J(tun) = .

http://www.boundaryvalueproblems.com/content/2014/1/159
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Consequently, by (H), noting that (.) and (.) hold, we have

J(tun) ≤ J(tnun) –


(

J ′(tnun), tnun
)

=



∫

RN
f (x, tnun)tnun dx –

∫

RN
F(x, tnun) dx

≤
∫

RN

[(


unf (x,un) – F(x,un)

)

+
d


ϕ(x)
]

dx

= J(un) –


(

J ′(un),un
)

+
∫

RN

d


ϕ(x) dx

≤ d, ∀t ∈ [, ], (.)

where d is a positive constant. But fixing any m > d, we let wn =
√
m un

‖un‖ =
√
mwn.

Note that from (H) we see that there exist d > , d >  such that

F(x,u)≤ d|u| + d|u|p, ∀(x,u) ∈ R
N ×R. (.)

Then by (.) we have

lim
n→∞

∫

RN
F(x,wn) dx ≤ lim

n→∞

∫

RN

(

d|wn| + d|wn|p
)

dx = .

Then for n large enough,

J(tnun) ≥ J
(√

m
‖un‖ un

)

= J(wn) =m –
∫

RN
F(x,wn) dx ≥ m.

This also contradicts (.).
Now the sequence {un} is bounded, as required. Next, we verify that {un} has a conver-

gent subsequence. Without loss of generality, we assume that

un ⇀ u weakly in E,

un → u strongly in Lp
(

R
N)

for p ∈ [, ∗
s ).

(.)

Combining this with (H) and the Hölder inequality, we see

∣
∣
∣
∣

∫

RN

[

f (x,un) – f (x,u)
]

(un – u) dx
∣
∣
∣
∣

≤
∫

RN

[

d
(|un| + |u|) + d

(|un|p– + |u|p–)]|un – u|dx

≤ d
(‖un‖ + ‖u‖

)‖un – u‖ + d
(‖un‖p–p + ‖u‖p–p

)‖un – u‖p →  as n → ∞.

Consequently,

‖un – u‖ = (

J ′(un) – J ′(u),un – u
)

+
∫

RN

[

f (x,un) – f (x,u)
]

(un – u) dx → 

http://www.boundaryvalueproblems.com/content/2014/1/159
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with the fact that (J ′(un) – J ′(u),un – u) →  when n → ∞. Therefore, we prove that J
satisfies the (Cc) condition for any c > .
Clearly, J(u) = J(–u) by (H). It remains to prove that the conditions (i) and (ii) of

Lemma . hold. Let βr(k) := sup{u∈Zk ,‖u‖=} ‖u‖r with r ∈ [, ∗
α), where Zk is defined in

Remark .. Then by Lemma . of [], βr(k) →  as k → ∞ for the fact that E ↪→↪→
Lr(RN ).
Now for u ∈ Zk with ‖u‖ = rk = (β(k) + βp(k))–, we obtain

J(u) ≥ 

‖u‖ –

∫

RN

(

d|u| + d|u|p)dx = 

‖u‖ – d‖u‖ – d‖u‖pp

≥ 

‖u‖ – dβ

 (k)‖u‖ – dβp
p (k)‖u‖p ≥ 


rk – d – d → ∞ as k → ∞.

Hence,

ak := inf
u∈Zk ,‖u‖=rk

J(u) → +∞ as k → ∞. (.)

Next we shall prove that, for any finite dimensional subspace X ⊂ E, we have

J(u) → –∞ as ‖u‖ → ∞,u ∈ X . (.)

Suppose the contrary. For some sequence {un} ⊂ X with ‖un‖ → ∞, there is a M > 
such that J(un) ≥ –M for all n ∈ N. Put vn = un

‖un‖ and then ‖vn‖ = . Up to a subsequence,
assume that vn ⇀ v weakly in E. Since dimX < ∞, vn → v ∈ X in E, vn → v a.e. on
R

N , and ‖v‖ = . Denote � := {x ∈ R
N : v(x) �= }, then meas(�) >  and for a.e. x ∈ �,

limn→∞ |un(x)| → ∞. It follows from (.) that

lim
n→∞

∫

RN F(x,un) dx
‖un‖ = lim

n→∞


‖un‖ – J(un)

‖un‖ ≤ d with a constant d > . (.)

