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1 Introduction
Boundary value problems on an infinite interval arise quite naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and in various applications such as
an unsteady flow of gas through a semi-infinite porous media, theory of drain flows and
plasma physics. For an extensive collection of results as regards boundary value problems
on unbounded domains, we refer the reader to a monograph by Agarwal and O’Regan
[]. For more recent results on unbounded domains, we refer the reader to [–] and the
references therein.
A boundary value problem is called to be a resonance one if the corresponding homo-

geneous boundary value problem has a non-trivial solution. Resonance problems can be
expressed as an abstract equation Lx = Nx, where L is a noninvertible operator. When L
is linear, Mawhin’s continuation theorem [] is an efficient tool in finding solutions for
these problems. Recently, there have been many works concerning the existence of solu-
tions for multi-point boundary value problems at resonance. For example, see [, –]
in the case that dim(kerL) = , and see [, –] in the case that dim(kerL) = .
In this paper, we consider the existence of solutions to the following second-order non-

linear differential equation with nonlocal boundary conditions that contain integral and
multi-point boundary conditions:

⎧
⎨

⎩

(cu′)′(t) = f (t,u(t),u′(t)), a.e. t ∈ (,∞),

(cu′)() =
∫ ∞
 g(s)(cu′)(s)ds, limt→∞(cu′)(t) =

∑m
i= αi(cu′)(ξi),

()

where  ≤ ξ < · · · < ξm < ∞, αi ∈ (–∞,∞), c ∈ C[,∞), g ∈ L(,∞), and f : [,∞) ×
(–∞,∞)× (–∞,∞)→ (–∞,∞) is a Carathéodory function, i.e., f = f (t,u, v) is Lebesgue
measurable in t for all (u, v) ∈ (–∞,∞)× (–∞,∞) and continuous in (u, v) for almost all
t ∈ [,∞). Throughout this paper, we assume that the following conditions hold:
(H)

∑m
i= αi = ,

∫ ∞
 g(s)ds = , c(t) >  for t ∈ (,∞), and 

c ∈ Lloc[,∞);
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(H) let w(t) :=
∫ t



c(s) ds, and there exist non-negative measurable functions α, β , and γ

such that ( +w)α,β/c,γ ∈ L(,∞), and |f (t,u, v)| ≤ α(t)|u| + β(t)|v| + γ (t), a.e.
(t,u, v) ∈ [,∞)× (–∞,∞)× (–∞,∞);

(H) let k(t) be the function such that ( +w(·))e–k(·) ∈ L(,∞). Then

� =

∣
∣
∣
∣
∣

Q(w(·)e–k(·)) –Q(w(·)e–k(·))
–Q(e–k(·)) Q(e–k(·))

∣
∣
∣
∣
∣
=:

∣
∣
∣
∣
∣

a a
a a

∣
∣
∣
∣
∣
�= ,

where the linear operators Q,Q : L(,∞)→ (–∞,∞) will be defined later in
Section .

If 
c ∈ Lloc[,∞), then w is continuous in [,∞), and in (H), there exists a function k

satisfying ( + w(·))e–k(·) ∈ L(,∞) (see, e.g., Remark .()). The boundary conditions in
problem () are crucial since the differential operator Lu = (cu′)′ under the boundary con-
ditions in () satisfies dim(kerL) = . The purpose of this paper is to establish the sufficient
conditions for the existence of solutions to problem () on a half line at resonance with
dim(kerL) =  by using Mawhin’s continuation theorem [].
The remainder of this paper is organized as follows: some preliminaries are provided in

Section , the main result is presented in Section , and finally an example to illustrate the
main result is given in Section .

