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Abstract
The paper investigates a fixed point problem in the space (W1,∞([a,b];Rn))p+1 which
is connected to boundary value problems with state-dependent impulses of the form
z′(t) = f (t, z(t)), a.e. t ∈ [a,b] ⊂ R, z(τi+) – z(τi) = Ji(τi , z(τi)), �(z) = c0. Here, the impulse
instants τi are determined as solutions of the equations τi = γi(z(τi)), i = 1, . . . ,p. We
assume that n,p ∈ N, c0 ∈ R

n, the vector function f satisfies the Carathéodory
conditions on [a,b]×R

n, the impulse functions Ji , i = 1, . . . ,p, are continuous on
[a,b]×R

n, and the barrier functions γi , i = 1, . . . ,p, are continuous onRn. The operator
� is an arbitrary linear and bounded operator on the space of left-continuous
regulated on [a,b] vector valued functions and is represented by the Kurzweil-Stieltjes
integral. Provided the data functions f and Ji are bounded, transversality conditions
which guarantee that this fixed point problem is solvable are presented. As a result it
is possible to realize the construction of a solution of the above impulsive problem.
MSC: 34B37; 34B10; 34B15
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1 Introduction
In the literature most of impulsive boundary value problems deals with impulses at fixed
times. This is the case that moments, where impulses act in state variables, are known
(cf. Section ). The theory of these impulsive problems is widely developed and presents
direct analogies withmethods and results for problems without impulses. Important texts
in this area are [–].
A different situation arises, when impulse moments satisfy a predetermined relation

between state and time variables, see e.g. [–]. This case, which is represented by state-
dependent impulses, is studied here, where we are interested in a system of n (n ∈ N)
nonlinear ordinary differential equations of the first order with state-dependent impulses
and general linear boundary conditions on the interval [a,b] ⊂ R. The main reason that
boundary value problems with state-dependent impulses are developed significantly less
than those with impulses at fixed moments is that new difficulties with an operator repre-
sentation of the problem appear when examining state-dependent impulses (cf. Section ).
Therefore almost all existence results for boundary value problems with state-dependent
impulses have been reached for periodic problems which can be transformed to fixed
point problems of corresponding Poincaré maps in R

n. Hence, the difficulties with the
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construction of a functional space and an operator have been cleared in the periodic case.
See e.g. [–]. Other types of boundary value problems with state-dependent impulses
have been studied very rarely, see [, ].
In this paper we construct and investigate a fixed point problem in some subset � of

the product space (W,∞([a,b];Rn))p+ and we provide conditions for its solvability (cf.
Section  and Theorem ). The existence of such fixed point allows us to construct a
solution of the system of differential equations

z′(t) = f
(
t, z(t)

)
, a.e. t ∈ [a,b]⊂R, ()

subject to the state-dependent impulse conditions

z(τi+) – z(τi) = Ji
(
τi, z(τi)

)
, where τi = γi

(
z(τi)

)
, i = , . . . ,p, ()

and the general linear boundary condition

�(z) = c. ()

For nonzero impulse functions Ji, i = , . . . ,p, this solution is discontinuous on [a,b] and,
since discontinuity points τi, i = , . . . ,p, are not fixed and depend on the solution through
(), such a solution has to be searched in the space GL([a,b];Rn); see the notation below.
Note that conditions which guarantee the solvability of problem ()-() have not been
known before. Some results for special cases of problem ()-() can be found in our pre-
vious papers [–].
In what follows we use this notation. Let k,m,n ∈ N. By Rn×m we denote the set of all

matrices of the type n×m with real valued coefficients equipped with the matrix norm

|A| = max
k∈{,...,n}

m∑

j=

|akj| for A = (akj)n,mk,j= ∈R
n×m.

Let AT denote the transpose of A ∈ R
n×m. Let Rn = R

n× be the set of all n-dimensional
column vectors c = (c, . . . , cn)T , where ck ∈R, k = , . . . ,n, andR =R

×. The (vector) norm
of Rn is a special case of the norm of Rn×m, i.e. it has the form

|x| = max
k∈{,...,n}

|xk| for x = (x, . . . ,xn)T ∈R
n.

It is well known that

|Ax| ≤ |A||x| for each A ∈R
n×n,x ∈ R

n.

By C([a,b] × R
n;Rn), C([α,β];Rn×m) (with –∞ < α < β < ∞), C(Rn;Rm) we denote the

set of all mappings x : [a,b] × R
n → R

n, x : [α,β] → R
n×m, x : Rn → R

m with con-
tinuous components, respectively. By L∞([a,b];Rn×m), L([a,b];Rn×m), GL([a,b];Rn×m),
C([a,b];Rn×m), BV([a,b];Rn×m), we denote the sets of all mappings F : [a,b] → R

n×m

whose components are, respectively, essentially bounded functions, Lebesgue integrable
functions, left-continuous regulated functions, continuous functions and functions with
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bounded variation on the interval [a,b]. Let us note that the norm in the linear space
L

∞([a,b];Rn×m) is taken as

‖F‖∞ = max
k∈{,...,n}

m∑

j=

ess sup
t∈[a,b]

∣
∣fkj(t)

∣
∣ for F = (fkj)n,mk,j= ∈ L

∞(
[a,b];Rn×m)

,

especially, in L
∞([a,b];Rn)

‖u‖∞ = max
k∈{,...,n}

ess sup
t∈[a,b]

∣∣uk(t)
∣∣ for u = (u, . . . ,un)T ∈ L

∞(
[a,b];Rn).

