# **RESEARCH ARTICLE**

**Open Access** 

# Fixed point problem associated with state-dependent impulsive boundary value problems

Irena Rachůnková<sup>\*</sup> and Jan Tomeček

\*Correspondence: irena.rachunkova@upol.cz Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc, 771 46, Czech Republic

# Abstract

The paper investigates a fixed point problem in the space  $(\mathbb{W}^{1,\infty}([a, b]; \mathbb{R}^n))^{p+1}$  which is connected to boundary value problems with state-dependent impulses of the form z'(t) = f(t, z(t)), a.e.  $t \in [a, b] \subset \mathbb{R}$ ,  $z(\tau_i+) - z(\tau_i) = J_i(\tau_i, z(\tau_i))$ ,  $\ell(z) = c_0$ . Here, the impulse instants  $\tau_i$  are determined as solutions of the equations  $\tau_i = \gamma_i(z(\tau_i))$ , i = 1, ..., p. We assume that  $n, p \in \mathbb{N}$ ,  $c_0 \in \mathbb{R}^n$ , the vector function f satisfies the Carathéodory conditions on  $[a, b] \times \mathbb{R}^n$ , the impulse functions  $J_i$ , i = 1, ..., p, are continuous on  $[a, b] \times \mathbb{R}^n$ , and the barrier functions  $\gamma_i$ , i = 1, ..., p, are continuous on  $\mathbb{R}^n$ . The operator  $\ell$  is an arbitrary linear and bounded operator on the space of left-continuous regulated on [a, b] vector valued functions and is represented by the Kurzweil-Stieltjes integral. Provided the data functions f and  $J_i$  are bounded, transversality conditions which guarantee that this fixed point problem is solvable are presented. As a result it is possible to realize the construction of a solution of the above impulsive problem. **MSC:** 34B37; 34B10; 34B15

**Keywords:** system of ODEs of the first order; state-dependent impulses; general linear boundary conditions; transversality conditions; fixed point problem

# **1** Introduction

In the literature most of impulsive boundary value problems deals with impulses at fixed times. This is the case that moments, where impulses act in state variables, are known (*cf.* Section 2). The theory of these impulsive problems is widely developed and presents direct analogies with methods and results for problems without impulses. Important texts in this area are [1-6].

A different situation arises, when impulse moments satisfy a predetermined relation between state and time variables, see *e.g.* [7–12]. This case, which is represented by statedependent impulses, is studied here, where we are interested in a system of n ( $n \in \mathbb{N}$ ) nonlinear ordinary differential equations of the first order with state-dependent impulses and general linear boundary conditions on the interval  $[a, b] \subset \mathbb{R}$ . The main reason that boundary value problems with state-dependent impulses are developed significantly less than those with impulses at fixed moments is that new difficulties with an operator representation of the problem appear when examining state-dependent impulses (*cf.* Section 4). Therefore almost all existence results for boundary value problems with state-dependent impulses have been reached for periodic problems which can be transformed to fixed point problems of corresponding Poincaré maps in  $\mathbb{R}^n$ . Hence, the difficulties with the



© 2014 Rachůnková and Tomeček; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. construction of a functional space and an operator have been cleared in the periodic case. See *e.g.* [13–16]. Other types of boundary value problems with state-dependent impulses have been studied very rarely, see [17, 18].

In this paper we construct and investigate a fixed point problem in some subset  $\overline{\Omega}$  of the product space  $(\mathbb{W}^{1,\infty}([a,b];\mathbb{R}^n))^{p+1}$  and we provide conditions for its solvability (*cf.* Section 4 and Theorem 14). The existence of such fixed point allows us to construct a solution of the system of differential equations

$$z'(t) = f(t, z(t)), \quad \text{a.e. } t \in [a, b] \subset \mathbb{R},$$
(1)

subject to the state-dependent impulse conditions

$$z(\tau_i+) - z(\tau_i) = J_i(\tau_i, z(\tau_i)), \quad \text{where } \tau_i = \gamma_i(z(\tau_i)), i = 1, \dots, p,$$
(2)

