Biharmonic equations with improved subcritical polynomial growth and subcritical exponential growth

Ruichang Peil ${ }^{1,2^{*}}$ and Jihui Zhang ${ }^{2}$

Correspondence: prc211@163.com
'School of Mathematics and Statistics, Tianshui Normal University, Tianshui, 741001, P.R. China
${ }^{2}$ School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing, 210097 P.R. China

Abstract

The main purpose of this paper is to establish the existence of two nontrivial solutions and the existence of infinitely many solutions for a class of fourth-order elliptic equations with subcritical polynomial growth and subcritical exponential growth by using a suitable version of the mountain pass theorem and the symmetric mountain pass theorem.

Keywords: mountain pass theorem; Adams-type inequality; subcritical polynomial growth; subcritical exponential growth

1 Introduction

Consider the following Navier boundary value problem:

$$
\begin{cases}\Delta^{2} u(x)+c \Delta u=f(x, u), & \text { in } \Omega \tag{1}\\ u=\Delta u=0, & \text { in } \partial \Omega\end{cases}
$$

where \triangle^{2} is the biharmonic operator and Ω is a bounded smooth domain in $\mathbb{R}^{N}(N \geq 4)$. In problem (1), let $f(x, u)=b\left[(u+1)^{+}-1\right]$, then we get the following Dirichlet problem:

$$
\begin{cases}\Delta^{2} u(x)+c \Delta u=b\left[(u+1)^{+}-1\right], & \text { in } \Omega \tag{2}\\ u=\Delta u=0, & \text { in } \partial \Omega\end{cases}
$$

where $u^{+}=\max \{u, 0\}$ and $b \in \mathbb{R}$. We let $\lambda_{k}(k=1,2, \ldots)$ denote the eigenvalues of $-\Delta$ in $H_{0}^{1}(\Omega)$.

Thus, fourth-order problems with $N>4$ have been studied by many authors. In [1], Lazer and McKenna pointed out that this type of nonlinearity furnishes a model to study traveling waves in suspension bridges. Since then, more general nonlinear fourth-order elliptic boundary value problems have been studied. For problem (2), Lazer and McKenna [2] proved the existence of $2 k-1$ solutions when $N=1$, and $b>\lambda_{k}\left(\lambda_{k}-c\right)$ by the global bifurcation method. In [3], Tarantello found a negative solution when $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$ by a degree argument. For problem (1) when $f(x, u)=b g(x, u)$, Micheletti and Pistoia [4] proved that there exist two or three solutions for a more general nonlinearity g by the variational

[^0]method. Xu and Zhang [5] discussed the problem when f satisfies the local superlinearity and sublinearity. Zhang [6] proved the existence of solutions for a more general nonlinearity $f(x, u)$ under some weaker assumptions. Zhang and Li [7] proved the existence of multiple nontrivial solutions by means of Morse theory and local linking. An and Liu [8] and Liu and Wang [9] also obtained the existence result for nontrivial solutions when f is asymptotically linear at positive infinity.
We noticed that almost all of works (see [4-9]) mentioned above involve the nonlinear term $f(x, u)$ of a subcritical (polynomial) growth, say,
(SCP): there exist positive constants c_{1} and c_{2} and $q_{0} \in\left(1, p^{*}-1\right)$ such that
$$
|f(x, t)| \leq c_{1}+c_{2}|t|^{q_{0}} \quad \text { for all } t \in \mathbb{R} \text { and } x \in \Omega
$$
where $p^{*}=2 N /(N-4)$ denotes the critical Sobolev exponent. One of the main reasons to assume this condition (SCP) is that they can use the Sobolev compact embedding $H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)\left(1 \leq q<p^{*}\right)$. At that time, it is easy to see that seeking a weak solution of problem (1) is equivalent to finding a nonzero critical points of the following functional on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$:
\[

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} F(x, u) d x, \quad \text { where } F(x, u)=\int_{0}^{u} f(x, t) d t . \tag{3}
\end{equation*}
$$

\]

