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Abstract
In this paper, we are concerned with the Cauchy problem for the modified Novikov
equation. By using the transport equation theory and Littlewood-Paley
decomposition as well as nonhomogeneous Besov spaces, we prove that the Cauchy
problem for the modified Novikov equation is locally well posed in the Besov space
Bsp,r with 1 ≤ p, r ≤ +∞ and s >max{1 + 1

p ,
3
2 } and show that the Cauchy problem for

the modified Novikov equation is locally well posed in the Besov space B3/22,1 with the
aid of Osgood lemma.
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1 Introduction
Recently, Zhao and Zhou [] considered the exact traveling wave solution to the following
modified Novikov equation:

ut – utxx + uux = uuxuxx + uuxxx. (.)

We recall that the Novikov equation

ut – utxx = uuxxx + uuxuxx – uux (.)

was discovered by Vladimir Novikov [] and it possesses the bi-Hamiltonian structure,
infinite conservation laws. The well-posedness and blow-up of the Cauchy problem for
the Novikov equation in Sobolev spaces and Besov spaces have been investigated by some
authors [–]. The weak solution of the Cauchy problem for the Novikov equation has
been investigated by some authors [, , ]. Recently, Li and Yan [] considered the Cauchy
problem for the KdV equation with higher dispersion.
We define P(D) = ∂x( – ∂

x )– and P(D) = ( – ∂
x )–. By using the fact that G(x) =


e

–|x|

and G(x) ∗ f = ( – ∂
x )–f for all f ∈ L(R) and G ∗ y = u, we can rewrite (.) as follows:

ut + uux + P(D)
[


u –



u +



uux

]
+ P(D)

[


ux

]
= , t > .
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Now we consider the following problem:

ut + uux + P(D)
[


u –



u +



uux

]
+ P(D)

[


ux

]
= , t > , (.)

u(x, ) = u(x), x ∈ R. (.)

To the best of our knowledge, the well-posedness and blow-up of the Cauchy problem
for (.) and (.) in Besov spaces are open up to now. More precisely, in this paper, mo-
tivated by [, ], using Littlewood-Paley decomposition and nonhomogeneous Besov
spaces, we prove that the Cauchy problem for (.) is locally well posed in the Besov space
Bs
p,r with s > max{ + 

p ,

 } and we give a blow-up criterion.

To introduce the main results, we define

Es
p,r(T) = C

(
[,T];Bs

p,r
) ∩C([,T];Bs–

p,r
)

if r < ∞,

Es
p,∞(T) = L∞(

,T ;Bs
p,∞

) ∩ Lip
(
[,T];Bs–

p,r
)
.

The main results of this paper are as follows.

Theorem . Let  ≤ p, r ≤ ∞ and s > max(  , +

p ) and u ∈ Bs

p,r . Then there exists a time
T >  such that problem (.) and (.) has a unique solution u in Es

p,r(T).Themap u −→ u
is continuous fromaneighborhood of u in Bs

p,r into C([,T];Bs′
p,r)∩C([,T];Bs′–

p,r ) for every
s′ < s.When r <∞, the solution to problem (.) and (.) is continuous in Es

p,r(T).

Theorem . When u ∈ B/
, , (.) and (.) is locally well posed in the sense of

Hadamard.

The remainder of this paper is organized as follows. In Section , we give some pre-
liminaries. In Section , we establish local well-posedness of the Cauchy problem for the
generalized Camassa-Holm equation in Besov spaces. In Section , we prove Theorem ..

2 Preliminaries
In this section, the nonhomogeneous Besov spaces and the theory of transport equation
which can be seen in [–] are presented.

Lemma . (Littlewood-Paley decomposition) There exists a couple of smooth radial
functions (χ ,φ) valued in [, ] such that χ is supported in the ball B = {ξ ∈ Rn, |ξ | ≤ 

 }
and φ is supported in the ring C = {ξ ∈ Rn,  ≤ |ξ | ≤ 

 }.Moreover,

∀ξ ∈ Rn, χ (ξ ) +
∑
q∈N

φ
(
–qξ

)
= 

and

Suppφ
(
–q·) ∩ Suppφ

(
–q

′ ·) = ∅ if
∣∣q – q′∣∣ ≥ ,

Suppχ (·)∩ Suppφ
(
–q·) = ∅ if |q| ≥ .
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Then, for u ∈ S′(R), the nonhomogeneous dyadic blocks are defined as follows:

�qu =  if q ≤ –,

�–u = χ (D)u = F –
x χFxu,

�qu = φ
(
–qD

)
= F –

x φ
(
–qξ

)
Fxu if q ≥ .