and the general linear boundary condition

$$\ell(z) = c_0. \tag{3}$$

For nonzero impulse functions  $J_i$ , i = 1, ..., p, this solution is discontinuous on [a, b] and, since discontinuity points  $\tau_i$ , i = 1, ..., p, are not fixed and depend on the solution through (2), such a solution has to be searched in the space  $\mathbb{G}_L([a, b]; \mathbb{R}^n)$ ; see the notation below. Note that conditions which guarantee the solvability of problem (1)-(3) have not been known before. Some results for special cases of problem (1)-(3) can be found in our previous papers [19–24].

In what follows we use this notation. Let  $k, m, n \in \mathbb{N}$ . By  $\mathbb{R}^{n \times m}$  we denote the set of all matrices of the type  $n \times m$  with real valued coefficients equipped with the matrix norm

$$|A| = \max_{k \in \{1,...,n\}} \sum_{j=1}^{m} |a_{kj}| \text{ for } A = (a_{kj})_{k,j=1}^{n,m} \in \mathbb{R}^{n \times m}.$$

Let  $A^T$  denote the transpose of  $A \in \mathbb{R}^{n \times m}$ . Let  $\mathbb{R}^n = \mathbb{R}^{n \times 1}$  be the set of all *n*-dimensional column vectors  $c = (c_1, \ldots, c_n)^T$ , where  $c_k \in \mathbb{R}, k = 1, \ldots, n$ , and  $\mathbb{R} = \mathbb{R}^{1 \times 1}$ . The (vector) norm of  $\mathbb{R}^n$  is a special case of the norm of  $\mathbb{R}^{n \times m}$ , *i.e.* it has the form

$$|x| = \max_{k \in \{1,...,n\}} |x_k|$$
 for  $x = (x_1, ..., x_n)^T \in \mathbb{R}^n$ .

It is well known that

$$|Ax| \le |A||x|$$
 for each  $A \in \mathbb{R}^{n \times n}$ ,  $x \in \mathbb{R}^n$ .

By  $\mathbb{C}([a,b] \times \mathbb{R}^n; \mathbb{R}^n)$ ,  $\mathbb{C}([\alpha,\beta]; \mathbb{R}^{n \times m})$  (with  $-\infty < \alpha < \beta < \infty$ ),  $\mathbb{C}(\mathbb{R}^n; \mathbb{R}^m)$  we denote the set of all mappings  $x : [a,b] \times \mathbb{R}^n \to \mathbb{R}^n$ ,  $x : [\alpha,\beta] \to \mathbb{R}^{n \times m}$ ,  $x : \mathbb{R}^n \to \mathbb{R}^m$  with continuous components, respectively. By  $\mathbb{L}^{\infty}([a,b]; \mathbb{R}^{n \times m})$ ,  $\mathbb{L}^1([a,b]; \mathbb{R}^{n \times m})$ ,  $\mathbb{G}_L([a,b]; \mathbb{R}^{n \times m})$ ,  $\mathbb{C}([a,b]; \mathbb{R}^{n \times m})$ ,  $\mathbb{BV}([a,b]; \mathbb{R}^{n \times m})$ , we denote the sets of all mappings  $F : [a,b] \to \mathbb{R}^{n \times m}$  whose components are, respectively, essentially bounded functions, Lebesgue integrable functions, left-continuous regulated functions, continuous functions and functions with

bounded variation on the interval [a, b]. Let us note that the norm in the linear space  $\mathbb{L}^{\infty}([a, b]; \mathbb{R}^{n \times m})$  is taken as

$$\|F\|_{\infty} = \max_{k \in \{1,...,n\}} \sum_{j=1}^{m} \operatorname{ess\,sup}_{t \in [a,b]} \left| f_{kj}(t) \right| \quad \text{for } F = (f_{kj})_{k,j=1}^{n,m} \in \mathbb{L}^{\infty} ([a,b]; \mathbb{R}^{n \times m}),$$

especially, in  $\mathbb{L}^{\infty}([a, b]; \mathbb{R}^n)$ 

$$||u||_{\infty} = \max_{k \in \{1,...,n\}} \operatorname{ess sup}_{t \in [a,b]} |u_k(t)| \quad \text{for } u = (u_1,...,u_n)^T \in \mathbb{L}^{\infty}([a,b];\mathbb{R}^n).$$

