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Abstract
The main purpose of this paper is to establish the existence of two nontrivial solutions
and the existence of infinitely many solutions for a class of fourth-order elliptic
equations with subcritical polynomial growth and subcritical exponential growth by
using a suitable version of the mountain pass theorem and the symmetric mountain
pass theorem.
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1 Introduction
Consider the following Navier boundary value problem:

⎧
⎨

⎩

�u(x) + c�u = f (x,u), in �;

u = �u = , in ∂�,
()

where � is the biharmonic operator and � is a bounded smooth domain in R
N (N ≥ ).

In problem (), let f (x,u) = b[(u + )+ – ], then we get the following Dirichlet problem:

⎧
⎨

⎩

�u(x) + c�u = b[(u + )+ – ], in �;

u = �u = , in ∂�,
()

where u+ = max{u, } and b ∈ R. We let λk (k = , , . . .) denote the eigenvalues of –� in
H

(�).
Thus, fourth-order problems with N >  have been studied by many authors. In [],

Lazer and McKenna pointed out that this type of nonlinearity furnishes a model to study
traveling waves in suspension bridges. Since then, more general nonlinear fourth-order
elliptic boundary value problems have been studied. For problem (), Lazer andMcKenna
[] proved the existence of k –  solutions when N = , and b > λk(λk – c) by the global
bifurcation method. In [], Tarantello found a negative solution when b ≥ λ(λ – c) by a
degree argument. For problem () when f (x,u) = bg(x,u),Micheletti and Pistoia [] proved
that there exist two or three solutions for a more general nonlinearity g by the variational
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method. Xu and Zhang [] discussed the problem when f satisfies the local superlinearity
and sublinearity. Zhang [] proved the existence of solutions for a more general nonlin-
earity f (x,u) under some weaker assumptions. Zhang and Li [] proved the existence of
multiple nontrivial solutions by means of Morse theory and local linking. An and Liu []
and Liu andWang [] also obtained the existence result for nontrivial solutions when f is
asymptotically linear at positive infinity.
We noticed that almost all of works (see [–]) mentioned above involve the nonlinear

term f (x,u) of a subcritical (polynomial) growth, say,
(SCP): there exist positive constants c and c and q ∈ (,p∗ – ) such that

∣
∣f (x, t)

∣
∣ ≤ c + c|t|q for all t ∈R and x ∈ �,

where p∗ = N/(N –) denotes the critical Sobolev exponent. One of the main reasons to
assume this condition (SCP) is that they can use the Sobolev compact embeddingH(�)∩
H

(�) ↪→ Lq(�) ( ≤ q < p∗). At that time, it is easy to see that seeking a weak solution of
problem () is equivalent to finding a nonzero critical points of the following functional
on H(�)∩H

(�):

I(u) =



∫

�

(|�u| – c|∇u|)dx –
∫

�

F(x,u)dx, where F(x,u) =
∫ u


f (x, t)dt. ()

In this paper, stimulated by Lam and Lu [], our first main results will be to study prob-
lem () in the improved subcritical polynomial growth

(SCPI): lim
t→∞

f (x, t)
|t|p∗– = 

which is much weaker than (SCP). Note that in this case, we do not have the Sobolev
compact embedding anymore. Our work is to study problem () when nonlinearity f does
not satisfy the (AR) condition, i.e., for some θ >  and γ > ,

 < θF(x, t)≤ f (x, t)t for all |t| ≥ γ and x ∈ �. (AR)

In fact, this condition was studied by Liu andWang in [] in the case of Laplacian by the
Nehari manifold approach. However, we will use a suitable version of the mountain pass
theorem to get the nontrivial solution to problem () in the general caseN > .Wewill also
use the symmetric mountain pass theorem to get infinitely many solutions for problem ()
in the general case N >  when nonlinearity f is odd.
Let us now state our results. In this paper, we always assume that f (x, t) ∈ C(�̄×R). The

conditions imposed on f (x, t) are as follows:

(H) f (x, t)t ≥  for all x ∈ �, t ∈R;
(H) lim|t|→

f (x,t)
t = f uniformly for x ∈ �, where f is a constant;

(H) lim|t|→∞ f (x,t)
t = +∞ uniformly for x ∈ �;

(H) f (x,t)
|t| is nondecreasing in t ∈R for any x ∈ �.