2 Preliminaries
In this section, we recall some notations and two theorems which will be used later. Let X
and Y be two Banach spaces with the norms ‖ ·‖X and ‖ ·‖Y , respectively. Let L : dom(L) ⊂
X → Y be a Fredholm operator with index zero, and let P : X → X, Q : Y → Y be projec-
tors such that ImP = kerL and kerQ = ImL. Then X = kerL ⊕ kerP and Y = ImL ⊕ ImQ.
It follows that L|domL∩kerP : domL ∩ kerP → ImL is invertible. We denote the inverse of it
by KP . If � is an open bounded subset of X with domL∩ � �= ∅, then the map N : X → Y
will be called L-compact on � if QN(�) is bounded in Y and KP(I –Q)N : � → X is com-
pact.

Theorem . ([]) Let L : dom(L) ⊂ X → Y be a Fredholm operator with index zero and
N : X → Y be L-compact on �. Assume that the following conditions are satisfied:
() Lu �= λNu for every (u,λ) ∈ [(domL \ kerL)∩ ∂�]× (, );
() Nu /∈ ImL for every u ∈ kerL∩ ∂�;
() deg(QN |kerL,� ∩ kerL, ) �= , where Q : Y → Y is a projector such that ImL = kerQ.

Then the equation Lu =Nu has at least one solution in domL∩ �.

Since the Arzelá-Ascoli theorem fails in the noncompact interval case, we use the fol-
lowing result in order to show that KP(I –Q)N :� → X is compact.

Theorem . ([]) Let Z be the space of all bounded continuous vector-valued functions
on [,∞) and S ⊂ Z. Then S is relatively compact in Z if the following conditions hold:

(i) S is bounded in Z;
(ii) S is equicontinuous on any compact interval of [,∞);
(iii) S is equiconvergent at ∞, that is, given ε > , there exists a T = T(ε) >  such that

‖φ(t) – φ(∞)‖(–∞,∞)n < ε for all t > T and all φ ∈ S.

http://www.boundaryvalueproblems.com/content/2014/1/167


Jeong et al. Boundary Value Problems 2014, 2014:167 Page 3 of 11
http://www.boundaryvalueproblems.com/content/2014/1/167

3 Main results
Let X be the set of the functions u ∈ C[,∞) ∩ C(,∞) such that u(t)

+w(t) and (cu′)(t) are
uniformly bounded in [,∞). Here, w is the function in the assumption (H). Then X is a
Banach space equipped with a norm ‖u‖X = ‖u‖ + ‖u‖, where

‖u‖ = sup
t∈[,∞)

|u(t)|
 +w(t)

and ‖u‖ = sup
t∈[,∞)

∣
∣
(
cu′)(t)

∣
∣.

LetY denote theBanach space L(,∞) equippedwith the usual norm, ‖h‖Y =
∫ ∞
 |h(s)|ds.

Remark . () For any non-negative continuous function w(t), we can choose a function
k(t) which satisfies ( +w(·))e–k(·) ∈ Y . For example, put

k(t) =
∫ t



(
 +w(s)

)
ds.

Then ( +w(·))e–k(·) ∈ Y .
() If 

c ∈ Y , then w ∈ L∞(,∞), and the norm ‖ · ‖X is equivalent to the norm ‖u‖ =
‖u‖∞ + ‖u‖. Here,

‖u‖∞ = sup
t∈[,∞)

∣
∣u(t)

∣
∣.

Define L : domL → Y by Lu := (cu′)′, where

domL :=

{

u ∈ X :
(
cu′)′ ∈ Y ,

(
cu′)() =

∫ ∞


g(s)

(
cu′)(s)ds,

lim
t→∞

(
cu′)(t) =

m∑

i=

αi
(
cu′)(ξi)

}

.

Clearly, kerL := {a+bw : a,b ∈ (–∞,∞)}. Nowwe define the linear operatorsQ,Q : Y →
(–∞,∞) under the hypothesis (H) as follows:

Q(y) :=
m∑

i=

αi

∫ ∞

ξi

y(s)ds and Q(y) :=
∫ ∞


g(s)

∫ s


y(τ )dτ ds.

Lemma . Assume that (H) holds. Then

ImL =
{
y ∈ Y :Q(y) =Q(y) = 

}
.