We will make use of the Sobolev space  $\mathbb{W}^{1,\infty}([a,b];\mathbb{R}^n)$ , which is the linear space of vector functions, whose components are absolutely continuous having essentially bounded first derivatives on [a,b], equipped with the norm

$$\|u\|_{1,\infty} = \|u\|_{\infty} + \|u'\|_{\infty} \quad \text{for } u \in \mathbb{W}^{1,\infty}\big([a,b];\mathbb{R}^n\big).$$

By Car( $[a, b] \times \mathbb{R}^n; \mathbb{R}^n$ ) we denote the set of all mappings  $f : [a, b] \times \mathbb{R}^n \to \mathbb{R}^n$  satisfying the Carathéodory conditions on the set  $[a, b] \times \mathbb{R}^n$ . Finally, by  $\chi_M$  we denote the characteristic function of the set  $M \subset \mathbb{R}$ .

Note that a mapping  $u : [a,b] \to \mathbb{R}^n$  is left-continuous regulated on [a,b] if for each  $t \in (a,b]$  and each  $s \in [a,b)$ 

$$u(t) = u(t-) = \lim_{\tau \to t-} u(\tau) \in \mathbb{R}^n, \qquad u(s+) = \lim_{\tau \to s+} u(\tau) \in \mathbb{R}^n$$

 $\mathbb{G}_{L}([a, b]; \mathbb{R}^{n})$  is a linear space and equipped with the sup-norm  $\|\cdot\|_{\infty}$  it is a Banach space (see [25], Theorem 3.6). In particular, we set

$$||u||_{\infty} = \max_{k \in \{1,...,n\}} \left( \sup_{t \in [a,b]} |u_k(t)| \right) \text{ for } u = (u_1,...,u_n)^T \in \mathbb{G}_{\mathbb{L}}([a,b];\mathbb{R}^n).$$

A mapping  $f : [a, b] \times \mathbb{R}^n \to \mathbb{R}^n$  satisfies the Carathéodory conditions on  $[a, b] \times \mathbb{R}^n$  if

- $f(\cdot, x) : [a, b] \to \mathbb{R}^n$  is measurable for all  $x \in \mathbb{R}^n$ ,
- $f(t, \cdot) : \mathbb{R}^n \to \mathbb{R}^n$  is continuous for a.e.  $t \in [a, b]$ ,
- for each compact set  $K \subset \mathbb{R}^n$  there exists a function  $m_K \in \mathbb{L}^1([a, b]; \mathbb{R})$  such that  $|f(t, x)| \le m_K(t)$  for a.e.  $t \in [a, b]$  and each  $x \in K$ .

Throughout we assume that

$$n, p \in \mathbb{N}, \qquad f \in \operatorname{Car}([a, b] \times \mathbb{R}^{n}; \mathbb{R}^{n}),$$

$$c_{0} \in \mathbb{R}^{n}, \qquad J_{i} \in \mathbb{C}([a, b] \times \mathbb{R}^{n}; \mathbb{R}^{n}), \qquad \gamma_{i} \in \mathbb{C}(\mathbb{R}^{n}; \mathbb{R}), \quad i = 1, \dots, p,$$

$$\ell : \mathbb{G}_{L}([a, b]; \mathbb{R}^{n}) \to \mathbb{R}^{n} \text{ is a linear bounded operator, } i.e. \qquad (4)$$

$$\ell(z) = Kz(a) + \int_{a}^{b} V(t) \operatorname{d}[z(t)], \qquad z \in \mathbb{G}_{L}([a, b]; \mathbb{R}^{n}),$$
where  $K \in \mathbb{R}^{n \times n}, V \in \mathbb{BV}([a, b]; \mathbb{R}^{n \times n}), k = 1, \dots, n.$ 

Now let us define a solution of problem (1)-(3).