Let  < μ < μ < · · · < μk < · · · be the eigenvalues of (� – c�,H(�) ∩ H
(�)) and

ϕ(x) >  be the eigenfunction corresponding to μ. Let Eμk denote the eigenspace asso-
ciated to μk . In fact, μk = λk(λk – c). Throughout this paper, we denote by | · |p the Lp(�)
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norm, c < λ in � – c� and the norm of u in H(�)∩H
(�) will be defined by

‖u‖ :=
(∫

�

(|�u| – c|∇u|)dx
) 


.

We also define E =H(�)∩H
(�).

Theorem. Let N >  and assume that f has the improved subcritical polynomial growth
on � (condition (SCPI)) and satisfies (H)-(H). If f < μ, then problem () has at least two
nontrivial solutions.

Theorem. Let N >  and assume that f has the improved subcritical polynomial growth
on � (condition (SCPI)), is odd in t and satisfies (H) and (H). If f (x, ) = , then problem
() has infinitely many nontrivial solutions.

In the case of N = , we have p∗ = +∞. So it is necessary to introduce the definition of
the subcritical (exponential) growth in this case. By the improved Adams inequality (see
[]) for the fourth-order derivative, namely,

sup
u∈E,‖u‖≤

∫

�

eπ
u dx ≤ C|�|.

So, we now define the subcritical (exponential) growth in this case as follows:
(SCE): f has subcritical (exponential) growth on �, i.e., limt→∞ |f (x,t)|

exp(αt) =  uniformly
on x ∈ � for all α > .

When N =  and f has the subcritical (exponential) growth (SCE), our work is still to
study problem () without the (AR) condition. Our results are as follows.

Theorem . Let N =  and assume that f has the subcritical exponential growth on �

(condition (SCE)) and satisfies (H)-(H). If f < μ, then problem () has at least two non-
trivial solutions.

Theorem . Let N =  and assume that f has the subcritical exponential growth on �

(condition (SCE)), is odd in t and satisfies (H) and (H). If f (x, ) = , then problem () has
infinitely many nontrivial solutions.

2 Preliminaries and auxiliary lemmas
Definition . Let (E,‖ · ‖E) be a real Banach space with its dual space (E∗,‖ · ‖E∗ ) and
I ∈ C(E,R). For c∗ ∈ R, we say that I satisfies the (PS)c∗ condition if for any sequence
{xn} ⊂ E with

I(xn)→ c∗, DI(xn) →  in E∗,

there is a subsequence {xnk } such that {xnk } converges strongly in E. Also, we say that I
satisfies the (C)c∗ condition if for any sequence {xn} ⊂ E with

I(xn)→ c∗,
∥
∥DI(xn)

∥
∥
E∗

(
 + ‖xn‖E

) → ,

there is a subsequence {xnk } such that {xnk } converges strongly in E.

We have the following version of the mountain pass theorem (see []).
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Proposition . Let E be a real Banach space and suppose that I ∈ C(E,R) satisfies the
condition

max
{
I(), I(u)

} ≤ α < β ≤ inf‖u‖=ρ
I(u)

for some α < β , ρ >  and u ∈ E with ‖u‖ > ρ . Let c∗ ≥ β be characterized by

c∗ = inf
γ∈

max
≤t≤

I
(
γ (t)

)
,

where  = {γ ∈ C([, ],E),γ () = ,γ () = u} is the set of continuous paths joining 
and u. Then there exists a sequence {un} ⊂ E such that

I(un) → c∗ ≥ β and
(
 + ‖un‖

)∥
∥I ′(un)

∥
∥
E∗ →  as n→ ∞.