In this paper, stimulated by Lam and Lu [10], our first main results will be to study problem (1) in the improved subcritical polynomial growth

$$
\text { (SCPI): } \lim _{t \rightarrow \infty} \frac{f(x, t)}{|t|^{p^{*}-1}}=0
$$

which is much weaker than (SCP). Note that in this case, we do not have the Sobolev compact embedding anymore. Our work is to study problem (1) when nonlinearity f does not satisfy the (AR) condition, i.e., for some $\theta>2$ and $\gamma>0$,

$$
\begin{equation*}
0<\theta F(x, t) \leq f(x, t) t \quad \text { for all }|t| \geq \gamma \text { and } x \in \Omega \tag{AR}
\end{equation*}
$$

In fact, this condition was studied by Liu and Wang in [11] in the case of Laplacian by the Nehari manifold approach. However, we will use a suitable version of the mountain pass theorem to get the nontrivial solution to problem (1) in the general case $N>4$. We will also use the symmetric mountain pass theorem to get infinitely many solutions for problem (1) in the general case $N>4$ when nonlinearity f is odd.
Let us now state our results. In this paper, we always assume that $f(x, t) \in C(\bar{\Omega} \times \mathbb{R})$. The conditions imposed on $f(x, t)$ are as follows:
$\left(\mathrm{H}_{1}\right) f(x, t) t \geq 0$ for all $x \in \Omega, t \in \mathbb{R}$;
$\left(\mathrm{H}_{2}\right) \lim _{|t| \rightarrow 0} \frac{f(x, t)}{t}=f_{0}$ uniformly for $x \in \Omega$, where f_{0} is a constant;
$\left(\mathrm{H}_{3}\right) \lim _{|t| \rightarrow \infty} \frac{f(x, t)}{t}=+\infty$ uniformly for $x \in \Omega$;
$\left(\mathrm{H}_{4}\right) \frac{f(x, t)}{|t|}$ is nondecreasing in $t \in \mathbb{R}$ for any $x \in \Omega$.
Let $0<\mu_{1}<\mu_{2}<\cdots<\mu_{k}<\cdots$ be the eigenvalues of ($\left.\triangle^{2}-c \triangle, H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$ and $\varphi_{1}(x)>0$ be the eigenfunction corresponding to μ_{1}. Let $E_{\mu_{k}}$ denote the eigenspace associated to μ_{k}. In fact, $\mu_{k}=\lambda_{k}\left(\lambda_{k}-c\right)$. Throughout this paper, we denote by $|\cdot|_{p}$ the $L^{p}(\Omega)$
norm, $c<\lambda_{1}$ in $\triangle^{2}-c \Delta$ and the norm of u in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ will be defined by

$$
\|u\|:=\left(\int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x\right)^{\frac{1}{2}} .
$$

We also define $E=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Theorem 1.1 Let $N>4$ and assume thatf has the improved subcritical polynomial growth on Ω (condition (SCPI)) and satisfies $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$. If $f_{0}<\mu_{1}$, then problem (1) has at least two nontrivial solutions.

Theorem 1.2 Let $N>4$ and assume thatf has the improved subcritical polynomial growth on Ω (condition (SCPI)), is odd in t and satisfies $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{4}\right)$. If $(x, 0)=0$, then problem (1) has infinitely many nontrivial solutions.

In the case of $N=4$, we have $p^{*}=+\infty$. So it is necessary to introduce the definition of the subcritical (exponential) growth in this case. By the improved Adams inequality (see [12]) for the fourth-order derivative, namely,

$$
\sup _{u \in E,\|u\| \leq 1} \int_{\Omega} e^{32 \pi^{2} u^{2}} d x \leq C|\Omega| .
$$

So, we now define the subcritical (exponential) growth in this case as follows:
(SCE): f has subcritical (exponential) growth on Ω, i.e., $\lim _{t \rightarrow \infty} \frac{|f(x, t)|}{\exp \left(\alpha t^{2}\right)}=0$ uniformly on $x \in \Omega$ for all $\alpha>0$.
When $N=4$ and f has the subcritical (exponential) growth (SCE), our work is still to study problem (1) without the (AR) condition. Our results are as follows.

Theorem 1.3 Let $N=4$ and assume that f has the subcritical exponential growth on Ω (condition (SCE)) and satisfies $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$. If $f_{0}<\mu_{1}$, then problem (1) has at least two nontrivial solutions.

Theorem 1.4 Let $N=4$ and assume that f has the subcritical exponential growth on Ω (condition (SCE)), is odd in t and satisfies $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{4}\right)$.Iff $(x, 0)=0$, then problem (1) has infinitely many nontrivial solutions.