**Definition 1** A mapping  $z : [a, b] \to \mathbb{R}^n$  is a solution of problem (1)-(3) if for each  $i \in \{1, ..., p\}$  there exists a unique  $\tau_i \in (a, b)$  such that

$$\tau_i=\gamma_i\bigl(z(\tau_i)\bigr),$$

 $a < \tau_1 < \tau_2 < \cdots < \tau_p < b$ , the restrictions  $z|_{[a,\tau_1]}, z|_{(\tau_1,\tau_2]}, \dots, z|_{(\tau_p,b]}$  are absolutely continuous, z satisfies (1) for a.e.  $t \in [a, b]$  and fulfills conditions (2) and (3).

# 2 Problem with impulses at fixed times

In this section we summarize results from the paper [23], where we investigated boundary value problems having impulses at fixed times. This is the case that the barrier functions  $\gamma_i$  in (2) are constant functions, *i.e.* there exist  $t_1, \ldots, t_p \in \mathbb{R}$  satisfying  $a < t_1 < \cdots < t_p < b$  such that

$$\gamma_i(x) = t_i$$
 for  $i = 1, \ldots, p, x \in \mathbb{R}^n$ ,

and each solution of the problem crosses *i*th barrier at the same time instant  $\tau_i = t_i$  for i = 1, ..., p.

In [23], the following boundary value problem was investigated:

$$z'(t) = A(t)z(t) + f(t, z(t)), \quad \text{a.e. } t \in [a, b],$$
(5)

$$z(t_i) - z(t_i) = J_i(z(t_i)), \quad i = 1, \dots, p,$$
 (6)

$$\ell(z) = c_0,\tag{7}$$

where

$$a < t_1 < \dots < t_p < b, \qquad A \in \mathbb{L}^1([a,b]; \mathbb{R}^{n \times n}),$$

$$f \in \operatorname{Car}([a,b] \times \mathbb{R}^n; \mathbb{R}^n), \qquad J_i \in \mathbb{C}(\mathbb{R}^n; \mathbb{R}^n), \quad i = 1, \dots, p,$$

$$\ell : \mathbb{G}_{\mathrm{L}}([a,b]; \mathbb{R}^n) \to \mathbb{R}^n \text{ is a linear bounded operator,} \qquad c_0 \in \mathbb{R}^n.$$

$$(8)$$

In order to get an operator representation of this problem (*cf.* Theorem 4) the Green's matrix is constructed.

**Definition 2** ([23], Definition 7) A mapping  $G : [a, b] \times [a, b] \to \mathbb{R}^{n \times n}$  is the Green's matrix of the problem

$$z'(t) = A(t)z(t)$$
 for a.e.  $t \in [a, b], \qquad \ell(z) = 0,$  (9)

if

(a)  $G(\cdot, \tau)$  is continuous on  $[a, \tau]$  and on  $(\tau, b]$  for each  $\tau \in [a, b]$ ,

- (b)  $G(t, \cdot) \in \mathbb{BV}([a, b]; \mathbb{R}^{n \times n})$  for each  $t \in [a, b]$ ,
- (c) for any  $q \in \mathbb{L}^1([a, b]; \mathbb{R}^n)$  the mapping

$$x(t) = \int_a^b G(t,\tau)q(\tau)\,\mathrm{d}\tau, \quad t\in[a,b]$$

is a unique solution of the problem

$$z'(t) = A(t)z(t) + q(t) \quad \text{for a.e. } t \in [a, b], \qquad \ell(z) = 0.$$
(10)