We will make use of the Sobolev spaceW,∞([a,b];Rn), which is the linear space of vector
functions, whose components are absolutely continuous having essentially bounded first
derivatives on [a,b], equipped with the norm

‖u‖,∞ = ‖u‖∞ +
∥∥u′∥∥∞ for u ∈ W

,∞(
[a,b];Rn).

By Car([a,b]×R
n;Rn) we denote the set of all mappings f : [a,b]×R

n → R
n satisfying

the Carathéodory conditions on the set [a,b] × R
n. Finally, by χM we denote the charac-

teristic function of the setM ⊂R.
Note that a mapping u : [a,b] → R

n is left-continuous regulated on [a,b] if for each
t ∈ (a,b] and each s ∈ [a,b)

u(t) = u(t–) = lim
τ→t–

u(τ ) ∈R
n, u(s+) = lim

τ→s+
u(τ ) ∈R

n.

GL([a,b];Rn) is a linear space and equipped with the sup-norm ‖ · ‖∞ it is a Banach space
(see [], Theorem .). In particular, we set

‖u‖∞ = max
k∈{,...,n}

(
sup
t∈[a,b]

∣∣uk(t)
∣∣
)

for u = (u, . . . ,un)T ∈GL
(
[a,b];Rn).

A mapping f : [a,b]×R
n → R

n satisfies the Carathéodory conditions on [a,b]×R
n if

• f (·,x) : [a,b]→R
n is measurable for all x ∈R

n,
• f (t, ·) :Rn →R

n is continuous for a.e. t ∈ [a,b],
• for each compact set K ⊂R

n there exists a functionmK ∈ L
([a,b];R) such that

|f (t,x)| ≤ mK (t) for a.e. t ∈ [a,b] and each x ∈ K .
Throughout we assume that

n,p ∈N, f ∈ Car([a,b]×R
n;Rn),

c ∈ R
n, Ji ∈C([a,b]×R

n;Rn), γi ∈C(Rn;R), i = , . . . ,p,
� :GL([a,b];Rn) →R

n is a linear bounded operator, i.e.
�(z) = Kz(a) +

∫ b
a V (t) d[z(t)], z ∈GL([a,b];Rn),

where K ∈R
n×n,V ∈ BV([a,b];Rn×n),k = , . . . ,n.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

()

Now let us define a solution of problem ()-().

Definition  A mapping z : [a,b] → R
n is a solution of problem ()-() if for each i ∈

{, . . . ,p} there exists a unique τi ∈ (a,b) such that

τi = γi
(
z(τi)

)
,

http://www.boundaryvalueproblems.com/content/2014/1/172
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a < τ < τ < · · · < τp < b, the restrictions z|[a,τ], z|(τ,τ], . . . , z|(τp ,b] are absolutely continuous,
z satisfies () for a.e. t ∈ [a,b] and fulfills conditions () and ().

2 Problemwith impulses at fixed times
In this section we summarize results from the paper [], where we investigated boundary
value problems having impulses at fixed times. This is the case that the barrier functions
γi in () are constant functions, i.e. there exist t, . . . , tp ∈ R satisfying a < t < · · · < tp < b
such that

γi(x) = ti for i = , . . . ,p,x ∈R
n,

and each solution of the problem crosses ith barrier at the same time instant τi = ti for
i = , . . . ,p.
In [], the following boundary value problem was investigated:

z′(t) = A(t)z(t) + f
(
t, z(t)

)
, a.e. t ∈ [a,b], ()

z(ti+) – z(ti) = Ji
(
z(ti)

)
, i = , . . . ,p, ()

�(z) = c, ()

where

a < t < · · · < tp < b, A ∈ L
([a,b];Rn×n),

f ∈ Car([a,b]×R
n;Rn), Ji ∈C(Rn;Rn), i = , . . . ,p,

� :GL([a,b];Rn) →R
n is a linear bounded operator, c ∈R

n.

⎫
⎪⎬

⎪⎭
()

In order to get an operator representation of this problem (cf. Theorem ) the Green’s
matrix is constructed.

Definition ([], Definition ) AmappingG : [a,b]×[a,b]→R
n×n is theGreen’smatrix

of the problem

z′(t) = A(t)z(t) for a.e. t ∈ [a,b], �(z) = , ()

if
(a) G(·, τ ) is continuous on [a, τ ] and on (τ ,b] for each τ ∈ [a,b],
(b) G(t, ·) ∈ BV([a,b];Rn×n) for each t ∈ [a,b],
(c) for any q ∈ L

([a,b];Rn) the mapping

x(t) =
∫ b

a
G(t, τ )q(τ ) dτ , t ∈ [a,b]

is a unique solution of the problem

z′(t) = A(t)z(t) + q(t) for a.e. t ∈ [a,b], �(z) = . ()

Lemma  ([], Lemma ) Assume (). Problem () has a unique solution if and only if

det�(Y ) 	= , ()

http://www.boundaryvalueproblems.com/content/2014/1/172


Rachůnková and Tomeček Boundary Value Problems 2014, 2014:172 Page 5 of 17
http://www.boundaryvalueproblems.com/content/2014/1/172

where Y is a fundamental matrix of the system of differential equations in (). If () is
valid, then there exists a Green’s matrix of problem (), which is in the form