Consider the following problem:
{

�u + c�u = f+(x,u), x ∈ �,
u|∂� = �u|∂� = ,

where

f+(x, t) =

{
f (x, t), t > ,
, t ≤ .

Define a functional I+ : E →R by

I+(u) =



∫

�

(|�u| – c|∇u|)dx –
∫

�

F+(x,u)dx,

where F+(x, t) =
∫ t
 f+(x, s)ds, then I+ ∈ C(E,R).

Lemma . Let N >  and ϕ >  be a μ-eigenfunction with ‖ϕ‖ =  and assume that
(H), (H) and (SCPI) hold. If f < μ, then:

(i) There exist ρ,α >  such that I+(u) ≥ α for all u ∈ E with ‖u‖ = ρ .
(ii) I+(tϕ)→ –∞ as t → +∞.

Proof By (SCPI), (H) and (H), for any ε > , there exist A = A(ε), B = B(ε) and l > μ

such that for all (x, s) ∈ � ×R,

F+(x, s)≤ 

(f + ε)s +Asp

∗
, ()

F+(x, s)≥ 

ls – B. ()

Choose ε >  such that (f + ε) < μ. By (), the Poincaré inequality and the Sobolev in-
equality |u|p∗

p∗ ≤ K‖u‖p∗ , we get

I+(u) ≥ 

‖u‖ – f + ε


|u| –A|u|p∗

p∗ ≥ 


(

 –
f + ε

μ

)

‖u‖ –AK‖u‖p∗
.

So, part (i) is proved if we choose ‖u‖ = ρ >  small enough.
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On the other hand, from () we have

I+(tϕ) ≤ 


(

 –
l

μ

)

t + B|�| → –∞ as t → –∞.

Thus part (ii) is proved. �

Lemma. (see []) Let� ⊂R
 be a bounded domain.Then there exists a constant C > 

such that

sup
u∈E,‖u‖≤

∫

�

eπ
u dx ≤ C|�|,

and this inequality is sharp.

Lemma . Let N =  and ϕ >  be a μ-eigenfunction with ‖ϕ‖ =  and assume that
(H), (H) and (SCE) hold. If f < μ, then:

(i) There exist ρ,α >  such that I+(u) ≥ α for all u ∈ E with ‖u‖ = ρ .
(ii) I+(tϕ)→ –∞ as t → +∞.

Proof By (SCE), (H) and (H), for any ε > , there exist A = A(ε), B = B(ε), κ > , q > 
and l > μ such that for all (x, s) ∈ � ×R,

F+(x, s)≤ 

(f + ε)s +A exp

(
κ|s|)sq, ()

F+(x, s)≥ 

ls – B. ()

Choose ε >  such that (f + ε) < μ. By (), the Holder inequality and Lemma ., we get

I+(u) ≥ 

‖u‖ – f + ε


|u| –A

∫

�

exp
(
κ|u|)|u|q dx

≥ 


(

 –
f + ε

μ

)

‖u‖ –A

(∫

�

exp

(

κr‖u‖
( |u|

‖u‖
))

dx
) 

r
(∫

�

|u|r′q dx
) 

r′

≥ 


(

 –
f + ε

μ

)

‖u‖ –C‖u‖q,

where r >  is sufficiently close to , ‖u‖ ≤ σ and κrσ  < π. So, part (i) is proved if we
choose ‖u‖ = ρ >  small enough.
On the other hand, from () we have

I+(tϕ) ≤ 


(

 –
l

μ

)

|t| + B|�| → –∞ as t → –∞.

Thus part (ii) is proved. �

Lemma. For the functional I defined by (), if condition (H) holds, and for any {un} ∈ E
with

〈
I ′(un),un

〉 →  as n→ ∞,
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then there is a subsequence, still denoted by {un}, such that

I(tun) ≤  + t

n
+ I(un) for all t ∈R and n ∈N .