2 Preliminaries and auxiliary lemmas

Definition 2.1 Let $\left(E,\|\cdot\|_{E}\right)$ be a real Banach space with its dual space $\left(E^{*},\|\cdot\|_{E^{*}}\right)$ and $I \in C^{1}(E, \mathbb{R})$. For $c^{*} \in \mathbb{R}$, we say that I satisfies the $(P S)_{c^{*}}$ condition if for any sequence $\left\{x_{n}\right\} \subset E$ with

$$
I\left(x_{n}\right) \rightarrow c^{*}, \quad D I\left(x_{n}\right) \rightarrow 0 \quad \text { in } E^{*},
$$

there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges strongly in E. Also, we say that I satisfies the $(C)_{c^{*}}$ condition if for any sequence $\left\{x_{n}\right\} \subset E$ with

$$
I\left(x_{n}\right) \rightarrow c^{*}, \quad\left\|D I\left(x_{n}\right)\right\|_{E^{*}}\left(1+\left\|x_{n}\right\|_{E}\right) \rightarrow 0,
$$

there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges strongly in E.
We have the following version of the mountain pass theorem (see [13]).

Proposition 2.1 Let E be a real Banach space and suppose that $I \in C^{1}(E, R)$ satisfies the condition

$$
\max \left\{I(0), I\left(u_{1}\right)\right\} \leq \alpha<\beta \leq \inf _{\|u\|=\rho} I(u)
$$

for some $\alpha<\beta, \rho>0$ and $u_{1} \in E$ with $\left\|u_{1}\right\|>\rho$. Let $c^{*} \geq \beta$ be characterized by

$$
c^{*}=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} I(\gamma(t)),
$$

where $\Gamma=\left\{\gamma \in C([0,1], E), \gamma(0)=0, \gamma(1)=u_{1}\right\}$ is the set of continuous paths joining 0 and u_{1}. Then there exists a sequence $\left\{u_{n}\right\} \subset E$ such that

$$
I\left(u_{n}\right) \rightarrow c^{*} \geq \beta \quad \text { and } \quad\left(1+\left\|u_{n}\right\|\right)\left\|I^{\prime}\left(u_{n}\right)\right\|_{E^{*}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Consider the following problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u+c \Delta u=f_{+}(x, u), \quad x \in \Omega \\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where

$$
f_{+}(x, t)= \begin{cases}f(x, t), & t>0 \\ 0, & t \leq 0\end{cases}
$$

Define a functional $I_{+}: E \rightarrow \mathbb{R}$ by

$$
I_{+}(u)=\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} F_{+}(x, u) d x,
$$

where $F_{+}(x, t)=\int_{0}^{t} f_{+}(x, s) d s$, then $I_{+} \in C^{1}(E, \mathbb{R})$.
Lemma 2.1 Let $N>4$ and $\varphi_{1}>0$ be a μ_{1}-eigenfunction with $\left\|\varphi_{1}\right\|=1$ and assume that $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and (SCPI) hold. Iff $f_{0}<\mu_{1}$, then:
(i) There exist $\rho, \alpha>0$ such that $I_{+}(u) \geq \alpha$ for all $u \in E$ with $\|u\|=\rho$.
(ii) $I_{+}\left(t \varphi_{1}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$.

Proof By (SCPI), $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$, for any $\varepsilon>0$, there exist $A_{1}=A_{1}(\varepsilon), B_{1}=B_{1}(\varepsilon)$ and $l>2 \mu_{1}$ such that for all $(x, s) \in \Omega \times \mathbb{R}$,

$$
\begin{align*}
& F_{+}(x, s) \leq \frac{1}{2}\left(f_{0}+\varepsilon\right) s^{2}+A_{1} s^{p^{*}} \tag{4}\\
& F_{+}(x, s) \geq \frac{1}{2} l s^{2}-B_{1} . \tag{5}
\end{align*}
$$

Choose $\varepsilon>0$ such that $\left(f_{0}+\varepsilon\right)<\mu_{1}$. By (4), the Poincaré inequality and the Sobolev inequality $|u|_{p^{*}}^{p^{*}} \leq K\|u\|^{p^{*}}$, we get

$$
I_{+}(u) \geq \frac{1}{2}\|u\|^{2}-\frac{f_{0}+\varepsilon}{2}|u|_{2}^{2}-A_{1}|u|_{p^{*}}^{p^{*}} \geq \frac{1}{2}\left(1-\frac{f_{0}+\varepsilon}{\mu_{1}}\right)\|u\|^{2}-A_{1} K\|u\|^{p^{*}} .
$$

So, part (i) is proved if we choose $\|u\|=\rho>0$ small enough.