G(t, τ ) = Y (t)H(τ ) + χ(τ ,b](t)Y (t)Y–(τ ), t, τ ∈ [a,b], ()

where H is defined by

H(τ ) = –
[
�(Y )

]–
(∫ b

τ

V (s)A(s)Y (s) ds · Y–(τ ) +V (τ )
)
, τ ∈ [a,b], ()

and it has the following properties:
(i) G is bounded on [a,b]× [a,b],
(ii) G(·, τ ) is absolutely continuous on [a, τ ] and (τ ,b] for each τ ∈ [a,b] and its

columns satisfy the differential equation from () a.e. on [a,b],
(iii) G(τ+, τ ) –G(τ , τ ) = E for each τ ∈ [a,b),
(iv) G(·, τ ) ∈GL([a,b];Rn×n) for each τ ∈ [a,b] and

�
(
G(·, τ )) =  for each τ ∈ [a,b).

Theorem  ([], Theorem ) Let () and () be satisfied and let G be given by ()
with H of (). Then z ∈ GL([a,b];Rn) is a fixed point of an operator F :GL([a,b];Rn) →
GL([a,b];Rn) defined by

(Fz)(t) =
∫ b

a
G(t, s)f

(
s, z(s)

)
ds +

p∑

i=

G(t, ti)Ji
(
z(ti)

)
+ Y (t)

[
�(Y )

]–c

for t ∈ [a,b], if and only if z is a solution of problem ()-(). Moreover, the operator F is
completely continuous.

Similar results can be found also in [, Chapter ].

Remark  As in [], we denote

G(t, τ ) = Y (t)H(τ ), G(t, τ ) = Y (t)
(
H(τ ) + Y–(τ )

)
,

i.e.

G(t, τ ) =G(t, τ )χ[a,τ ](t) +G(t, τ )χ(τ ,b](t) =

⎧
⎨

⎩
G(t, τ ), a≤ t ≤ τ ≤ b,

G(t, τ ), a≤ τ < t ≤ b.

Remark  In the present paper we need the Green’s matrix of problem () for A ≡ .
Therefore Y (t) = E and �(Y ) = K . The existence of the Green’s matrix is then equivalent
with the regularity of K , i.e. with the assumption detK 	= . If this is satisfied, thenH from
() is given by the formula

H(τ ) = –K–V (τ ), τ ∈ [a,b],

http://www.boundaryvalueproblems.com/content/2014/1/172
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and the Green’s matrix takes the form

G(t, τ ) =

⎧
⎨

⎩
–K–V (τ ), a≤ t ≤ τ ≤ b,

–K–V (τ ) + E, a≤ τ < t ≤ b.

In this case the matrix functions G, G from Remark  are written as

G(t, τ ) = –K–V (τ ), G(t, τ ) = –K–V (τ ) + E, t, τ ∈ [a,b].

3 Transversality conditions
Here we formulate conditions which guarantee that each possible solution of problem ()-
() in some region, which will be specified later (cf. ()), crosses each barrier γi at the
unique impulse point τi, i = , . . . ,p. Consider positive real numbers μj, j = , . . . ,n, and
denote

A =
{
(x, . . . ,xn)T ∈R

n : |xj| ≤ μj, j = , . . . ,n
}
. ()

We assume that

there exist disjoint subintervals [ai,bi] of the interval (a,b) such that
a < · · · < ap,ai ≤ γi(x)≤ bi for i = , . . . ,p,x ∈A,

}

()

for each i = , . . . ,p, j = , . . . ,n, there exists λij ∈ [,∞) such that
for each x = (x, . . . ,xn)T , y = (y, . . . , yn)T ∈A,
|γi(x) – γi(y)| ≤ ∑n

j= λij|xj – yj|.

⎫
⎪⎬

⎪⎭
()

Further we choose positive real numbers ρj, j = , . . . ,n, and assume that

n∑

j=

λijρj <  for i = , . . . ,p. ()

Under conditions ()-(), which we call transversality conditions, we define the set

B =
{
v = (v, . . . , vn)T ∈W

,∞(
[a,b];Rn) : ‖vj‖∞ < μj,

∥
∥v′

j
∥
∥∞ < ρj, j = , . . . ,n

}
. ()

In Section  we define an operator G (cf. ()) whose fixed point (u, . . . ,up+) is used
for the construction of a solution z of problem ()-() (cf. ()). In order to get a correct
definition ofG weneed to describe intersection point t of a function v ∈ Bwith the barriers
γi, i = , . . . ,p. These intersection points are roots of the functions γi(v(t)) – t, and their
uniqueness is stated in Lemma .

Lemma  Letμj ∈ R,A be given by (), and let λij, ρj and γi, j = , . . . ,n, i = , . . . ,p, satisfy
(), () and (). Finally, let B be given by (). Then for each v ∈ B the functions

σi(t) = γi
(
v(t)

)
– t, t ∈ [a,b], i = , . . . ,p,

are continuous and decreasing on [a,b] and they have unique roots in the interval (a,b),
i.e. for i ∈ {, . . . ,p} there exists a unique solution of the equation

t = γi
(
v(t)

)
. ()

http://www.boundaryvalueproblems.com/content/2014/1/172
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Proof Let v ∈ B, i ∈ {, . . . ,p}. By (),

σi(a) = γi
(
v(a)

)
– a > ,

σi(b) = γi
(
v(b)

)
– b < 

are valid. This together with the fact that σ is continuous on [a,b] shows that σ has at
least one root in (a,b). Now, we will prove that σ is decreasing, by a contradiction. Let
s, s ∈ (a,b), s < s be such that

σi(s) = σi(s),

i.e.