Thus u =
∑

q∈Z �qu in S′(R).

Remark The low frequency cut-off Sq is defined by

Squ =
q–∑
p=–

�u = χ
(
–qD

)
u = F –

x χ
(
–qξ

)
Fxu, ∀q ∈ N .

It is easily checked that

�p�qu≡  if |p – q| ≥ ,

�q(Sp–u�pv)≡  if |p – q| ≥ ,∀u, v ∈ S′(R)

as well as

‖�qu‖Lp ≤ ‖u‖Lp , ‖Squ‖Lp ≤ C‖u‖Lp , ∀ ≤ p≤ +∞

with the aid of Young’s inequality, where C is a positive constant independent of q.

Definition (Besov spaces) Let s ∈ R,  ≤ p ≤ +∞. The nonhomogeneous Besov space
Bs
p,r(Rn) is defined by

Bs
p,r

(
Rn) = {

f ∈ S′(R) : ‖f ‖Bsp,r =
∥∥qs�qf

∥∥
lr (Lp) =

∥∥(
qs‖�qf ‖Lp

)
q≥–

∥∥
lr < ∞}

.

In particular, B∞
p,r =

⋂
s∈R Bs

p,r . Let T > , s ∈ R and  ≤ p≤ ∞. Define Es
p,r =

⋂
T> Es

p,r(T).

Lemma . Let s ∈ R,  ≤ p, r,pj, rj ≤ ∞, j = , , then:
() Topological properties: Bs

p,r is a Banach space which is continuously embedded in
S′(R).

() Density: C∞
c is dense in Bs

p,r ⇔  ≤ p, r <∞.

() Embedding: Bs
p,r ↪→ B

s–n( 
p

– 
p

)
p,r if p ≤ p and r ≤ r.

Bs
p,r ↪→ Bs

p,r locally compact if s < s.

() Algebraic properties: ∀s > , Bs
p,r ∩ L∞ is a Banach algebra. Bs

p,r is a Banach
algebra ⇔ Bs

p,r ↪→ L∞ ⇔ s > 
p or (s ≥ 

p and r = ). In particular, B/
, is

continuously embedded in B/
,∞ ∩ L∞ and B/

,∞ ∩ L∞ is a Banach algebra.
() -D Moser-type estimates:

(i) For s > ,

‖fg‖Bsp,r ≤ C
(‖f ‖Bsp,r‖g‖L∞ + ‖f ‖L∞‖g‖Bsp,r

)
.
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(ii) ∀s ≤ 
p < s (s ≥ 

p if r = ) and s + s > , we have

‖fg‖Bsp,r ≤ C‖f ‖Bsp,r‖g‖Bsp,r .

() Complex interpolation:

‖f ‖
Bθs+(–θ )s
p,r

≤ ‖f ‖θ

Bsp,r
‖g‖–θ

Bsp,r
, ∀f ∈ Bs

p,r ∩ Bs
p,r ,∀θ ∈ [, ].

() Real interpolation: ∀θ ∈ (, ), s > s, s = θs + ( – θ )s, there exists a constant C
such that

‖u‖Bsp, ≤ C(θ )
s – s

‖u‖θ

Bsp,∞
‖u‖–θ

Bsp,∞
, ∀u ∈ Bs

p,∞.

In particular, for any  < θ < , we have that

‖u‖B/,
≤ ‖u‖

B

 –θ

,

≤ C(θ )‖u‖θ

B/,∞
‖u‖–θ

B/,∞
. (.)

() Fatou lemma: if (un)n∈N is bounded in Bs
p,r and un −→ u in S′(R), then u ∈ Bs

p,r and

‖u‖Bsp,r ≤ lim inf
n−→∞ ‖un‖Bsp,r .

() Let m ∈ R and f be an Sm-multiplier (i.e., f : Rn → R is smooth and satisfies that
∀α ∈Nn, � a constant Cα , s.t. |∂αf (ξ )| ≤ Cα( + |ξ |)m–|α| for all ξ ∈ Rn). Then the
operator f (D) is continuous from Bs

p,r to Bs–m
p,r . Notice that P(D) is continuous from

Bs
p,r to Bs–

p,r and P(D) is continuous from Bs
p,r to Bs–

p,r .
() The usual product is continuous from B–/

, × (B/
,∞ ∩ L∞) to B–/

,∞ .
() There exists a constant C >  such that the following interpolation inequality holds:

‖f ‖B/,
≤ C‖f ‖B/,∞

ln

(
e +

‖f ‖B/,∞
‖f ‖B/,∞

)
.