Proof This lemma is essentially due to []. We omit it here. �

3 Proofs of themain results
Proof of Theorem . By Lemma . and Proposition ., there exists a sequence {un} ⊂ E
such that

I+(un) =


‖un‖ –

∫

�

F+(x,un)dx = c∗ + o(), ()

(
 + ‖un‖

)∥
∥I ′+(un)

∥
∥
E →  as n→ ∞. ()

Clearly, () implies that

〈
I ′+(un),un

〉
= ‖un‖ –

∫

�

f+
(
x,un(x)

)
un dx = o(). ()

To complete our proof, we first need to verify that {un} is bounded in E. Assume ‖un‖ →
+∞ as n→ ∞. Let

sn =

√
c∗

‖un‖ , wn = snun =

√
c∗un

‖un‖ . ()

Since {wn} is bounded in E, it is possible to extract a subsequence (denoted also by {wn})
such that

wn ⇀ w in E,

w+
n → w+

 in L(�),

w+
n(x)→ w+

(x) a.e. x ∈ �,
∣
∣w+

n(x)
∣
∣ ≤ h(x) a.e. x ∈ �,

where w+
n = max{wn, }, w ∈ E and h ∈ L(�).

We claim that if ‖un‖ → +∞ as n → +∞, then w+(x) ≡ . In fact, we set � = {x ∈ � :
w+ = }, � = {x ∈ � : w+ > }. Obviously, by (), u+n → +∞ a.e. in �, noticing condition
(H), then for any given K > , we have

lim
n→+∞

f (x,u+n)
u+n

(
w+
n(x)

) ≥ Kw+(x) for a.e. x ∈ �. ()

From (), () and (), we obtain

c∗ = lim
n→+∞‖wn‖ = lim

n→+∞

∫

�

f (x,u+n)
u+n

(
w+
n
) dx

≥
∫

�

lim
n→+∞

f (x,u+n)
u+n

(
w+
n
) dx≥ K

∫

�

(
w+) dx.

http://www.boundaryvalueproblems.com/content/2014/1/162
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Noticing that w+ >  in � and K >  can be chosen large enough, so |�| =  and w+ ≡ 
in �. However, if w+ ≡ , then limn→+∞

∫

�
F(x,w+

n)dx =  and consequently

I+(wn) =


‖wn‖ + o() = c∗ + o(). ()

By ‖un‖ → +∞ as n → +∞ and in view of (), we observe that sn → , then it follows
from Lemma . and () that

I+(wn) = I+(snun) ≤  + sn
n

+ I+(un) → c∗ >  as n→ +∞. ()

Clearly, () and () are contradictory. So {un} is bounded in E.
Next, we prove that {un} has a convergence subsequence. In fact, we can suppose that

un ⇀ u in E,

un → u in Lq(�),∀≤ q < p∗,

un(x)→ u(x) a.e. x ∈ �.

Now, since f has the improved subcritical growth on �, for every ε > , we can find a
constant C(ε) >  such that

f+(x, s)≤ C(ε) + ε|s|p∗–, ∀(x, s) ∈ � ×R,

then
∣
∣
∣
∣

∫

�

f+(x,un)(un – u)dx
∣
∣
∣
∣

≤ C(ε)
∫

�

|un – u|dx + ε

∫

�

|un – u||un|p∗– dx

≤ C(ε)
∫

�

|un – u|dx + ε

(∫

�

(|un|p∗–) p∗
p∗– dx

) p∗–
p∗ (∫

�

|un – u|p∗
) 

p∗

≤ C(ε)
∫

�

|un – u|dx + εC(�).

Similarly, since un ⇀ u in E,
∫

�
|un – u|dx → . Since ε >  is arbitrary, we can conclude

that
∫

�

(
f+(x,un) – f+(x,u)

)
(un – u)dx →  as n→ ∞. ()

By (), we have
〈
I ′+(un) – I ′+(u), (un – u)

〉 →  as n → ∞. ()

From () and (), we obtain
∫

�

[∣
∣�(un – u)

∣
∣ – c

∣
∣∇(un – u)

∣
∣

]
dx →  as n→ ∞.