γi
(
v(s)

)
– γi

(
v(s)

)
= s – s.

From () and () we obtain

 < |s – s| =
∣∣γi

(
v(s)

)
– γi

(
v(s)

)∣∣

≤
n∑

j=

λij
∣∣vj(s) – vj(s)

∣∣ ≤
n∑

j=

λij

∣
∣∣
∣

∫ s

s
v′
j(ξ ) dξ

∣
∣∣
∣

≤
n∑

j=

λij
∥
∥v′

j
∥
∥∞|s – s| ≤

n∑

j=

λijρj|s – s|.

This contradicts (). Therefore () has a unique solution. �

According to Lemma , for i ∈ {, . . . ,p} and v ∈ B, there exists a unique point (τi, v(τi)) ∈
[a,b] × [–μi,μi] which is an intersection point of the graph of v with the graph of the
barrier γi. Therefore we define a functional Pi : B → (a,b) by

Piv = τi, v ∈ B, i = , . . . ,p, ()

where τi is a solution of (), i.e. a unique root of the function σi from Lemma , for i =
, . . . ,p.
Since solutions are affected by impulses at the points τi, the functionals Pi, i = , . . . ,p,

are used in the definition of the operator G (cf. ()), it is important to prove their prop-
erties which are presented in Lemma  and Corollary  and which are necessary for the
compactness of G (cf. Lemma ).

Lemma  Let the assumptions of Lemma  be satisfied. Then for each i ∈ {, . . . ,p} there
exists a constant C ≥  such that for every v, ṽ ∈ B

|Piv –Piṽ| ≤ C‖v – ṽ‖∞.

Proof Let i ∈ {, . . . ,p}, v, ṽ ∈ B. Let us denote

τ =Piv, τ̃ =Piṽ.

http://www.boundaryvalueproblems.com/content/2014/1/172
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Then from () and () we get

|τ – τ̃ | = ∣∣γi
(
v(τ )

)
– γi

(
ṽ(τ̃ )

)∣∣ ≤
n∑

j=

λij
∣∣vj(τ ) – ṽj(τ̃ )

∣∣

≤
n∑

j=

λij
∣
∣vj(τ ) – ṽj(τ )

∣
∣ +

n∑

j=

λij
∣
∣ṽj(τ ) – ṽj(τ̃ )

∣
∣

≤
n∑

j=

λij‖v – ṽ‖∞ +
n∑

j=

λij

∣∣∣
∣

∫ τ

τ̃

ṽ′
j(s) ds

∣∣∣
∣

≤
n∑

j=

λij‖v – ṽ‖∞ +
n∑

j=

λijρj|τ – τ̃ |.

Subtracting the second term from the right-hand side of the inequality we obtain

|τ – τ̃ | –
n∑

j=

λijρj|τ – τ̃ | ≤
n∑

j=

λij‖v – ṽ‖∞

and using () we arrive at

|τ – τ̃ | ≤
∑n

j= λij

 –
∑n

j= λijρj
‖v – ṽ‖∞,

which is the desired inequality. �

Corollary  Let the assumptions of Lemma  be satisfied. Then the functionals Pi, i =
, . . . ,p, which are given by (), are continuous on B in the norm ofW,∞([a,b];Rn).

4 Fixed point problem
Themain result of this section is contained in Theorem , where we present a connection
between a (discontinuous) solution z of problem ()-() and a fixed point of some operator
G which operates on ordered (p + )-tuples (u, . . . ,up+) of absolutely continuous vector
functions. We work with the product space

X =
(
W

,∞(
[a,b];Rn))p+,

where for u ∈ X we write u = (u, . . . ,up+) and uk = (uk,, . . . ,uk,n)T , k = , . . . ,p + . The
sequence of elements of X is denoted as {um}∞m=; and the sequence of its kth components
as {umk }∞m=. The space X is equipped with the norm

∥
∥(u, . . . ,up+)

∥
∥
X =

p+∑

k=

‖uk‖,∞ for (u, . . . ,up+) ∈ X.

It is well known that X is a Banach space. For the construction of a fixed point problem
we need the set

� = Bp+ ⊂ X, ()

http://www.boundaryvalueproblems.com/content/2014/1/172
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where B is defined in () with constants μj, ρj, j = , . . . ,n, satisfying the assumptions of
Lemma .
Now, assume that the matrix K from () fulfills

detK 	= , ()

and consider an operator F∗ :� → (C([a,b];Rn))p+ defined by

(
F∗u

)
k(t) =

∫ b

a
G(t, s)

p+∑

i=

χ(τi–,τi)(s)f
(
s,ui(s)

)
ds +

p∑

i=k

G(t, τi)Ji
(
τi,ui(τi)

)

+
k–∑

i=

G(t, τi)Ji
(
τi,ui(τi)

)
+ Y (t)

[
�(Y )