Lemma . (A priori estimates in Besov spaces) Let  ≤ p, r ≤ ∞ and s > –min( p ,  –

p ).

Assume that f ∈ Bs
p,r , F ∈ L(,T ;Bs

p,r) and ∂xv belongs to L(,T ;Bs–
p,r ) if s >  + 

p or to
L(,T ;B/p

p,r ∩ L∞) otherwise. If f ∈ L∞(,T ;Bs
p,r)∩C([,T];S′(R)) solves the following -D

linear transport equation:

ft + vfx = F , (.)

f (x, ) = f, (.)

then there exists a constant C depending only on s, p, r such that the following statements
hold:
() If r =  or s �=  + 

p , then

‖f ‖Bsp,r ≤ ‖f‖Bsp,r +
∫ t



∥∥F(τ )∥∥Bsp,r
dτ +C

∫ t


V ′(τ )

∥∥f (τ )∥∥Bsp,r
dτ
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or hence,

‖f ‖Bsp,r ≤ eCV (t)
(

‖f‖Bsp,r +
∫ t


e–CV (τ )∥∥F(τ )∥∥Bsp,r

dτ

)
(.)

with V (t) =
∫ t
 ‖vx(τ )‖B/pp,r ∩L∞ dτ if s <  + 

p and V (t) =
∫ t
 ‖vx(τ )‖Bs–p,r

dτ else.
() If s ≤  + 

p , f
′
 ∈ L∞ and fx ∈ L∞((,T)×R) and Fx ∈ L(,T ;L∞), then

∥∥f (t)∥∥Bsp,r
+

∥∥fx(t)∥∥L∞

≤ eCV (t)
(

‖f‖Bsp,r + ‖fx‖L∞ +
∫ t


e–CV (τ )[∥∥F(τ )∥∥Bsp,r

+
∥∥Fx(τ )∥∥L∞

]
dτ

)

with

V (t) =
∫ t



∥∥∂xv(τ )
∥∥
B/pp,r ∩L∞ .

() If f = v, then for all s > , () holds true when V (t) =
∫ t
 ‖vx(τ )‖L∞ dτ .

() If r < ∞, then f ∈ C([,T];Bs
p,r). If r = ∞, then f ∈ C([,T];Bs′

p,) for all s′ < s.

Lemma . (Existence and uniqueness) Let p, r, s, f and F be as in the statement of
Lemma ..Assume that v ∈ Lρ(,T ;B–M∞,∞) for some ρ >  andM >  and vx ∈ L(,T ;Bs–

p,r )
if s > + 

p or s = + 
p and r =  and vx ∈ L(,T ;B/p

p,∞ ∩L∞) if s < + 
p . Then problem (.)

and (.) has a unique solution f ∈ L∞(,T ;Bs
p,r)∩ (

⋂
s′<s C([,T];Bs′

p,)) and the inequali-
ties of Lemma . can hold true.Moreover, if r < ∞, then f ∈ C([,T];Bs

p,r).

3 Proof of Theorem 1.1
By using the following six steps, we will complete the proof of Theorem ..
First step: Approximate solution. We will construct a solution with the aid of a standard

iterative process. Starting from u() := , by the inductive method and solving the follow-
ing linear transport equation (.) and (.), we derive a sequence of smooth functions
(u(n))n∈N

[
∂t +

(
u(n)

)
∂x

]
u(n+) = –P(D)

[


(
u(n)

) – 

(
u(n)

) + 

u(n)

(
u(n)x

)]

– P(D)
[


(
u(n)x

)], (.)

u(n+)(x, ) = u(n+) = Sn+u. (.)

It is easily checked that Sn+u ∈ B∞
p,r , by using Lemma . and the inductive method, for

all n ∈N , we have that (.) and (.) has a global solution which belongs to C(R+,B∞
p,r).