Lemma 3 ([23], Lemma 8) Assume (8). Problem (10) has a unique solution if and only if

$$\det \ell(Y) \neq 0, \tag{11}$$

where Y is a fundamental matrix of the system of differential equations in (9). If (11) is valid, then there exists a Green's matrix of problem (9), which is in the form

$$G(t,\tau) = Y(t)H(\tau) + \chi_{(\tau,b]}(t)Y(t)Y^{-1}(\tau), \quad t,\tau \in [a,b],$$
(12)

where H is defined by

$$H(\tau) = -\left[\ell(Y)\right]^{-1} \left(\int_{\tau}^{b} V(s)A(s)Y(s)\,\mathrm{d}s \cdot Y^{-1}(\tau) + V(\tau)\right), \quad \tau \in [a,b],\tag{13}$$

and it has the following properties:

- (i) *G* is bounded on  $[a, b] \times [a, b]$ ,
- (ii)  $G(\cdot, \tau)$  is absolutely continuous on  $[a, \tau]$  and  $(\tau, b]$  for each  $\tau \in [a, b]$  and its columns satisfy the differential equation from (9) a.e. on [a, b],
- (iii)  $G(\tau +, \tau) G(\tau, \tau) = E$  for each  $\tau \in [a, b)$ ,
- (iv)  $G(\cdot, \tau) \in \mathbb{G}_{L}([a, b]; \mathbb{R}^{n \times n})$  for each  $\tau \in [a, b]$  and

 $\ell(G(\cdot, \tau)) = 0$  for each  $\tau \in [a, b)$ .

**Theorem 4** ([23], Theorem 11) Let (8) and (11) be satisfied and let G be given by (12) with H of (13). Then  $z \in \mathbb{G}_{L}([a,b];\mathbb{R}^{n})$  is a fixed point of an operator  $\mathcal{F} : \mathbb{G}_{L}([a,b];\mathbb{R}^{n}) \to \mathbb{G}_{L}([a,b];\mathbb{R}^{n})$  defined by

$$(\mathcal{F}z)(t) = \int_{a}^{b} G(t,s) f(s,z(s)) \, \mathrm{d}s + \sum_{i=1}^{p} G(t,t_{i}) J_{i}(z(t_{i})) + Y(t) [\ell(Y)]^{-1} c_{0}$$

for  $t \in [a, b]$ , if and only if z is a solution of problem (5)-(7). Moreover, the operator  $\mathcal{F}$  is completely continuous.

Similar results can be found also in [26, Chapter 6].

Remark 5 As in [23], we denote

$$G_1(t,\tau) = Y(t)H(\tau), \qquad G_2(t,\tau) = Y(t)(H(\tau) + Y^{-1}(\tau)),$$

i.e.

$$G(t,\tau) = G_1(t,\tau)\chi_{[a,\tau]}(t) + G_2(t,\tau)\chi_{(\tau,b]}(t) = \begin{cases} G_1(t,\tau), & a \le t \le \tau \le b, \\ G_2(t,\tau), & a \le \tau < t \le b. \end{cases}$$

**Remark 6** In the present paper we need the Green's matrix of problem (9) for  $A \equiv 0$ . Therefore Y(t) = E and  $\ell(Y) = K$ . The existence of the Green's matrix is then equivalent with the regularity of *K*, *i.e.* with the assumption det  $K \neq 0$ . If this is satisfied, then *H* from (13) is given by the formula

$$H(\tau) = -K^{-1}V(\tau), \quad \tau \in [a, b],$$

and the Green's matrix takes the form

$$G(t,\tau) = \begin{cases} -K^{-1}V(\tau), & a \le t \le \tau \le b, \\ -K^{-1}V(\tau) + E, & a \le \tau < t \le b. \end{cases}$$

In this case the matrix functions  $G_1$ ,  $G_2$  from Remark 5 are written as

$$G_1(t,\tau) = -K^{-1}V(\tau), \qquad G_2(t,\tau) = -K^{-1}V(\tau) + E, \quad t,\tau \in [a,b].$$

#### **3** Transversality conditions

Here we formulate conditions which guarantee that each possible solution of problem (1)-(3) in some region, which will be specified later (*cf.* (21)), crosses each barrier  $\gamma_i$  at the unique impulse point  $\tau_i$ , i = 1, ..., p. Consider positive real numbers  $\mu_j$ , j = 1, ..., n, and denote

$$\mathcal{A} = \left\{ (x_1, \dots, x_n)^T \in \mathbb{R}^n : |x_j| \le \mu_j, j = 1, \dots, n \right\}.$$
(14)