]–c ()

for k = , . . . ,p + , t ∈ [a,b], where

τi =Piui for i = , . . . ,p, τ = a, τp+ = b, ()

and Pi : B → (a,b), i = , . . . ,p, are continuous functionals from Corollary . Here G, G,
Y , �(Y ) take values fromRemark . Then (F∗u)k ∈C([a,b];Rn), for k = , . . . ,p+. Assume
in addition that f is essentially bounded, that is,

there exists f̄ ∈R such that
∣∣f (t,x)

∣∣ ≤ f̄ for a.e. t ∈ [a,b], all x ∈R
n. ()

Then the operator F∗ maps � to X. Unfortunately, F∗ is not compact on �. We can
overcome this obstacle by redefining the operator F∗ by means of an operator G :� → X
given by

(Gu)k(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(F∗u)k(τk–) +
∫ t
τk–

f (s,uk(s)) ds for t < τk–,

(F∗u)k(t) for τk– ≤ t ≤ τk ,

(F∗u)k(τk) +
∫ t
τk
f (s,uk(s)) ds for t > τk ,

()

where t ∈ [a,b], k = , . . . ,p + , and τk are defined by (). As we will show this will be
enough for our needs (cf. Theorem ).

Remark  The important property of the operator G is that for u = (u, . . . ,up+) ∈ � we
have

(Gu)′k(t) = f
(
t,uk(t)

)
for a.e. t ∈ [a,b],k = , . . . ,p + .

Let us note that for k ∈ {, . . . ,p + } the operator F∗ satisfies this identity only on the
interval (τk–, τk), because

(
F∗u

)′
k(t) =

p+∑

i=

χ(τi–,τi)(t)f
(
t,ui(t)

)
for a.e. t ∈ [a,b].

This fact obstructs the compactness of the operator F∗ in X.
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Consider A from (), and assume

γi
(
x + Ji(t,x)

) ≤ γi(x) for all (t,x) ∈ [a,b]×A, i = , . . . ,p. ()

Then we are ready to prove the following theorem.

Theorem  Let the assumptions of Lemma  and conditions (), () and () hold. If
u = (u, . . . ,up+) is a fixed point of the operator G , then a function z defined by

z(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t), t ∈ [a,Pu],

u(t), t ∈ (Pu,Pu],

. . . ,

up+(t), t ∈ (Ppup,b]

()

is a solution of problem ()-().Here Pi : B → (a,b), i = , . . . ,p, are continuous functionals
from Corollary .

Proof Let B be defined by () and � = Bp+. Further, let u = (u, . . . ,up+) ∈ � be a fixed
point of the operator G . Then for each i ∈ {, . . . ,p}we have ui ∈ B and hence, by Lemma ,
there exists a unique solution τi =Piui of the equation t = γi(ui(t)). Due to () the inequal-
ities

a = τ < τ < τ < · · · < τp < τp+ = b

are valid. Let us consider z defined by (). We will prove that z is a fixed point of the
operator F from Theorem , taking

ti = τi and Ji
(
τi, z(τi)

)
in place of Ji

(
z(ti)

)
, i = , . . . ,p. ()

Let us denote

I = [a, τ], I = (τ, τ], I = (τ, τ], . . . , Ip+ = (τp,b].

Let us choose k ∈ {, . . . ,p + } and consider t ∈ Ik . Then

z(t) = uk(t)

=
p+∑

i=

∫ τi

τi–

G(t, s)f
(
s,ui(s)

)
ds +

p∑

i=k

G(t, τi)Ji
(
τi,ui(τi)

)

+
k–∑

i=

G(t, τi)Ji
(
τi,ui(τi)

)
+ Y (t)

[
�(Y )

]–c

=
p+∑

i=

∫ τi

τi–

G(t, s)f
(
s, z(s)

)
ds +

p∑

i=k

G(t, τi)Ji
(
τi, z(τi)

)

+
k–∑

i=

G(t, τi)Ji
(
τi, z(τi)

)
+ Y (t)

[
�(Y )

]–c.
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Of course,

p+∑

i=

∫ τi

τi–

G(t, s)f
(
s, z(s)

)
ds =

∫ b

a
G(t, s)f

(
s, z(s)

)
ds.

Let i ∈N be such that k ≤ i ≤ p. Then t ≤ τk ≤ τi and therefore Remark  yields

G(t, τi) =G(t, τi).

Let i ∈N be such that  ≤ i < k (such i exists only if k > ). Then t > τk– ≥ τi and Remark 
gives

G(t, τi) =G(t, τi).

These facts imply that

p∑

i=k

G(t, τi)Ji
(
τi, z(τi)

)
+

k–∑

i=

G(t, τi)Ji
(
τi, z(τi)

)
=

p∑

i=

G(t, τi)Ji
(
τi, z(τi)

)
.

Consequently, by virtue of Theorem , z is a solution of problem ()-() with A ≡  and
(). The function z satisfies () a.e. on [a,b] and fulfills the boundary condition (). In
addition, since z fulfills the impulse conditions () with ti = τi, and Ji(τi, z(τi)) in place of
Ji(z(ti)), where τi = γi(ui(τi)) = γi(z(τi)), i = , . . . ,p, we see that z fulfills (). It remains to
prove that τ, . . . , τp are the only instants at which the function z crosses the barriers t =
γ(x), . . . , t = γp(x), respectively. To this aim, due to () and () it suffices to prove that

t 	= γi
(
ui+(t)

)
for all t ∈ (τi,b], i = , . . . ,p.