But, for large n, on account of F being nonnegative, (H) and Fatou’s Lemma enable us to
obtain

lim
n→∞

∫

RN F(x,un) dx
‖un‖ ≥ lim

n→∞

∫

�

F(x,un)vn
un

dx ≥ lim inf
n→∞

∫

�

F(x,un)vn
un

dx

≥
∫

�

lim inf
n→∞

F(x,un)vn
un

dx

=
∫

�

lim inf
n→∞

F(x,un)
un

[

χ�(x)
]

vn dx → ∞

as n → ∞. This contradicts (.). Consequently, (.) holds, as required. Note that
dimYk <∞ in Remark ., and there exist positive constants dk such that

J(u) ≤ , for each u ∈ Yk and ‖u‖ ≥ dk . (.)

Combining this and (.), we can take ρk := max{dk , rk + }, and thus bk :=
max{u∈Yk ,‖u‖=ρk} J(u) ≤ . Until now, we have proved the functional J satisfies all the con-
ditions of Lemma .. Hence, J has an unbounded sequence of critical values, i.e., there
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exists a sequence {uk} ⊂ E such that J ′(uk) =  and J(uk) → +∞ as k → ∞. This completes
the proof. �

We prove that there exists a = a(r) >  (r is determined in (H)) such that

∣
∣–βF(x, s) + sf (x, s)

∣
∣ ≤ a|s|, |s| ≤ r, for all x ∈R

N . (.)

Indeed, by (.) we see

∣
∣F(x, s)

∣
∣ ≤ d|s| + d|s|p ≤ (

d + dr
p–


)|s|, |s| ≤ r,∀x ∈R
N .

This, together with (H), implies that

∣
∣–βF(x, s) + sf (x, s)

∣
∣ ≤ β

∣
∣F(x, s)

∣
∣ +

∣
∣sf (x, s)

∣
∣ ≤ β

(

d + dr
p–


)|s| + ∣
∣s

(

d|s| + d|s|p–
)∣
∣

≤ (

d + βd + (d + βd)r
p–


)|s|, if |s| ≤ r.

Clearly, (.) holds true with a = d +βd + (d +βd)r
p–
 . In the following theorem, we

make the following assumption instead of (V):

(V′) V ∈ C(RN ,R), infx∈RN V (x) = V ≥ [ 
a+

( β

 – )]– > , where a in (.), β in (H).

Especially, by (V′), we obtain

‖u‖ ≤ 
a + 

(
β


– 

)

‖u‖, u ∈ E. (.)

Now, we define a class of functionals on E by

Jλ(u) =


‖u‖ – λ

∫

RN
F(x,u) dx = A(u) – λB(u), λ ∈ [, ].

It is easy to know that Jλ ∈ C(E,R) for all λ ∈ [, ] and the critical points of J correspond
to the weak solutions of problem (.). Note that J = J , where J is the functional defined
in (.).

Theorem . Assume that (V′), (H), and (H)-(H) hold. Then (.) possesses infinitely
many weak solutions.

Proof We first prove that there exist a positive integer k and two sequences rk > ρk → ∞
as k → ∞ such that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Jλ(u) > , ∀k ≥ k, (.)

bk(λ) = max
u∈Yk ,‖u‖=rk

Jλ(u) < , ∀k ∈N, (.)

where Yk and Zk are defined in Remark ..
Step . We claim that (.) is true.

http://www.boundaryvalueproblems.com/content/2014/1/159
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By (.) and (H) we have

Jλ(u) =


‖u‖ – λ

∫

RN
F(x,u) dx≥ 


‖u‖ – 

∫

RN
F(x,u) dx

≥ 

‖u‖ – 

∫

RN

(

d|u| + d|u|p)dx≥ 

‖u‖ – d‖u‖ – d‖u‖pp. (.)

Since E ↪→↪→ Lr(RN ) with r ∈ [, ∗
α), and from Theorem . we have

Jλ(u) ≥ 

‖u‖ – dβ

 (k)‖u‖ – dβp
p (k)‖u‖p.