On the other hand, from (5) we have

$$
I_{+}\left(t \varphi_{1}\right) \leq \frac{1}{2}\left(1-\frac{l}{\mu_{1}}\right) t^{2}+B_{1}|\Omega| \rightarrow-\infty \quad \text { as } t \rightarrow-\infty .
$$

Thus part (ii) is proved.

Lemma 2.2 (see [12]) Let $\Omega \subset \mathbb{R}^{4}$ be a bounded domain. Then there exists a constant $C>0$ such that

$$
\sup _{u \in E,\|u\| \leq 1} \int_{\Omega} e^{32 \pi^{2} u^{2}} d x \leq C|\Omega|,
$$

and this inequality is sharp.

Lemma 2.3 Let $N=4$ and $\varphi_{1}>0$ be a μ_{1}-eigenfunction with $\left\|\varphi_{1}\right\|=1$ and assume that $\left(\mathrm{H}_{2}\right),\left(\mathrm{H}_{3}\right)$ and (SCE) hold. If $f_{0}<\mu_{1}$, then:
(i) There exist $\rho, \alpha>0$ such that $I_{+}(u) \geq \alpha$ for all $u \in E$ with $\|u\|=\rho$.
(ii) $I_{+}\left(t \varphi_{1}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$.

Proof By (SCE), $\left(\mathrm{H}_{2}\right)$ and $\left(\mathrm{H}_{3}\right)$, for any $\varepsilon>0$, there exist $A_{1}=A_{1}(\varepsilon), B_{1}=B_{1}(\varepsilon), \kappa>0, q>2$ and $l>2 \mu_{1}$ such that for all $(x, s) \in \Omega \times \mathbb{R}$,

$$
\begin{align*}
& F_{+}(x, s) \leq \frac{1}{2}\left(f_{0}+\varepsilon\right) s^{2}+A_{1} \exp \left(\kappa|s|^{2}\right) s^{q}, \tag{6}\\
& F_{+}(x, s) \geq \frac{1}{2} l s^{2}-B_{1} . \tag{7}
\end{align*}
$$

Choose $\varepsilon>0$ such that $\left(f_{0}+\varepsilon\right)<\mu_{1}$. By (6), the Holder inequality and Lemma 2.2, we get

$$
\begin{aligned}
I_{+}(u) & \geq \frac{1}{2}\|u\|^{2}-\frac{f_{0}+\varepsilon}{2}|u|_{2}^{2}-A_{1} \int_{\Omega} \exp \left(\kappa|u|^{2}\right)|u|^{q} d x \\
& \geq \frac{1}{2}\left(1-\frac{f_{0}+\varepsilon}{\mu_{1}}\right)\|u\|^{2}-A_{1}\left(\int_{\Omega} \exp \left(\kappa r\|u\|^{2}\left(\frac{|u|}{\|u\|}\right)^{2}\right) d x\right)^{\frac{1}{r}}\left(\int_{\Omega}|u|^{r^{\prime} q} d x\right)^{\frac{1}{r^{\prime}}} \\
& \geq \frac{1}{2}\left(1-\frac{f_{0}+\varepsilon}{\mu_{1}}\right)\|u\|^{2}-C\|u\|^{q},
\end{aligned}
$$

where $r>1$ is sufficiently close to $1,\|u\| \leq \sigma$ and $\kappa r \sigma^{2}<32 \pi^{2}$. So, part (i) is proved if we choose $\|u\|=\rho>0$ small enough.
On the other hand, from (7) we have

$$
I_{+}\left(t \varphi_{1}\right) \leq \frac{1}{2}\left(1-\frac{l}{\mu_{1}}\right)|t|^{2}+B_{1}|\Omega| \rightarrow-\infty \quad \text { as } t \rightarrow-\infty .
$$

Thus part (ii) is proved.