We assume that

there exist disjoint subintervals 
$$[a_i, b_i]$$
 of the interval  $(a, b)$  such that  
 $a_1 < \dots < a_p, a_i \le \gamma_i(x) \le b_i$  for  $i = 1, \dots, p, x \in \mathcal{A}$ ,
$$(15)$$

for each 
$$i = 1, ..., p, j = 1, ..., n$$
, there exists  $\lambda_{ij} \in [0, \infty)$  such that  
for each  $x = (x_1, ..., x_n)^T, y = (y_1, ..., y_n)^T \in \mathcal{A}$ ,  
 $|\gamma_i(x) - \gamma_i(y)| \le \sum_{j=1}^n \lambda_{ij} |x_j - y_j|.$  (16)

Further we choose positive real numbers  $\rho_i$ , j = 1, ..., n, and assume that

$$\sum_{j=1}^{n} \lambda_{ij} \rho_j < 1 \quad \text{for } i = 1, \dots, p.$$
(17)

Under conditions (14)-(17), which we call transversality conditions, we define the set

$$\mathcal{B} = \left\{ \nu = (\nu_1, \dots, \nu_n)^T \in \mathbb{W}^{1,\infty} ([a,b]; \mathbb{R}^n) : \|\nu_j\|_{\infty} < \mu_j, \|\nu_j'\|_{\infty} < \rho_j, j = 1, \dots, n \right\}.$$
(18)

In Section 4 we define an operator  $\mathcal{G}$  (*cf.* (26)) whose fixed point  $(u_1, \ldots, u_{p+1})$  is used for the construction of a solution *z* of problem (1)-(3) (*cf.* (28)). In order to get a correct definition of  $\mathcal{G}$  we need to describe intersection point *t* of a function  $v \in \overline{\mathcal{B}}$  with the barriers  $\gamma_i$ ,  $i = 1, \ldots, p$ . These intersection points are roots of the functions  $\gamma_i(v(t)) - t$ , and their uniqueness is stated in Lemma 7.

**Lemma** 7 Let  $\mu_j \in \mathbb{R}$ ,  $\mathcal{A}$  be given by (14), and let  $\lambda_{ij}$ ,  $\rho_j$  and  $\gamma_i$ , j = 1, ..., n, i = 1, ..., p, satisfy (15), (16) and (17). Finally, let  $\mathcal{B}$  be given by (18). Then for each  $v \in \overline{\mathcal{B}}$  the functions

$$\sigma_i(t) = \gamma_i(\nu(t)) - t, \quad t \in [a, b], i = 1, \dots, p,$$

are continuous and decreasing on [a,b] and they have unique roots in the interval (a,b), *i.e.* for  $i \in \{1,...,p\}$  there exists a unique solution of the equation

$$t = \gamma_i(\nu(t)). \tag{19}$$

Proof Let 
$$v \in \overline{\mathcal{B}}$$
,  $i \in \{1, \dots, p\}$ . By (15),  
 $\sigma_i(a) = \gamma_i(v(a)) - a > 0$ ,  
 $\sigma_i(b) = \gamma_i(v(b)) - b < 0$ 

are valid. This together with the fact that  $\sigma$  is continuous on [a, b] shows that  $\sigma$  has at least one root in (a, b). Now, we will prove that  $\sigma$  is decreasing, by a contradiction. Let  $s_1, s_2 \in (a, b), s_1 < s_2$  be such that

$$\sigma_i(s_1) = \sigma_i(s_2),$$

i.e.

$$\gamma_i(\nu(s_1)) - \gamma_i(\nu(s_2)) = s_1 - s_2.$$

From (16) and (18) we obtain

$$0 < |s_1 - s_2| = |\gamma_i(\nu(s_1)) - \gamma_i(\nu(s_2))|$$
  
$$\leq \sum_{j=1}^n \lambda_{ij} |\nu_j(s_1) - \nu_j(s_2)| \leq \sum_{j=1}^n \lambda_{ij} \left| \int_{s_1}^{s_2} \nu'_j(\xi) \, \mathrm{d}\xi \right|$$
  
$$\leq \sum_{j=1}^n \lambda_{ij} ||\nu'_j||_{\infty} |s_1 - s_2| \leq \sum_{j=1}^n \lambda_{ij} \rho_j |s_1 - s_2|.$$

This contradicts (17). Therefore (19) has a unique solution.