Let ρk = 
β(k)+βp(k) → ∞ as k → ∞. Then there exists k such that 

ρ

k – d – d > ,

∀k ≥ k. Therefore,

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Jλ(u) ≥ 

ρ
k – d – d > , ∀k ≥ k.

Step . We show that (.) is true.
We apply the method in Lemma . of [] to verify the claim. First, we prove that there

exists ε >  such that

meas
(

x ∈R
N :

∣
∣u(x)

∣
∣ ≥ ε‖u‖) ≥ ε, ∀u ∈ X \{},∀X ⊂ E and dimX <∞. (.)

There would otherwise exist a sequence {un}n∈N ⊂ X \{} such that

meas

(

x ∈R
N :

∣
∣un(x)

∣
∣ ≥ ‖un‖

n

)

<

n
, ∀n ∈N. (.)

For each n ∈N, let vn := un
‖un‖ ∈ X . Then ‖vn‖ = , ∀n ∈N and

meas

(

x ∈R
N :

∣
∣vn(x)

∣
∣ ≥ 

n

)

<

n
, ∀n ∈N. (.)

Passing to a subsequence if necessary, wemay assume vn → v in E for some v ∈ X since
X is of finite dimension. We easily find ‖v‖ = . Consequently, there exists a constant
σ >  such that

meas
(

x ∈R
N :

∣
∣v(x)

∣
∣ ≥ σ

) ≥ σ. (.)

Indeed, if not, then we have

meas

(

x ∈R
N :

∣
∣v(x)

∣
∣ ≥ 

n

)

= , ∀n ∈N, (.)

which implies

 ≤
∫

RN

∣
∣v(x)

∣
∣
 dx ≤ ‖v‖

n
→  as n→ ∞.

http://www.boundaryvalueproblems.com/content/2014/1/159
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This leads to v = , contradicting ‖v‖ = . In view of E ↪→↪→ Lp(RN ) and the equivalence
of any two norms on X , we have

∫

RN
|vn – v| dx →  as n→ ∞. (.)

For every n ∈N, denote

N :=
{

x ∈R
N :

∣
∣vn(x)

∣
∣ <


n

}

and N c :=
{

x ∈R
N :

∣
∣vn(x)

∣
∣ ≥ 

n

}

,

and N := {x ∈ R
N : |v(x)| ≥ σ}, where σ is defined by (.). Then for n large enough,

by (.), we see

meas(N ∩ N)≥ meas(N) – meas
(

N c) ≥ σ –

n

≥ σ


.

Consequently, for n large enough, we find

∫

RN
|vn – v| dx≥

∫

N ∩N

|vn – v| dx ≥ 


∫

N ∩N

|v| dx –
∫

N ∩N

|vn| dx

≥
(

σ 



–

n

)

meas(N ∩ N) ≥ σ 



> .

This contradicts (.). Therefore, (.) holds. For the ε given in (.), we let

Nu :=
{

x ∈ R
N :

∣
∣u(x)

∣
∣ ≥ ε‖u‖}, ∀u ∈ X \{}.

Then by (.), we find

meas(Nu) ≥ ε, ∀u ∈ X \{}. (.)

As is well known, (H) implies (H), and hence for any k ∈ N, there is a constant Sk > 
such that

F(x,u)≥ |u|
ε

, ∀|u| ≥ Sk ,

where ε is determined in (.). Therefore,

Jλ(u) =


‖u‖ – λ

∫

RN
F(x,u) dx≤ 


‖u‖ –

∫

Nu

|u|
ε

dx ≤
(


– 

)

‖u‖.

Now for any k ∈N, if we take rk > max{ρk , Skε }, so ‖u‖ = rk is large enough, we have

bk(λ) = max
u∈Yk ,‖u‖=rk

Jλ(u) < , ∀k ∈N.