Lemma 2.4 For the functional I defined by (3), if condition $\left(\mathrm{H}_{4}\right)$ holds, and for any $\left\{u_{n}\right\} \in E$ with

$$
\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

then there is a subsequence, still denoted by $\left\{u_{n}\right\}$, such that

$$
I\left(t u_{n}\right) \leq \frac{1+t^{2}}{2 n}+I\left(u_{n}\right) \quad \text { for all } t \in \mathbb{R} \text { and } n \in N
$$

Proof This lemma is essentially due to [14]. We omit it here.

3 Proofs of the main results

Proof of Theorem 1.1 By Lemma 2.1 and Proposition 2.1, there exists a sequence $\left\{u_{n}\right\} \subset E$ such that

$$
\begin{align*}
& I_{+}\left(u_{n}\right)=\frac{1}{2}\left\|u_{n}\right\|^{2}-\int_{\Omega} F_{+}\left(x, u_{n}\right) d x=c^{*}+o(1), \tag{8}\\
& \left(1+\left\|u_{n}\right\|\right)\left\|I_{+}^{\prime}\left(u_{n}\right)\right\|_{E} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{9}
\end{align*}
$$

Clearly, (9) implies that

$$
\begin{equation*}
\left\langle I_{+}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left\|u_{n}\right\|^{2}-\int_{\Omega} f_{+}\left(x, u_{n}(x)\right) u_{n} d x=o(1) \tag{10}
\end{equation*}
$$

To complete our proof, we first need to verify that $\left\{u_{n}\right\}$ is bounded in E. Assume $\left\|u_{n}\right\| \rightarrow$ $+\infty$ as $n \rightarrow \infty$. Let

$$
\begin{equation*}
s_{n}=\frac{2 \sqrt{c^{*}}}{\left\|u_{n}\right\|}, \quad w_{n}=s_{n} u_{n}=\frac{2 \sqrt{c^{*}} u_{n}}{\left\|u_{n}\right\|} . \tag{11}
\end{equation*}
$$

Since $\left\{w_{n}\right\}$ is bounded in E, it is possible to extract a subsequence (denoted also by $\left\{w_{n}\right\}$) such that

$$
\begin{aligned}
& w_{n} \rightharpoonup w_{0} \quad \text { in } E, \\
& w_{n}^{+} \rightarrow w_{0}^{+} \quad \text { in } L^{2}(\Omega), \\
& w_{n}^{+}(x) \rightarrow w_{0}^{+}(x) \quad \text { a.e. } x \in \Omega, \\
& \left|w_{n}^{+}(x)\right| \leq h(x) \quad \text { a.e. } x \in \Omega,
\end{aligned}
$$

where $w_{n}^{+}=\max \left\{w_{n}, 0\right\}, w_{0} \in E$ and $h \in L^{2}(\Omega)$.
We claim that if $\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$, then $w^{+}(x) \equiv 0$. In fact, we set $\Omega_{1}=\{x \in \Omega$: $\left.w^{+}=0\right\}, \Omega_{2}=\left\{x \in \Omega: w^{+}>0\right\}$. Obviously, by (11), $u_{n}^{+} \rightarrow+\infty$ a.e. in Ω_{2}, noticing condition $\left(\mathrm{H}_{3}\right)$, then for any given $K>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{f\left(x, u_{n}^{+}\right)}{u_{n}^{+}}\left(w_{n}^{+}(x)\right)^{2} \geq K w^{+}(x)^{2} \quad \text { for a.e. } x \in \Omega_{2} \tag{12}
\end{equation*}
$$

From (10), (11) and (12), we obtain

$$
\begin{aligned}
4 c^{*} & =\lim _{n \rightarrow+\infty}\left\|w_{n}\right\|^{2}=\lim _{n \rightarrow+\infty} \int_{\Omega} \frac{f\left(x, u_{n}^{+}\right)}{u_{n}^{+}}\left(w_{n}^{+}\right)^{2} d x \\
& \geq \int_{\Omega_{2}} \lim _{n \rightarrow+\infty} \frac{f\left(x, u_{n}^{+}\right)}{u_{n}^{+}}\left(w_{n}^{+}\right)^{2} d x \geq K \int_{\Omega_{2}}\left(w^{+}\right)^{2} d x .
\end{aligned}
$$