Choose an arbitrary i ∈ {, . . . ,p} and consider σi from Lemma  for v = ui+, i.e.

σi(t) = γi
(
ui+(t)

)
– t, t ∈ [a,b].

Since z fulfills () we have

ui+(τi+) = z(τi+) = z(τi) + Ji
(
τi, z(τi)

)

and according to () we get

σi(τi+) = γi
(
ui+(τi+)

)
– τi = γi

(
z(τi) + Ji

(
τi, z(τi)

))
– τi

≤ γi
(
z(τi)

)
– τi = σi(τi) = .

Since σi is decreasing on [a,b] we have

σi(t) < σi(τi+)≤  for all t ∈ (τi,b]. �

http://www.boundaryvalueproblems.com/content/2014/1/172
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5 Existence results
Properties of the operator G which is defined by (), (), and (), in particular its com-
pactness and the existence of its fixed point, will be proved in this section. Then the exis-
tence of a solution of problem ()-() will follow (cf. Theorem ). Besides the conditions
from Section  we assume in addition that

there exists J̄i, i = , . . . ,p, such that
∣∣Ji(t,x)

∣∣ ≤ J̄i for all (t,x) ∈ [a,b]×R
n, ()

∀ε >  ∃δ >  ∀x, y ∈A: |x – y| < δ ⇒ ∥
∥f (·,x) – f (·, y)∥∥∞ < ε, ()

V ∈C
(
[ai,bi];Rn×n), i = , . . . ,p. ()

Here A is from () and [ai,bi], i = , . . . ,p, are from ().

Lemma  Let the assumptions of Lemma  and conditions (), (), (), (), (), and
() be fulfilled. Let G be defined by (), (), and (). Then for each ε >  there exists
δ >  such that each u, ũ ∈ � satisfy

p+∑

i=

‖ũi – ui‖∞ < δ ⇒ ∥
∥(Gũ)k – (Gu)k

∥
∥
,∞ < ε, k = , . . . ,p + . ()

Proof Consider ũ = (ũ, . . . , ũp+),u = (u, . . . ,up+) ∈ � and denote

ỹ = (ỹ, . . . , ỹp+) =
(
(Gũ), . . . , (Gũ)p+

)
,

y = (y, . . . , yp+) =
(
(Gu), . . . , (Gu)p+

)
,

x̃ = (x̃, . . . , x̃p+) =
((
F∗ũ

)
, . . . ,

(
F∗ũ

)
p+

)
,

x = (x, . . . ,xp+) =
((
F∗u

)
, . . . ,

(
F∗u

)
p+

)
,

where F∗ is defined in (). Let us choose a fixed k ∈ {, . . . ,p + }.
Step . According to Remark  we have

ỹ′
k(t) = (Gũ)′k(t) = f

(
t, ũk(t)

)
,

y′
k(t) = (Gu)′k(t) = f

(
t,uk(t)

)
for a.e. t ∈ [a,b].

()

By () and () we have

∀ε̃ >  ∃δ̃ >  ∀ũ,u ∈ �: ‖ũk – uk‖∞ < δ̃ ⇒ ∥
∥ỹ′

k – y′
k
∥
∥∞ < ε̃. ()

Denote (cf. ())

τ̃i =Piũi, τi =Piui, i = , . . . ,p, τ̃ = τ = a, τ̃p+ = τp+ = b.

By Lemma , we have

∀ε̃ >  ∃δ̃ >  ∀ũ,u ∈ �: ‖ũi – ui‖∞ < δ̃ ⇒ |τ̃i – τi| < ε̃, i = , . . . ,p. ()

http://www.boundaryvalueproblems.com/content/2014/1/172
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Choose an arbitrary ε > . By (), there exists δ >  such that for each ũ,u ∈ �

‖ũk – uk‖∞ < δ ⇒ ∥∥ỹ′
k – y′

k
∥∥∞ <

ε


. ()

For t ∈ [a,b] we have

ỹk(t) = ỹk(τ̃k) +
∫ t

τ̃k

ỹ′
k(s) ds, yk(t) = yk(τk) +

∫ t

τk

y′
k(s) ds,

and therefore, by (),

∣∣ỹk(t) – yk(t)
∣∣ ≤ ∣∣ỹk(τ̃k) – yk(τk)

∣∣ +
∣
∣∣
∣

∫ t

τ̃k

ỹ′
k(s) ds –

∫ t

τk

y′
k(s) ds

∣
∣∣
∣

≤ ∣
∣x̃k(τ̃k) – xk(τk)

∣
∣ +

∣∣
∣∣

∫ t

τk

∣
∣ỹ′

k(s) – y′
k(s)

∣
∣ds

∣∣
∣∣ +

∣∣
∣∣

∫ τk

τ̃k

∣
∣ỹ′

k(s)
∣
∣ds

∣∣
∣∣.

Then, using () and (), we get

‖ỹk – yk‖∞ ≤ ∣
∣x̃k(τ̃k) – xk(τk)

∣
∣ + (b – a)

∥
∥ỹ′

k – y′
k
∥
∥∞ + |τ̃k – τk|f̄ .