Proof Let y ∈ ImL. Then there exists x ∈ domL such that (cx′)′ = y. For t ∈ [,∞),

(
cx′)(t) =

(
cx′)() +

∫ t


y(s)ds

and

(
cx′)(ξi) =

(
cx′)() +

∫ ξi


y(s)ds,

http://www.boundaryvalueproblems.com/content/2014/1/167


Jeong et al. Boundary Value Problems 2014, 2014:167 Page 4 of 11
http://www.boundaryvalueproblems.com/content/2014/1/167

which imply that

lim
t→∞

(
cx′)(t) =

(
cx′)() +

∫ ∞


y(s)ds =

(
cx′)(ξi) +

∫ ∞

ξi

y(s)ds,

and thusQ(y) =  by the fact that
∑m

i= αi = . In a similar manner,Q(y) = . On the other
hand, let y ∈ Y satisfying Q(y) =Q(y) = . Take

x(t) =
∫ t




c(s)

∫ s


y(τ )dτ ds.

Then x ∈ domL, and (cx′)′ = y ∈ ImL. Thus the proof is complete. �

By Lemma ., codim(ImL) = . Since dim(kerL) = , L is a Fredholm operator with in-
dex . Let T,T : Y → Y be linear operators which are defined as follows:

Ty :=

�

(
aQ(y) + aQ(y)

)
e–k(·),

Ty :=

�

(
aQ(y) + aQ(y)

)
e–k(·).

Then, by simple calculations, T(Ty) = Ty, T((Ty)w) = , T(Ty) = , and T((Ty)w) =
Ty. Define a bounded linear operator Q : Y → Y by

(Qy)(t) := (Ty)(t) + (Ty)(t)w(t), t ∈ (,∞). ()

Then Qy = Qy, i.e., Q : Y → Y is a linear projector. Since � �= , kerQ = ImL, and Y =
ImL⊕ ImQ.
Define a continuous projector P : X → X by

Px := x() +
(
cx′)()w(·).

Clearly, ImP = kerL, and consequently X = kerL ⊕ kerP. Define an operator KP : ImL →
domL∩ kerP by

(KPy)(t) :=
∫ t




c(s)

∫ s


y(τ )dτ ds, t ∈ [,∞).

Then KP is the inverse operator L|domL∩kerP , and it satisfies

‖KPy‖X ≤ ‖y‖Y . ()

Let a nonlinear operatorN : X → Y be defined by (Nx)(t) := f (t,x(t),x′(t)), t ∈ [,∞). Then
problem () is equivalent to Lx =Nx, x ∈ domL.
From now on, we consider the case 

c /∈ Y . The case 
c ∈ Y can be dealt in a similar

manner.

Lemma . Let 
c /∈ Y , and assume that (H)-(H) hold.Assume that� is a bounded open

subset of X such that domL∩ � �= ∅. Then N is L-compact on �.
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Proof Since� is a bounded open subset ofX, there exists a constant r >  such that ‖x‖X ≤
r for any x ∈ �. For any x ∈ � and for almost all t ∈ [,∞), by (H),

∣
∣(Nx)(t)

∣
∣ =

∣
∣f

(
t,x(t),x′(t)

)∣
∣ ≤

(
(
 +w(t)

)
α(t) +

β

c
(t)

)

r + γ (t) =:Nr(t).

ThenNr ∈ Y and ‖Nx‖Y ≤ ‖Nr‖Y for all x ∈ �. Thus N(�) is bounded in Y .
For any x ∈ �,

∣
∣Q(Nx)

∣
∣ ≤

( m∑

i=

|αi|
)

‖Nx‖Y ≤
( m∑

i=

|αi|
)

‖Nr‖Y ,
∣
∣Q(Nx)

∣
∣ ≤ ‖Nr‖Y . ()

It follows from () and () that, for almost all t ∈ [,∞),

∣
∣(QNx)(t)

∣
∣ ≤ ∣

∣(TNx)(t)
∣
∣ +

∣
∣(TNx)(t)

∣
∣w(t)

≤ 
|�|

((

|a|
m∑

i=

|αi| + |a|
)

+

(

|a|
m∑

i=

|αi| + |a|
)

w(t)

)

e–k(t)‖Nr‖Y

=:Qr(t).