Noticing that $w^{+}>0$ in Ω_{2} and $K>0$ can be chosen large enough, so $\left|\Omega_{2}\right|=0$ and $w^{+} \equiv 0$ in Ω. However, if $w^{+} \equiv 0$, then $\lim _{n \rightarrow+\infty} \int_{\Omega} F\left(x, w_{n}^{+}\right) d x=0$ and consequently

$$
\begin{equation*}
I_{+}\left(w_{n}\right)=\frac{1}{2}\left\|w_{n}\right\|^{2}+o(1)=2 c^{*}+o(1) . \tag{13}
\end{equation*}
$$

By $\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$ and in view of (11), we observe that $s_{n} \rightarrow 0$, then it follows from Lemma 2.4 and (8) that

$$
\begin{equation*}
I_{+}\left(w_{n}\right)=I_{+}\left(s_{n} u_{n}\right) \leq \frac{1+s_{n}^{2}}{2 n}+I_{+}\left(u_{n}\right) \rightarrow c^{*}>0 \quad \text { as } n \rightarrow+\infty . \tag{14}
\end{equation*}
$$

Clearly, (13) and (14) are contradictory. So $\left\{u_{n}\right\}$ is bounded in E.
Next, we prove that $\left\{u_{n}\right\}$ has a convergence subsequence. In fact, we can suppose that

$$
\begin{aligned}
& u_{n} \rightharpoonup u \quad \text { in } E, \\
& u_{n} \rightarrow u \quad \text { in } L^{q}(\Omega), \forall 1 \leq q<p^{*}, \\
& u_{n}(x) \rightarrow u(x) \quad \text { a.e. } x \in \Omega .
\end{aligned}
$$

Now, since f has the improved subcritical growth on Ω, for every $\varepsilon>0$, we can find a constant $C(\varepsilon)>0$ such that

$$
f_{+}(x, s) \leq C(\varepsilon)+\varepsilon|s|^{p^{*}-1}, \quad \forall(x, s) \in \Omega \times \mathbb{R}
$$

then

$$
\begin{aligned}
& \left|\int_{\Omega} f_{+}\left(x, u_{n}\right)\left(u_{n}-u\right) d x\right| \\
& \quad \leq C(\varepsilon) \int_{\Omega}\left|u_{n}-u\right| d x+\varepsilon \int_{\Omega}\left|u_{n}-u\right|\left|u_{n}\right|^{p^{*}-1} d x \\
& \quad \leq C(\varepsilon) \int_{\Omega}\left|u_{n}-u\right| d x+\varepsilon\left(\int_{\Omega}\left(\left|u_{n}\right|^{p^{*}-1}\right)^{\frac{p^{*}}{p^{*}-1}} d x\right)^{\frac{p^{*}-1}{p^{*}}}\left(\int_{\Omega}\left|u_{n}-u\right|^{p^{*}}\right)^{\frac{1}{p^{*}}} \\
& \quad \leq C(\varepsilon) \int_{\Omega}\left|u_{n}-u\right| d x+\varepsilon C(\Omega)
\end{aligned}
$$

Similarly, since $u_{n} \rightharpoonup u$ in $E, \int_{\Omega}\left|u_{n}-u\right| d x \rightarrow 0$. Since $\varepsilon>0$ is arbitrary, we can conclude that

$$
\begin{equation*}
\int_{\Omega}\left(f_{+}\left(x, u_{n}\right)-f_{+}(x, u)\right)\left(u_{n}-u\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

By (10), we have

$$
\begin{equation*}
\left\langle I_{+}^{\prime}\left(u_{n}\right)-I_{+}^{\prime}(u),\left(u_{n}-u\right)\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{16}
\end{equation*}
$$

From (15) and (16), we obtain

$$
\int_{\Omega}\left[\left|\Delta\left(u_{n}-u\right)\right|^{2}-c\left|\nabla\left(u_{n}-u\right)\right|^{2}\right] d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

So we have $u_{n} \rightarrow u$ in E which means that I_{+}satisfies $(C)_{c^{*}}$. Thus, from the strong maximum principle, we obtain that the functional I_{+}has a positive critical point u_{1}, i.e., u_{1}
is a positive solution of problem (1). Similarly, we also obtain a negative solution u_{2} for problem (1).

Proof of Theorem 1.2 It follows from the assumptions that I is even. Obviously, $I \in C^{1}(E, \mathbb{R})$ and $I(0)=0$. By the proof of Theorem 1.1, we easily prove that $I(u)$ satisfies condition $(C)_{c^{*}}$ $\left(c^{*}>0\right)$. Now, we can prove the theorem by using the symmetric mountain pass theorem in [15-17].