According to Lemma 7, for  $i \in \{1, ..., p\}$  and  $v \in \overline{\mathcal{B}}$ , there exists a unique point  $(\tau_i, v(\tau_i)) \in [a, b] \times [-\mu_i, \mu_i]$  which is an intersection point of the graph of v with the graph of the barrier  $\gamma_i$ . Therefore we define a functional  $\mathcal{P}_i : \overline{\mathcal{B}} \to (a, b)$  by

$$\mathcal{P}_i \nu = \tau_i, \quad \nu \in \overline{\mathcal{B}}, i = 1, \dots, p, \tag{20}$$

where  $\tau_i$  is a solution of (19), *i.e.* a unique root of the function  $\sigma_i$  from Lemma 7, for i = 1, ..., p.

Since solutions are affected by impulses at the points  $\tau_i$ , the functionals  $\mathcal{P}_i$ , i = 1, ..., p, are used in the definition of the operator  $\mathcal{G}$  (*cf.* (26)), it is important to prove their properties which are presented in Lemma 8 and Corollary 9 and which are necessary for the compactness of  $\mathcal{G}$  (*cf.* Lemma 13).

**Lemma 8** Let the assumptions of Lemma 7 be satisfied. Then for each  $i \in \{1, ..., p\}$  there exists a constant  $C \ge 0$  such that for every  $v, \tilde{v} \in \overline{B}$ 

$$|\mathcal{P}_i \nu - \mathcal{P}_i \tilde{\nu}| \le C \|\nu - \tilde{\nu}\|_{\infty}.$$

*Proof* Let  $i \in \{1, ..., p\}$ ,  $v, \tilde{v} \in \overline{\mathcal{B}}$ . Let us denote

$$\tau = \mathcal{P}_i \nu, \qquad \tilde{\tau} = \mathcal{P}_i \tilde{\nu}.$$

Then from (16) and (18) we get

$$\begin{aligned} |\tau - \tilde{\tau}| &= \left| \gamma_i \left( \nu(\tau) \right) - \gamma_i \left( \tilde{\nu}(\tilde{\tau}) \right) \right| \leq \sum_{j=1}^n \lambda_{ij} \left| \nu_j(\tau) - \tilde{\nu}_j(\tilde{\tau}) \right| \\ &\leq \sum_{j=1}^n \lambda_{ij} \left| \nu_j(\tau) - \tilde{\nu}_j(\tau) \right| + \sum_{j=1}^n \lambda_{ij} \left| \tilde{\nu}_j(\tau) - \tilde{\nu}_j(\tilde{\tau}) \right| \\ &\leq \sum_{j=1}^n \lambda_{ij} \| \nu - \tilde{\nu} \|_{\infty} + \sum_{j=1}^n \lambda_{ij} \left| \int_{\tilde{\tau}}^{\tau} \tilde{\nu}_j'(s) \, \mathrm{d}s \right| \\ &\leq \sum_{j=1}^n \lambda_{ij} \| \nu - \tilde{\nu} \|_{\infty} + \sum_{j=1}^n \lambda_{ij} \rho_j |\tau - \tilde{\tau}|. \end{aligned}$$

Subtracting the second term from the right-hand side of the inequality we obtain

$$|\tau - \tilde{\tau}| - \sum_{j=1}^{n} \lambda_{ij} \rho_j |\tau - \tilde{\tau}| \le \sum_{j=1}^{n} \lambda_{ij} \|\nu - \tilde{\nu}\|_{\infty}$$

and using (17) we arrive at

$$|\tau - \tilde{\tau}| \leq \frac{\sum_{j=1}^n \lambda_{ij}}{1 - \sum_{j=1}^n \lambda_{ij} \rho_j} \|\nu - \tilde{\nu}\|_{\infty},$$

which is the desired inequality.