ThenQr ∈ Y and ‖QNx‖Y ≤ ‖Qr‖Y for all x ∈ �. Thus, QN(�) is bounded in Y .
Next we will prove that KP(I –Q)N(�) is a relatively compact set in X. For x ∈ �, by (),

∥
∥KP(I –Q)Nx

∥
∥
X ≤ 

(‖Nx‖Y + ‖QNx‖Y
) ≤ 

(‖Nr‖Y + ‖Qr‖Y
)
.

Thus KP(I –Q)N(�) is bounded in X.
Let T >  be given. For any x ∈ � and let t, t ∈ [,T] with t < t,

∣
∣
∣
∣
(KP(I –Q)Nx)(t)

 +w(t)
–
(KP(I –Q)Nx)(t)

 +w(t)

∣
∣
∣
∣

≤
∣
∣
∣
∣

w(t) –w(t)
( +w(t))( +w(t))

∣
∣
∣
∣

∣
∣
∣
∣

∫ t




c(s)

∫ s


(I –Q)Nx(τ )dτ ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t
t


c(s)

∫ s
 (I –Q)Nx(τ )dτ ds
 +w(t)

∣
∣
∣
∣

≤ 
∣
∣w(t) –w(t)

∣
∣
(‖Nr‖Y + ‖Qr‖Y

)

and

∣
∣
(
c
(
KP(I –Q)Nx

)′)(t) –
(
c
(
KP(I –Q)Nx

)′)(t)
∣
∣ ≤

∫ t

t

(
Nr(τ ) +Qr(τ )

)
dτ ,

which imply that

{
KP(I –Q)Nx

 +w
: x ∈ �

}

and
{
c
(
KP(I –Q)Nx

)′ : x ∈ �
}

are equicontinuous on [,T].
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For any x ∈ �, by L’Hôspital’s rule,

lim
t→∞

(KP(I –Q)Nx)(t)
 +w(t)

= lim
t→∞

∫ t



(
(I –Q)Nx

)
(s)ds

=
∫ ∞



(
(I –Q)Nx

)
(s)ds – lim

t→∞

∫ ∞

t

(
(I –Q)Nx

)
(s)ds

and
∣
∣
∣
∣

(
c
(
KP(I –Q)Nx

)′)(t) –
∫ ∞



(
(I –Q)Nx

)
(τ )dτ

∣
∣
∣
∣ ≤

∫ ∞

t

∣
∣
(
(I –Q)Nx

)
(τ )

∣
∣dτ .

Since |(I –Q)Nx| ≤Nr +Qr for all x ∈ �,

(KP(I –Q)Nx)(t)
 +w(t)

→
∫ ∞



(
(I –Q)Nx

)
(s)ds

and

(
c
(
KP(I –Q)Nx

)′)(t) →
∫ ∞



(
(I –Q)Nx

)
(τ )dτ

uniformly on � as t → ∞. In view of Theorem ., KP(I –Q)N(�) is a relatively compact
set in X, and thus N is L-compact on �. �

The following theorem is the main result in this paper.

Theorem . Let 
c /∈ Y , and assume that (H)-(H) hold. Assume also that the following

hold:
(H) there exist positive constants A and B such that if |x(t)| > A for every t ∈ [,B] or

|(cx′)(t)| > A for every t ∈ [,∞), then QNx �= ;
(H) there exists a positive constant C such that if |a| > C or |b| > C, then

QN(a + bw) �= , and only one of the following inequalities is satisfied:

(i) aQ
(
N(a + bw)

)
+ bQ

(
N(a + bw)

) ≥ ,

(ii) aQ
(
N(a + bw)

)
+ bQ

(
N(a + bw)

) ≤ .