Second step: Uniform bounds. We will prove

∥∥u(n+)(t)∥∥Bsp,r
≤ e

C
∫ t
 ‖u(n)‖Bsp,r dτ‖u‖Bsp,r +

C


∫ t


e
C

∫ t
τ ‖u(n)‖Bsp,r dτ∥∥u(n)∥∥

Bsp,r
dτ

+
C


∫ t


e
C

∫ t
τ ‖u(n)‖Bsp,r dτ∥∥u(n)∥∥

Bsp,r
dτ (.)

for all n ∈N.
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Combining (.) of Lemma . with (.), we have

∥∥u(n+)(t)∥∥Bsp,r
≤ e

C
∫ t
 ‖((u(n)))(t′)‖Bsp,r dt

′ ‖u‖Bsp,r

+
∫ t


e
C

∫ t
τ ‖((u(n)))(t′)‖Bsp,r dt

′∥∥F(
u(n),u(n)x

)∥∥
Bsp,r

dτ , (.)

where

F
(
un,unx

)
= P(D)

[


(
u(n)

) – 

(
u(n)

) + 

u(n)

(
u(n)x

)] + P(D)
[


(
u(n)x

)]. (.)

When s > max{ + 
p ,


 }, by using () in Lemma ., we have

∥∥((
u(n)

))(t′)∥∥Bsp,r
≤ C

∥∥(
u(n)

)(
t′
)∥∥

Bsp,r
, (.)

∥∥F(
u(n),u(n)x

)∥∥
Bsp,r

≤ C
[∥∥u(n)∥∥

Bsp,r
+

∥∥u(n)∥∥
Bsp,r

]
. (.)

Combining (.)-(.) with (.), we have (.).
Let T >  satisfy

T < min

{


C‖u‖Bsp,r
,

C

}
, (.)

∥∥u(n)(t)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – C‖u‖Bsp,r t)/
. (.)

By using (.), we have

e
C

∫ t
τ ‖u(n)‖Bsp,r (t

′)dt′ ≤ e
– 


∫ t
τ

d(–C‖u‖Bsp,r
t′)

–C‖u‖Bsp,r
t′

=
( – C‖u‖Bsp,rτ
 – C‖u‖Bsp,r t

) 

. (.)

When τ =  in (.), we have

eCU
n(t) ≤

(


 – C‖u‖Bsp,r t
)/

. (.)

By using (.) and (.), we have

C


∫ t


e
C

∫ t
τ ‖u(n)(t′)‖Bsp,r dt

′∥∥u(n)(τ )∥∥
Bsp,r

dτ

≤ (
 – C‖u‖Bsp,r t

)– 


∫ t



C‖u‖Bsp,r
( – C‖u‖Bsp,rτ )



dτ

=


‖u‖Bsp,r

(
 – C‖u‖Bsp,r t

)– 

[(
 – C‖u‖Bsp,r t

)– 
 – 

]
. (.)

With the aid of the mean value theorem, we have

[(
 – C‖u‖Bsp,r t

)– 
 – 

]
= C‖u‖Bsp,r t( – ξ )–/, (.)

http://www.boundaryvalueproblems.com/content/2014/1/171
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where

C‖u‖Bsp,r t < ξ < .

Combining (.) with (.), we have that

C


∫ t


e
C

∫ t
τ ‖u(n)(t′)‖Bsp,r dt

′∥∥u(n)(τ )∥∥
Bsp,r

dτ ≤
‖u‖Bsp,rCt

( – C‖u‖Bsp,r t)/
. (.)

Inserting (.)-(.) into (.) leads to

∥∥u(n+)(t)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – C‖u‖Bsp,r t)/
. (.)

Consequently, (u(n))n∈N is uniformly bounded in C([,T];Bs
p,r). By using the fact that Bs–

p,r

with s > max{ + 
p ,


 } is an algebra and Bs

p,r ↪→ Bs–
p,r as well as the definition of the Besov

spaces Bs
p,r , we derive that

∥∥(
u(n)

)u(n+)x
∥∥
Bs–p,r

≤ C
∥∥(
u(n)

)∥∥
Bs–p,r

∥∥u(n+)x
∥∥
Bs–p,r

≤ C
∥∥u(n)∥∥

Bsp,r

∥∥u(n+)∥∥Bsp,r

≤
C‖u‖Bsp,r

( – C‖u‖Bsp,r t)


. (.)