Step . Clearly, Jλ ∈ C(E,R) implies that Jλ maps bounded sets to bounded sets uni-
formly for λ ∈ [, ]. In view of (H), Jλ(–u) = Jλ(u) for all (λ,u) ∈ [, ]× E. Thus the con-
dition (T) of Lemma . holds. Besides, the condition (T) of Lemma . holds for the

http://www.boundaryvalueproblems.com/content/2014/1/159
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fact that A(u) = 
‖u‖ → ∞ as ‖u‖ → ∞ and B(u) ≥  since F(x,u)≥ . Evidently, Step 

and Step  imply that the condition (T) of Lemma . also holds for all k ≥ k. Conse-
quently, Lemma . implies that for any k ≥ k and a.e. λ ∈ [, ], there exists a sequence
{ukn(λ)}∞n= such that

sup
n

∥
∥ukn(λ)

∥
∥ < ∞, J ′λ

(

ukn(λ)
) →  and Jλ

(

ukn(λ)
) → ζk(λ) as n→ ∞,

where

Bk =
{

u ∈ Yk : ‖u‖ ≤ rk
}

, �k =
{

γ ∈ C(Bk ,W ) : γ is odd,γ |∂Bk = id
}

,

ζk(λ) = inf
γ∈�k

max
u∈Bk

Jλ
(

γ (u)
)

, ∀λ ∈ [, ].

Furthermore, we easily have ζk(λ) ∈ [ak , ζ k], ∀k ≥ k, where ζ k := maxu∈Bk Jλ(γ (u)) and
ak := 

ρ

k – d – d → ∞ as k → ∞.

Claim . {ukn(λ)}∞n= ⊂ E possesses a strong convergent subsequence in E, a.e. λ ∈ [, ]
and k ≥ k. In fact, by the boundedness of {ukn(λ)}∞n=, passing to a subsequence, as n → ∞,
we may assume ukn(λ) ⇀ uk(λ) in E. By the method of Theorem ., we easily prove that
ukn(λ) → uk(λ) strongly in E.
Thus, for each k ≥ k, we can choose λl →  such that for the sequence {ukn(λl)}∞n= we

have obtained a convergent subsequence, and passing again to a subsequence, we may
assume

lim
n→∞ukn(λl) = ukl in E, ∀l ∈N and k ≥ k.

Thus we obtain

J ′λl
(

ukl
)

=  and Jλl
(

ukl
) ∈ [ak , ζ k], ∀l ∈N and k ≥ k. (.)

Claim . {ukl } is bounded in E and has a convergent subsequence with the limit uk ∈ E
for all k ≥ k. For convenience, we set ukl = ul for all l ∈ N. Consequently, (.) and (H)
imply that

βJλl (ul) –
(

J ′λl (ul),ul
)

=
(

β


– 

)

‖ul‖ + λl

∫

RN

[

–βF
(

x,ul(x)
)

+ f
(

x,ul(x)
)

ul(x)
]

dx

=
(

β


– 

)

‖ul‖ + λl

∫

|ul |≤r

[

–βF
(

x,ul(x)
)

+ f
(

x,ul(x)
)

ul(x)
]

dx

+ λl

∫

|ul |>r

[

–βF
(

x,ul(x)
)

+ f
(

x,ul(x)
)

ul(x)
]

dx

≥
(

β


– 

)

‖ul‖ – λl

∫

|ul |≤r

∣
∣–βF

(

x,ul(x)
)

+ f
(

x,ul(x)
)

ul(x)
∣
∣dx

≥
(

β


– 

)

‖ul‖ – λla‖ul‖ ≥
(

β


– 

)

‖ul‖ – a‖ul‖

≥
(

β


– 

)

‖ul‖ – a
a + 

(
β


– 

)

‖ul‖ = 
a + 

(
β


– 

)

‖ul‖.

http://www.boundaryvalueproblems.com/content/2014/1/159


Dong et al. Boundary Value Problems 2014, 2014:159 Page 14 of 14
http://www.boundaryvalueproblems.com/content/2014/1/159

Therefore, {ul}∞l= is bounded in E. By Claim , we see that {ul}∞l= has a convergent subse-
quence, which converges to an element uk ∈W for all k ≥ k.
Hence, passing to the limit in (.), we see J ′(uk) =  and J(uk) ∈ [ak , ζ k], ∀l ∈ N and

k ≥ k. Since ak → ∞ as k → ∞, we get infinitely many nontrivial critical points of J = J .
Therefore (.) possesses infinitely many nontrivial solutions by Lemma .. This com-
pletes the proof. �
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