If α and β satisfy

∥
∥( +w)α

∥
∥
Y +

∥
∥
∥
∥
β

c

∥
∥
∥
∥
Y
<


 +w(B)

, ()

then problem () has at least one solution in X.

Proof We divide the proof into four steps.
Step . Let

� =
{
x ∈ domL \ kerL : Lx = λNx for some λ ∈ (, )

}
.

http://www.boundaryvalueproblems.com/content/2014/1/167
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Then � is bounded. In fact, x ∈ � means λ ∈ (, ) and Nx ∈ ImL. Thus, by Lemma .,
Q(Nx) = Q(Nx) = . By (H), there exist t ∈ [,B] and t ∈ [,∞) such that |x(t)| ≤ A,
|(cx′)(t)| ≤ A. Then

∣
∣
(
cx′)()

∣
∣ =

∣
∣
∣
∣

(
cx′)(t) –

∫ t



(
cx′)′(s)ds

∣
∣
∣
∣ ≤ A + ‖Nx‖Y .

On the other hand,

∣
∣x()

∣
∣ =

∣
∣
∣
∣x(t) –

∫ t




c(s)

[
(
cx′)(t) +

∫ s

t

(
cx′)′(τ )dτ

]

ds
∣
∣
∣
∣

≤ ∣
∣x(t)

∣
∣ +

(∣
∣
(
cx′)(t)

∣
∣ + ‖Nx‖Y

)
w(B) ≤ A

(
 +w(B)

)
+w(B)‖Nx‖Y .

Thus,

‖Px‖X ≤ ∣
∣x()

∣
∣ + 

∣
∣
(
cx′)()

∣
∣ ≤ A

(
 +w(B)

)
+

(
 +w(B)

)‖Nx‖Y .

Since kerL = ImP, LPx =  for all x ∈ X, it follows from () and (H) that

‖x‖X =
∥
∥Px + (I – P)x

∥
∥
X =

∥
∥Px +KPL(I – P)x

∥
∥
X ≤ ‖Px‖X + ‖Lx‖Y

≤ ‖Px‖X + ‖Nx‖Y ≤ A
(
 +w(B)

)
+

(
 +w(B)

)‖Nx‖Y

≤ A
(
 +w(B)

)
+

(
 +w(B)

)
((

∥
∥( +w)α

∥
∥
Y +

∥
∥
∥
∥
β

c

∥
∥
∥
∥
Y

)

‖x‖X + ‖γ ‖Y
)

,

and, by (),

‖x‖X ≤ A( +w(B)) + ( +w(B))‖γ ‖Y
 – ( +w(B))(‖( +w)α‖Y + ‖ β

c ‖Y )
,

which implies that � is bounded.
Step . Set

� = {x ∈ kerL :Nx ∈ ImL}.

Then � is bounded. In fact, x ∈ � implies x = a+ bw and Q(Nx) =Q(Nx) = . By (H),
we obtain |a| ≤ C and |b| ≤ C. Thus � is bounded.
Step . Define an isomorphism J : kerL → ImQ by

J
(
a + bw(·)) = 

�
(
aa + ab + (aa + ab)w(·)

)
e–k(·).

Assume first that (i) in (H) holds. Let

� =
{
x ∈ kerL : λJx + ( – λ)QNx =  for some λ ∈ [, ]

}
.