Since s > max{ + 
p ,


 }, which leads to that Bs–

p,r is an algebra, by using the S–-multiplier
property of P(D) and the S–-multiplier property of P(D) as well as (.), we have

∥∥F(
u(n),u(n)x

)∥∥
Bs–p,r

≤ C


[∥∥u(n)∥∥
Bsp,r

+
∥∥u(n)∥∥

Bsp,r

]

≤ C
[ ‖u‖Bsp,r
( – C‖u‖Bsp,r t)



+

‖u‖Bsp,r
( – C‖u‖Bsp,r t)




]
. (.)

Consequently, combining (.) with (.) and (.), we derive that

∥∥u(n+)t
∥∥
Bs–p,r

≤ C
[ ‖u‖Bsp,r
( – C‖u‖Bsp,r t)



+

‖u‖Bsp,r
( – C‖u‖Bsp,r t)




]
, (.)

which yields (u(n))n ∈ C([,T];Bs
p,r)∩C([,T];Bs–

p,r ).
Third step: Convergence. We will derive that (u(n))n is a Cauchy sequence in

C([,T];Bs–
p,r ).

Form,n ∈N , from (.), we have

(
u(n+m+) – u(n+)

)
t +

(
u(n+m))(u(n+m+) – u(n+)

)
x =

∑
k=

Tk , (.)

http://www.boundaryvalueproblems.com/content/2014/1/171
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where

T = –


P(D)

[(
u(n+m)) – (

u(n)
)],

T =


P(D)

[(
u(n+m)) – (

u(n)
)],

T = –


P(D)

[(
un+m – un

)(
u(n+m)
x

)],
T = –



P(D)

[(
u(n+m)
x

) – (
u(n)x

)],
T = –



P(D)

[(
u(n+m))

x –
(
u(n)

)
x

]
,

T =
[(
u(n+m)) – (

u(n)
)]u(n+)x .

When s > max{ + 
p ,


 }, by using the S– multiplier property of P(D), the S– multiplier

property of P(D) and Bs–
p,r ↪→ Bs–

p,r , we have

‖Tj‖Bs–p,r
≤ C

∥∥u(n+m) – u(n)
∥∥
Bs–p,r

, (.)

where  ≤ j ≤ , j ∈N. Since ∀n ∈N , we have

∥∥u(n)∥∥Bsp,r
≤ ‖u‖Bsp,r

( – C‖u‖Bsp,r t)


.

By using (.), we have

∥∥∥∥∥
∑
j=

Tj

∥∥∥∥∥
Bs–p,r

≤
∑
j=

‖Tj‖Bs–p,r

≤ C
∥∥u(n+m) – u(n)

∥∥
Bs–p,r

‖u‖Bsp,r
 – C‖u‖Bsp,r t

. (.)

When s �=  + 
p , from Lemma . and (.), we have

∥∥(u(n+m+) – u(n+)(t)
∥∥
Bs–p,r

≤ eCW
(n+m)(t)∥∥(

u(n+m+) – u(n+)
)
(·, )∥∥Bs–p,r

+C
∫ t


eCW

(n+m)(t)–CW (n+m)(τ )
∑
j=

‖Tj‖Bs–p,r
dτ , (.)

where

Wn+m(t) =
∫ t



∥∥∂x
(
u(n+m))(τ )∥∥

B

p
p,r∩L∞

dτ (.)

http://www.boundaryvalueproblems.com/content/2014/1/171
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if s –  <  + 
p and

Wn+m(t) =
∫ t



∥∥∂x
(
u(n+m))(τ )∥∥Bs–p,r

dτ (.)

if s –  >  + 
p . From (.), if s –  <  + 

p , by using B
s–
p,r ↪→ L∞ with s >  + 

p , we have

Wn+m(t)≤ C
∫ t



∥∥u(n+m)(τ )
∥∥
Bsp,r

dτ . (.)

From (.), if s –  >  + 
p , we have

Wn+m(t)≤ C
∫ t



∥∥u(n+m)(τ )
∥∥
Bsp,r

dτ . (.)

It is easily showed that

∥∥∥∥∥
n+m∑
q=n+

�qu

∥∥∥∥∥
Bs–p,r

≤ C–n‖u‖Bs–p,r
. (.)

Inserting (.)-(.) into (.), we have

∥∥(
u(n+m+) – u(n+)

)
(t)

∥∥
Bs–p,r

≤ CT

(
–n +

∫ t



∥∥(
u(n+m) – u(n)

)
(τ )

∥∥
Bs–p,r

dτ

)
. (.)