So we have un → u in E which means that I+ satisfies (C)c∗ . Thus, from the strong max-
imum principle, we obtain that the functional I+ has a positive critical point u, i.e., u

http://www.boundaryvalueproblems.com/content/2014/1/162
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is a positive solution of problem (). Similarly, we also obtain a negative solution u for
problem (). �

Proof of Theorem . It follows from the assumptions that I is even.Obviously, I ∈ C(E,R)
and I() = . By the proof of Theorem ., we easily prove that I(u) satisfies condition (C)c∗
(c∗ > ). Now, we can prove the theorem by using the symmetric mountain pass theorem
in [–].
Step .We claim that condition (i) holds in Theorem . (see []). LetV = Eμ ⊕Eμ ⊕

· · · ⊕ Eμk , V = E \V. For all u ∈ V, by (SCPI), we have

I(u) =



∫

�

(|�u| – c|∇u|)dx –
∫

�

F(x,u)dx

≥ 


∫

�

(|�u| – c|∇u|)dx – c
∫

�

|u|p∗
dx – c

≥ ‖u‖
(


– cλ

–(–a)p∗/
k+ ‖u‖p∗–

)

– c,

where a ∈ (, ) is defined by


p∗ = a

(


–


N

)

+ ( – a)


.

Choose ρ = ρ(k) = ‖u‖ so that the coefficient of ρ in the above formula is 
 . Therefore

I(u) ≥ 


ρ – c ()

for u ∈ ∂Bρ ∩V. Since λk → ∞ as k → ∞, ρ(k)→ ∞ as k → ∞. Choose k so that 
ρ >

c. Consequently

I(u) ≥ 

ρ ≡ α. ()

Hence, our claim holds.
Step .We claim that condition (ii) holds in Theorem . (see []). By (H), there exists

large enoughM such that

F(x, t)≥ Mt – c, x ∈ �, t ∈R.

So, for any u ∈ E \ {}, we have

I(tu) =


t

∫

�

(|�u| – c|∇u|)dx –
∫

�

F(x, tu)dx

≤ 

t‖u‖ –Mt

∫

�

u dx + c|�| → –∞ as t → +∞.

Hence, for every finite dimension subspace Ẽ ⊂ E, there exists R = R(Ẽ) such that

I(u) ≤ , u ∈ Ẽ \ BR(Ẽ)

and our claim holds. �
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Proof of Theorem . By Lemma ., the geometry conditions of the mountain pass the-
orem (see Proposition .) for the functional I+ hold. So, we only need to verify condition
(C)c∗ . Similar to the previous part of the proof of Theorem ., we easily know that (C)c∗
sequence {un} is bounded in E. Next, we prove that {un} has a convergence subsequence.
Without loss of generality, suppose that

‖un‖ ≤ β ,

un ⇀ u in E,

un → u in Lq(�),∀q ≥ ,

un(x)→ u(x) a.e. x ∈ �.

Now, since f+ has the subcritical exponential growth (SCE) on �, we can find a constant
Cβ >  such that

∣
∣f+(x, t)

∣
∣ ≤ Cβ exp

(
π

β |t|
)

, ∀(x, t) ∈ � ×R.

Thus, by the Adams-type inequality (see Lemma .),

∣
∣
∣
∣

∫

�

f+(x,un)(un – u)dx
∣
∣
∣
∣

≤ C
(∫

�

exp

(
π

β |un|
)

dx
) 

 |un – u|

≤ C
(∫

�

exp

(
π

β ‖un‖
∣
∣
∣
∣
un

‖un‖
∣
∣
∣
∣

)

dx
) 

 |un – u|

≤ C|un – u| → .

Similar to the last proof of Theorem ., we have un → u in E, whichmeans that I+ satisfies
(C)c∗ . Thus, from the strong maximum principle, we obtain that the functional I+ has a
positive critical point u, i.e., u is a positive solution of problem (). Similarly, we also
obtain a negative solution u for problem (). �

Proof of Theorem . Combining the proof of Theorem . and Theorem ., we easily
prove it. �
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