Then � is bounded. Indeed, x ∈ � means that there exist constants a,b ∈ (–∞,∞) and
λ ∈ [, ] such that x = a + bw and λJx + ( – λ)QNx = . If λ = , then QNx = . It follows

http://www.boundaryvalueproblems.com/content/2014/1/167
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from � �=  that Q(Nx) = Q(Nx) = . By (H), we obtain |a| ≤ C and |b| ≤ C. If λ = ,
clearly a = b = . For λ ∈ (, ), by the facts that –λJx = ( – λ)QNx and � �= , it follows
that –λa = ( – λ)Q(Nx) and –λb = ( – λ)Q(Nx). If |a| > C or |b| > C, by (i) in (H),

–λ
(
a + b

)
= ( – λ)

(
aQN(a + bw) + bQN(a + bw)

) ≥ ,

which is a contradiction. Thus� is bounded in X. On the other hand, if (ii) in (H) holds,
taking

� =
{
x ∈ kerL : –λJx + ( – λ)QNx =  for some λ ∈ [, ]

}
,

one can show that � is bounded in a similar manner.
Step . Take an open bounded set � ⊃ ⋃

i= �i ∪ {}. By Step  and Step , in view of
Theorem ., we only need to prove that deg(QN |kerL,� ∩ kerL, ) �=  in order to show
that Lx =Nx has at least one solution in domL∩ �. Let

H(x,λ) = ±λJx + ( – λ)QNx.

By Step ,H(x,λ) �=  for all (x,λ) ∈ (kerL∩∂�)× [, ]. Thus, by the homotopy invariance
property of degree,

deg(QN |kerL,� ∩ kerL, ) = deg
(
H(·, ),� ∩ kerL, 

)

= deg
(
H(·, ),� ∩ kerL, 

)
= deg(±J ,� ∩ kerL, ) �= .

By Theorem ., Lx = Nx has at least one solution in domL ∩ �, i.e., problem () has at
least one solution in X. �

In the case that 
c ∈ Y , w ∈ L∞(,∞), and using the norm ‖ · ‖ on X in Remark .(), we

have a similar result to Theorem .. We omit the proof.

Theorem . Let 
c ∈ Y , and assume that (H)-(H) hold. If α and β satisfy

‖α‖Y +
∥
∥
∥
∥
β

c

∥
∥
∥
∥
Y
<


 + ‖w‖∞

,

then problem () has at least one solution in X.

4 Example
Consider the following second-order nonlinear differential equation:

⎧
⎨

⎩

(cu′)′(t) = f (t,u(t),u′(t)), a.e. t ∈ (,∞),

(cu′)() =
∫ ∞
 g(s)(cu′)(s)ds, limt→∞(cu′)(t) = (cu′)(),

()

where f (t,u, v) = α(t)u + β(t)v + γ(t) for (t,u, v) ∈ [,∞)× (–∞,∞)× (–∞,∞), γ ∈ Y
satisfies

∫ 
 ( – t)γ(t)dt =

∫ ∞
 γ(t)dt = ,

α(t) =

⎧
⎨

⎩

Ke–t , t ∈ [, ],

, t ∈ (,∞),
β(t) =

⎧
⎨

⎩

, t ∈ [, ],

K(e – )e–t , t ∈ (,∞),

http://www.boundaryvalueproblems.com/content/2014/1/167
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c(t) =

⎧
⎨

⎩

tρ , t ∈ [, ],

, t ∈ (,∞),
g(t) =

⎧
⎨

⎩

t, t ∈ [, ],

, t ∈ (,∞),

w(t) =

⎧
⎨

⎩


–ρ

t–ρ , t ∈ [, ],

t + ρ

–ρ
, t ∈ (,∞).

We also assume that the constants K and ρ satisfy

 < K < Kρ :=
 – ρ

( – ρ)(e– + 
–ρ

∫ 
 t–ρe–t dt)

and ρ ∈ [, ). Then /c /∈ Y , and (H)-(H) hold for m = α = ξ = , α = α, β = |β|, and
γ = |γ|. For y ∈ Y ,

Q(y) =
∫ ∞


y(s)ds and Q(y) =

∫ 



(
 – s

)
y(s)ds.

Taking k(t) = t, then

a =


 – ρ

∫ 



(
 – t

)
t–ρe–t dt, a =

ρ – 
 – ρ

e–,

a =  – e–, a = e–

and

� = aa – aa =


( – ρ)e

∫ 



(
 – t

)
t–ρe–t dt +

 – ρ

 – ρ
e–

(
 – e–

)

=
e – 
e

+


( – ρ)e

(
e – 
e

+
∫ 



(
 – t

)
t–ρe–t dt

)

.