Step 1. We claim that condition (i) holds in Theorem 9.12 (see [16]). Let $V_{1}=E_{\mu_{1}} \oplus E_{\mu_{2}} \oplus$ $\cdots \oplus E_{\mu_{k}}, V_{2}=E \backslash V_{1}$. For all $u \in V_{2}$, by (SCPI), we have

$$
\begin{aligned}
I(u) & =\frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} F(x, u) d x \\
& \geq \frac{1}{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-c_{3} \int_{\Omega}|u|^{p^{*}} d x-c_{4} \\
& \geq\|u\|^{2}\left(\frac{1}{2}-c_{5} \lambda_{k+1}^{-(1-a) p^{*} / 2}\|u\|^{p^{*}-2}\right)-c_{6},
\end{aligned}
$$

where $a \in(0,1)$ is defined by

$$
\frac{1}{p^{*}}=a\left(\frac{1}{2}-\frac{1}{N}\right)+(1-a) \frac{1}{2}
$$

Choose $\rho=\rho(k)=\|u\|$ so that the coefficient of ρ^{2} in the above formula is $\frac{1}{4}$. Therefore

$$
\begin{equation*}
I(u) \geq \frac{1}{4} \rho^{2}-c_{6} \tag{17}
\end{equation*}
$$

for $u \in \partial B_{\rho} \cap V_{2}$. Since $\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty, \rho(k) \rightarrow \infty$ as $k \rightarrow \infty$. Choose k so that $\frac{1}{4} \rho^{2}>$ $2 c_{6}$. Consequently

$$
\begin{equation*}
I(u) \geq \frac{1}{8} \rho^{2} \equiv \alpha . \tag{18}
\end{equation*}
$$

Hence, our claim holds.
Step 2. We claim that condition (ii) holds in Theorem 9.12 (see [16]). By $\left(\mathrm{H}_{3}\right)$, there exists large enough M such that

$$
F(x, t) \geq M t^{2}-c_{7}, \quad x \in \Omega, t \in \mathbb{R}
$$

So, for any $u \in E \backslash\{0\}$, we have

$$
\begin{aligned}
I(t u) & =\frac{1}{2} t^{2} \int_{\Omega}\left(|\Delta u|^{2}-c|\nabla u|^{2}\right) d x-\int_{\Omega} F(x, t u) d x \\
& \leq \frac{1}{2} t^{2}\|u\|^{2}-M t^{2} \int_{\Omega} u^{2} d x+c_{7}|\Omega| \rightarrow-\infty \quad \text { as } t \rightarrow+\infty .
\end{aligned}
$$

Hence, for every finite dimension subspace $\tilde{E} \subset E$, there exists $R=R(\tilde{E})$ such that

$$
I(u) \leq 0, \quad u \in \tilde{E} \backslash B_{R}(\tilde{E})
$$

and our claim holds.

Proof of Theorem 1.3 By Lemma 2.3, the geometry conditions of the mountain pass theorem (see Proposition 2.1) for the functional I_{+}hold. So, we only need to verify condition $(C)_{c^{*}}$. Similar to the previous part of the proof of Theorem 1.1 , we easily know that $(C)_{c^{*}}$ sequence $\left\{u_{n}\right\}$ is bounded in E. Next, we prove that $\left\{u_{n}\right\}$ has a convergence subsequence. Without loss of generality, suppose that

$$
\begin{aligned}
& \left\|u_{n}\right\| \leq \beta \\
& u_{n} \rightharpoonup u \quad \text { in } E, \\
& u_{n} \rightarrow u \quad \text { in } L^{q}(\Omega), \forall q \geq 1, \\
& u_{n}(x) \rightarrow u(x) \quad \text { a.e. } x \in \Omega .
\end{aligned}
$$

Now, since f_{+}has the subcritical exponential growth (SCE) on Ω, we can find a constant $C_{\beta}>0$ such that

$$
\left|f_{+}(x, t)\right| \leq C_{\beta} \exp \left(\frac{32 \pi^{2}}{2 \beta^{2}}|t|^{2}\right), \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