We define

Wn,k(t) =
∥∥(
u(n+m) – u(n)

)
(t)

∥∥
Bs–p,r

, (.)

Wn(t) = sup
m∈N

Wn,m(t), (.)

W̃ (t) = lim sup
n−→∞

Wn(t). (.)

Combining (.) with (.)-(.), we have that

Wn+(t)≤ C
∫ t


Wn(τ )dτ . (.)

From (.) and (.), by using the Fatou lemma, we have that

W̃ (t) ≤ C
∫ t


W̃ (τ )dτ . (.)

Applying the Gronwall inequality to (.), we have that

W̃ (t) ≤ eCW̃ (). (.)
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From (.), we have that W̃ () = . Thus, W̃ (t) = . Consequently, (u(n))n is a Cauchy
sequence in C([,T];Bs–

p,r ); moreover, (u(n))n is convergent to some limit function u ∈
C([,T];Bs–

p,r ).
When s =  + 

p , by using () of Lemma ., we derive that

∥∥(
u(n+m+) – u(n+)

)
(t)

∥∥
L∞
T Bs–p,r

=
∥∥(
u(n+m+) – u(n+)

)
(t)

∥∥
L∞
T B

+ 
p

p,r

≤ ∥∥(
u(n+m+) – u(n+)

)
(t)

∥∥θ

L∞
T Bsp,r

∥∥(
u(n+m+) – u(n+)

)
(t)

∥∥–θ

L∞
T Bsp,r

≤ ∥∥(
u(n+m+) – u(n+)

)
(t)

∥∥θ

B
+ 

p
p,r

[∥∥u(n+m+)∥∥
B
+ 

p
p,r

+
∥∥u(n+)(t)∥∥

B
+ 

p
p,r

]–θ

≤ (
C′
T
)θ–θn[∥∥u(n+m+)∥∥

B
+ 

p
p,r

+
∥∥u(n+)(t)∥∥

B
+ 

p
p,r

]–θ , (.)

where

s ∈
(

max

(
 +


p
,



)
– ,  +


p

)
, s ∈

(
 +


p
,  +


p

)
.

Consequently, (u(n))n is a Cauchy sequence in C([,T];Bs–
p,r ) and (u(n))n converges to some

limit function u ∈ C([,T];Bs–
p,r ).

Fourth step: Existence of solution in Es
p,r(T). Existence of solution Es

p,r(T) can be proved
similarly to [].
Fifth step: Uniqueness of solution. We consider case s �=  + 

p and case s =  + 
p , respec-

tively. In fact, this can be proved similarly to [].
Sixth step: Continuity with respect to the initial data. Continuity with respect to the

initial data can be proved similarly to [].

4 Proof of Theorem 1.2
Since B/

, and B
/
, are Banach algebras, by using a proof similar to (.), we can prove that

∥∥u(n+)(t)∥∥B/,
≤ e

C
∫ t
 ‖u(n)‖

B/,
dτ

‖u‖B/,
+
C


∫ t


e
C

∫ t
τ ‖u(n)‖

B/,
dτ∥∥u(n)∥∥

B/,
dτ

+
C


∫ t


e
C

∫ t
τ ‖u(n)‖

B/,
dτ∥∥u(n)∥∥

B/,
dτ (.)

for all n ∈N. We assume that

T < min

{


C‖u‖B/,

,

C

}
, (.)

∥∥u(n)(t)∥∥B/,
≤

‖u‖B/,

( – C‖u‖B/,
t)/

. (.)

By a proof similar to (.), we can prove that

∥∥u(n+)(t)∥∥B/,
≤

‖u‖B/,

( – C‖u‖B/,
t)/

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/171
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Thus, (u(n))n is uniformly bounded in B/
, . From (.), by using () in Lemma ., we can

prove that (u(n)t )n is uniformly bounded with respect to n in B/
, .

Consequently, (u(n))n ∈ C([,T];B/
, )∩C([,T];B/

, ).
We define

ρn,k(t) =
∥∥(
u(n+m) – u(n)

)
(t)

∥∥
B/,∞

, (.)

ρn(t) = sup
m∈N

ρn,m(t), (.)

ρ̃(t) = lim sup
n−→∞

ρn(t). (.)

By a proof similar to [], we derive that

ρ̃(t) = , (.)

and with the aid of (.), we can prove that (u(n))n is a Cauchy sequence in C([,T];B/
, ).

The rest of Theorem . can be proved similarly to [, ].
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