Due to () and () there exists δ ∈ (, δ) such that for each ũ,u ∈ �

‖ũk – uk‖∞ < δ ⇒ (b – a)
∥∥ỹ′

k – y′
k
∥∥∞ + |τ̃k – τk|f̄ < ε


. ()

It remains to discuss the expression |x̃k(τ̃k) – xk(τk)|. We have

x̃k(τ̃k) – xk(τk) =
p+∑

i=

(∫ τ̃i

τ̃i–

G(τ̃k , s)f
(
s, ũi(s)

)
ds –

∫ τi

τi–

G(τk , s)f
(
s,ui(s)

)
ds

)

+
p∑

i=k

(
G(τ̃k , τ̃i)Ji

(
τ̃i, ũi(τ̃i)

)
–G(τk , τi)Ji

(
τi,ui(τi)

))

+
k–∑

i=

(
G(τ̃k , τ̃i)Ji

(
τ̃i, ũi(τ̃i)

)
–G(τk , τi)Ji

(
τi,ui(τi)

))
. ()

Step . Treating the first term on the right-hand side of equality () we have

p+∑

i=

(∫ τ̃i

τ̃i–

G(τ̃k , s)f
(
s, ũi(s)

)
ds –

∫ τi

τi–

G(τk , s)f
(
s,ui(s)

)
ds

)

=
p+∑

i=

(∫ τi

τi–

[
G(τ̃k , s)f

(
s, ũi(s)

)
–G(τk , s)f

(
s,ui(s)

)]
ds

+
∫ τi–

τ̃i–

G(τ̃k , s)f
(
s, ũi(s)

)
ds +

∫ τ̃i

τi

G(τ̃k , s)f
(
s, ũi(s)

)
ds

)

=
p+∑

i=

(∫ τi

τi–

G(τ̃k , s)
(
f
(
s, ũi(s)

)
– f

(
s,ui(s)

))
ds
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+
∫ τi

τi–

(
G(τ̃k , s) –G(τk , s)

)
f
(
s,ui(s)

)
ds

)

+
p+∑

i=

(∫ τi–

τ̃i–

G(τ̃k , s)f
(
s, ũi(s)

)
ds +

∫ τ̃i

τi

G(τ̃k , s)f
(
s, ũi(s)

)
ds

)
.

The functionG is bounded on [a,b]× [a,b]; it follows from () that there exists δ ∈ (, δ)
such that for each ũ,u ∈ �

p+∑

i+

‖ũi – ui‖∞ < δ ⇒
p+∑

i=

∫ τi

τi–

∣
∣G(τ̃k , s)

(
f
(
s, ũi(s)

)
– f

(
s,ui(s)

))∣∣ds <
ε


. ()

In view of Remark 

∫ b

a

∣
∣G(τ̃k , s) –G(τk , s)

∣
∣ds =

∫ b

a

∣
∣χ[a,τ̃k )(s) – χ[a,τk )(s)

∣
∣ds = |τ̃k – τk|,

and therefore, by () and (), there exists δ ∈ (, δ) such that for each ũ,u ∈ �

p+∑

i=

‖ũi – ui‖∞ < δ ⇒
p+∑

i=

∫ τi

τi–

∣
∣G(τ̃k , s) –G(τk , s)

∣
∣
∣
∣f

(
s,ui(s)

)∣∣ds <
ε


. ()

Similarly, sinceG is bounded on [a,b]× [a,b] and f fulfills (), we can find α >  satisfying

p+∑

i=

∣
∣∣
∣

∫ τi–

τ̃i–

G(τ̃i, s)f
(
s, ũi(s)

)
ds +

∫ τ̃i

τi

G(τ̃k , s)f
(
s, ũi(s)

)
ds

∣
∣∣
∣

< α

p+∑

i=

(|τ̃i– – τi–| + |τ̃i – τi|
)
.

Consequently, by (), there exists δ ∈ (, δ) such that for each ũ,u ∈ �

p+∑

i=

‖ũi – ui‖∞ < δ

⇒
p+∑

i=

∣∣∣
∣

∫ τi–

τ̃i–

G(τ̃i, s)f
(
s, ũi(s)

)
ds +

∫ τ̃i

τi

G(τ̃k , s)f
(
s, ũi(s)

)
ds

∣∣∣
∣ <

ε


. ()

Step . Finally we discuss the second and third term on the right-hand side of equality
(). According to Remark , we have

G(τ̃k , τ̃i) –G(τk , τi) = –K–V (τ̃i) +K–V (τi) = –K–(V (τ̃i) –V (τi)
)
,

G(τ̃k , τ̃i) –G(τk , τi) = –K–V (τ̃i) + E –
(
–K–V (τi) + E

)
= –K–(V (τ̃i) –V (τi)

)
.

Therefore, due to the uniform continuity of Ji, i = , . . . ,p, on [a,b] × A (cf. () and ()),
the uniform continuity ofV on [ai,bi], i = , . . . ,p (cf. () and ()) and by (), there exists
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δ ∈ (, δ) such that for each ũ,u ∈ �

p+∑

i=

‖ũi – ui‖∞ < δ ⇒
p∑

i=k

∣
∣G(τ̃k , τ̃i)Ji

(
τ̃i, ũi(τ̃i)

)
–G(τk , τi)Ji

(
τi,ui(τi)

)∣∣ <
ε


, ()

p+∑

i=

‖ũi – ui‖∞ < δ ⇒
k–∑

i=

∣
∣G(τ̃k , τ̃i)Ji

(
τ̃i, ũi(τ̃i)

)
–G(τk , τi)Ji

(
τi,ui(τi)

)∣∣ <
ε


. ()

Relations (), (), (), (), (), (), and () imply (). �

Lemma  Let the assumptions of Lemma  be fulfilled. Then the operator G defined by
(), (), and () is compact on �.