Thus, by the Adams-type inequality (see Lemma 2.2),

$$
\begin{aligned}
& \left|\int_{\Omega} f_{+}\left(x, u_{n}\right)\left(u_{n}-u\right) d x\right| \\
& \quad \leq C\left(\int_{\Omega} \exp \left(\frac{32 \pi^{2}}{\beta^{2}}\left|u_{n}\right|^{2}\right) d x\right)^{\frac{1}{2}}\left|u_{n}-u\right|_{2} \\
& \quad \leq C\left(\int_{\Omega} \exp \left(\frac{32 \pi^{2}}{\beta^{2}}\left\|u_{n}\right\|^{2}\left|\frac{u_{n}}{\left\|u_{n}\right\|}\right|^{2}\right) d x\right)^{\frac{1}{2}}\left|u_{n}-u\right|_{2} \\
& \quad \leq C\left|u_{n}-u\right|_{2} \rightarrow 0 .
\end{aligned}
$$

Similar to the last proof of Theorem 1.1, we have $u_{n} \rightarrow u$ in E, which means that I_{+}satisfies $(C)_{c^{*}}$. Thus, from the strong maximum principle, we obtain that the functional I_{+}has a positive critical point u_{1}, i.e., u_{1} is a positive solution of problem (1). Similarly, we also obtain a negative solution u_{2} for problem (1).

Proof of Theorem 1.4 Combining the proof of Theorem 1.2 and Theorem 1.3, we easily prove it.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors read and approved the final manuscript

Acknowledgements

This study was supported by the National NSF (Grant No. 11101319) of China and Planned Projects for Postdoctoral Research Funds of Jiangsu Province (Grant No. 1301038C).

References

1. Lazer, AC, McKenna, PJ: Large amplitude periodic oscillation in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537-578 (1990)
2. Lazer, AC, McKenna, PJ: Global bifurcation and a theorem of Tarantello. J. Math. Anal. Appl. 181, 648-655 (1994)
3. Tarantello, G: A note on a semilinear elliptic problem. Differ. Integral Equ. 5, 561-566 (1992)
4. Micheletti, AM, Pistoia, A: Multiplicity solutions for a fourth order semilinear elliptic problems. Nonlinear Anal. TMA 31, 895-908 (1998)
5. Xu, GX, Zhang, JH: Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity. J. Math. Anal. Appl. 281, 633-640 (2003)
6. Zhang, JH: Existence results for some fourth-order nonlinear elliptic problems. Nonlinear Anal. TMA 45, 29-36 (2001)
7. Zhang, JH, Li, SJ: Multiple nontrivial solutions for some fourth-order semilinear elliptic problems. Nonlinear Anal. TMA 60, 221-230 (2005)
8. An, YK, Liu, RY: Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation. Nonlinear Anal. TMA 68, 3325-3331 (2008)
9. Liu, Y, Wang, ZP: Biharmonic equations with asymptotically linear nonlinearities. Acta Math. Sci. 27, 549-560 (2007)
10. Lam, $N, L u, G Z: N$-Laplacian equations in \mathbb{R}^{N} with subcritical and critical growth without the Ambrosetti-Rabinowitz condition. Adv. Nonlinear Stud. 13, 289-308 (2013)
11. Liu, ZL, Wang, ZQ: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4, 563-574 (2004)
12. Ruf, B, Sani, F: Sharp Adams-type inequalities in \mathbb{R}^{N}. Trans. Am. Math. Soc. 365, 645-670 (2013)
13. Costa, DG, Miyagaki, OH: Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains. J. Math. Anal. Appl. 193, 737-755 (1995)
14. Zhou, HS: Existence of asymptotically linear Dirichlet problem. Nonlinear Anal. TMA 44, 909-918 (2001)
15. Ambrosetti, A, Rabinowitz, PH: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973)
16. Rabinowitz, PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Math., vol. 65. Am. Math. Soc., Providence (1986)
17. Li, GB, Zhou, HS: Multiple solutions to p-Laplacian problems with asymptotic nonlinearity as u^{p-1} at infinity. J. Lond. Math. Soc. 65, 123-138 (2002)

doi:10.1186/s13661-014-0162-y

Cite this article as: Pei and Zhang: Biharmonic equations with improved subcritical polynomial growth and subcritical exponential growth. Boundary Value Problems 2014 2014:162.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: © 2014 Pei and Zhang; licensee Springer.. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