Since, for any ρ ∈ [, ),

e – 
e

+
∫ 



(
 – t

)
t–ρe–t dt ≤ e – 

e
+

∫ 



(
 – t

)
e–t dt = ,

and � < . Thus (H) holds for any ρ ∈ [, ).
Take B =  and let A >  be arbitrary. Then (H) holds. In fact, if |x(t)| > A for t ∈ [, ],

then

Q(Nx) = K
∫ 



(
 – t

)
e–tx(t)dt �= .

If |(cx′)(t)| > A for t ∈ [,∞), then |x′(t)| > A for t ∈ [,∞), and

Q(Nx) = K(e – )
∫ ∞


e–tx′(t)dt �= .

Since

Q
(
N(a + bw)

)
= K

(
 – e–

)
b

http://www.boundaryvalueproblems.com/content/2014/1/167
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and

Q
(
N(a + bw)

)
= K

(
(
e– – 

)
a +

b
 – ρ

∫ 



(
 – t

)
e–tt–ρ dt

)

for (a,b) �= (, ),

∣
∣Q

(
N(a + bw)

)∣
∣ +

∣
∣Q

(
N(a + bw)

)∣
∣ �= ,

i.e., QN(a + bw) �=  for (a,b) �= (, ), and

aQ
(
N(a + bw)

)
+ bQ

(
N(a + bw)

)
= b

K
 – ρ

∫ 



(
 – t

)
e–tt–ρ dt ≥ 

for all (a,b) ∈ (–∞,∞) × (–∞,∞). Therefore (H) holds for any C > . Since  < K <
Kρ , () is satisfied, and thus there exists at least one solution to problem () in view of
Theorem ..
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21. Zima, M, Drygaś, P: Existence of positive solutions for a kind of periodic boundary value problem at resonance.
Bound. Value Probl. 2013, 19 (2013). doi:10.1186/1687-2770-2013-19

22. Du, Z, Meng, F: Solutions to a second-order multi-point boundary value problem at resonance. Acta Math. Sci. 30(5),
1567-1576 (2010). doi:10.1016/S0252-9602(10)60150-6

23. Kosmatov, N: A multi-point boundary value problem with two critical conditions. Nonlinear Anal. 65(3), 622-633
(2006). doi:10.1016/j.na.2005.09.042

24. Meng, F, Du, Z: Solvability of a second-order multi-point boundary value problem at resonance. Appl. Math. Comput.
208(1), 23-30 (2009). doi:10.1016/j.amc.2008.11.026

25. Zhang, X, Feng, M, Ge, W: Existence result of second-order differential equations with integral boundary conditions at
resonance. J. Math. Anal. Appl. 353(1), 311-319 (2009). doi:10.1016/j.jmaa.2008.11.082

doi:10.1186/s13661-014-0167-6
Cite this article as: Jeong et al.: Solvability for nonlocal boundary value problems on a half line with dim(ker L) = 2.
Boundary Value Problems 2014 2014:167.

http://www.boundaryvalueproblems.com/content/2014/1/167
http://dx.doi.org/10.1016/j.cam.2006.02.055
http://dx.doi.org/10.1016/S0362-546X(96)00118-6
http://dx.doi.org/10.1002/mana.200810841
http://dx.doi.org/10.4134/BKMS.2012.49.4.815
http://dx.doi.org/10.1186/1687-2770-2013-19
http://dx.doi.org/10.1016/S0252-9602(10)60150-6
http://dx.doi.org/10.1016/j.na.2005.09.042
http://dx.doi.org/10.1016/j.amc.2008.11.026
http://dx.doi.org/10.1016/j.jmaa.2008.11.082

	Solvability for nonlocal boundary value problems on a half line with dim (ker L)=2
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Example
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