Proof First, we prove the continuity of G . Choose ε > . Then there exists δ >  such that
each u, ũ ∈ � satisfy (). Since ‖ũi – ui‖∞ ≤ ‖ũi – ui‖,∞, i = , . . . ,p + , each u, ũ ∈ �

satisfy

p+∑

i=

‖ũi – ui‖,∞ < δ ⇒ ∥
∥(Gũ)k – (Gu)k

∥
∥
,∞ < ε, k = , . . . ,p + .

Now, we prove the relative compactness of the set G(�). Let {ym}∞m= be a sequence of
elements from the set G(�). Then there exists a sequence {um}∞m= ⊂ � such that ym =
G(um) for everym ∈N. Since umi ∈ B, we have (cf. ())

∥∥umi
∥∥∞ ≤ μi,

∥∥(
umi

)′∥∥∞ ≤ ρi

for each i = , . . . ,p + ,m ∈N. This implies

∣∣umi (t) – umi (t)
∣∣ =

∣
∣∣∣

∫ t

t

(
umi

)′(s) ds
∣
∣∣∣ ≤ ρi|t – t|.

The Arzelà-Ascoli theorem and the diagonalization principle give the existence of a sub-
sequence which is convergent in the ‖ · ‖∞-norm. Let us denote it as {uν}∞ν=. Then, by
Lemma , for each ε >  there exist δ >  and ν ∈ N such that for each ν ∈ N, ν ≥ ν the
inequality

∑p+
i= ‖uν

i – uν
i ‖∞ < δ holds, and consequently, by (),

ν ≥ ν ⇒ ∥∥(
Guν

)
k –

(
Guν

)
k

∥∥
,∞ < ε, k = , . . . ,p + .

Therefore there exists a subsequence {yν}∞ν= ⊂ {ym}∞m= which is convergent in X. �

Theorem  Assume that () and () hold and that numbers μj, ρj, j = , . . . ,n, satisfy

μj ≥
∣∣K–∣∣ sup

s∈[a,b]

∣∣V (s)
∣∣f̄ (b – a) + f̄ (b – a)

+
∣∣K–∣∣ sup

s∈[a,b]

∣∣V (s)
∣∣

p∑

k=

J̄k +
p∑

k=

J̄k +
∣∣K–c

∣∣,

ρj ≥ f̄ , j = , . . . ,n.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

()
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Define setsA, B and� by (), (), and (), respectively, and assume that conditions (),
(), (), (), (), and () hold. Then the operator G has a fixed point in �.

Proof It suffices to show that G(�) ⊂ �. Let u ∈ � and x =F∗u, y = G(u) (cf. () and ()).
That is x = (x, . . . ,xp+) and y = (y, . . . , yp+), where yi = (yi,, . . . , yi,n)T for i = , . . . ,p + .
Choose j ∈ {, . . . ,n}, i ∈ {, . . . ,p + }. Having in mind (), we get by (), (), (), and
Remark 

∣∣yi,j(t)
∣∣ ≤ ∣∣yi(t)

∣∣

≤ ∣
∣K–∣∣ sup

s∈[a,b]

∣
∣V (s)

∣
∣f̄ (b – a) + f̄ (b – a)

+
∣
∣K–∣∣ sup

s∈[a,b]

∣
∣V (s)

∣
∣

p∑

k=

J̄k +
p∑

k=

J̄k +
∣
∣K–c

∣
∣

≤ μj – f̄ (b – a) for t ∈ [τi–, τi],

∣∣yi,j(t)
∣∣ ≤ ∣∣yi(t)

∣∣ ≤ ∣∣xi(τi–)
∣∣ +

∣
∣∣∣

∫ t

τi–

f
(
s,ui(s)

)
ds

∣
∣∣∣

≤ ∣∣yi(τi–)
∣∣ + f̄ (b – a)≤ μj for t < τi–,

∣∣yi,j(t)
∣∣ ≤ ∣∣yi(t)

∣∣ ≤ ∣∣xi(τi)
∣∣ +

∣
∣∣
∣

∫ t

τi

f
(
s,ui(s)

)
ds

∣
∣∣
∣

≤ ∣∣yi(τi)
∣∣ + f̄ (b – a)≤ μj for t > τi.

Therefore

‖yi,j‖∞ ≤ μj, j = , . . . ,n, i = , . . . ,p + .

From () and Remark  we have

∣∣y′
i,j(t)

∣∣ ≤ ∣∣y′
i(t)

∣∣ =
∣∣f

(
t,ui(t)

)∣∣ ≤ f̄ for a.e. t ∈ [a,b],

which yields, due to (),

∥∥y′
i,j
∥∥∞ ≤ ρj, j = , . . . ,n, i = , . . . ,p + .

Consequently, by virtue of (), yi ∈ B for i = , . . . ,p + , that is, y ∈ �. �

Theorems  and  give an existence result for problem ()-().

Theorem  Under the assumptions of Theorem  problem ()-() has at least one solu-
tion z such that

‖z‖∞ ≤ max{μ, . . . ,μn}.
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