**Corollary 9** Let the assumptions of Lemma 7 be satisfied. Then the functionals  $\mathcal{P}_i$ , i = 1, ..., p, which are given by (20), are continuous on  $\overline{\mathcal{B}}$  in the norm of  $\mathbb{W}^{1,\infty}([a,b];\mathbb{R}^n)$ .

## 4 Fixed point problem

The main result of this section is contained in Theorem 11, where we present a connection between a (discontinuous) solution *z* of problem (1)-(3) and a fixed point of some operator  $\mathcal{G}$  which operates on ordered (*p* + 1)-tuples ( $u_1, \ldots, u_{p+1}$ ) of absolutely continuous vector functions. We work with the product space

$$X = \left( \mathbb{W}^{1,\infty} ([a,b]; \mathbb{R}^n) \right)^{p+1},$$

where for  $u \in X$  we write  $u = (u_1, ..., u_{p+1})$  and  $u_k = (u_{k,1}, ..., u_{k,n})^T$ , k = 1, ..., p + 1. The sequence of elements of *X* is denoted as  $\{u^m\}_{m=1}^{\infty}$ ; and the sequence of its *k*th components as  $\{u_k^m\}_{m=1}^{\infty}$ . The space *X* is equipped with the norm

$$\|(u_1,\ldots,u_{p+1})\|_X = \sum_{k=1}^{p+1} \|u_k\|_{1,\infty}$$
 for  $(u_1,\ldots,u_{p+1}) \in X$ .

It is well known that X is a Banach space. For the construction of a fixed point problem we need the set

$$\Omega = \mathcal{B}^{p+1} \subset X,\tag{21}$$

where  $\mathcal{B}$  is defined in (18) with constants  $\mu_j$ ,  $\rho_j$ , j = 1, ..., n, satisfying the assumptions of Lemma 7.

Now, assume that the matrix K from (4) fulfills

$$\det K \neq 0, \tag{22}$$

and consider an operator  $\mathcal{F}^*: \overline{\Omega} \to (\mathbb{C}([a, b]; \mathbb{R}^n))^{p+1}$  defined by

$$\left(\mathcal{F}^{*}u\right)_{k}(t) = \int_{a}^{b} G(t,s) \sum_{i=1}^{p+1} \chi_{(\tau_{i-1},\tau_{i})}(s) f\left(s, u_{i}(s)\right) ds + \sum_{i=k}^{p} G_{1}(t,\tau_{i}) J_{i}(\tau_{i}, u_{i}(\tau_{i})) + \sum_{i=1}^{k-1} G_{2}(t,\tau_{i}) J_{i}(\tau_{i}, u_{i}(\tau_{i})) + Y(t) [\ell(Y)]^{-1} c_{0}$$

$$(23)$$

for  $k = 1, ..., p + 1, t \in [a, b]$ , where

$$\tau_i = \mathcal{P}_i u_i \quad \text{for } i = 1, \dots, p, \qquad \tau_0 = a, \qquad \tau_{p+1} = b,$$
(24)

and  $\mathcal{P}_i: \overline{\mathcal{B}} \to (a, b), i = 1, ..., p$ , are continuous functionals from Corollary 9. Here  $G_1, G_2, Y, \ell(Y)$  take values from Remark 6. Then  $(\mathcal{F}^*u)_k \in \mathbb{C}([a, b]; \mathbb{R}^n)$ , for k = 1, ..., p + 1. Assume in addition that f is essentially bounded, that is,

there exists 
$$\overline{f} \in \mathbb{R}$$
 such that  $|f(t,x)| \le \overline{f}$  for a.e.  $t \in [a,b]$ , all  $x \in \mathbb{R}^n$ . (25)

Then the operator  $\mathcal{F}^*$  maps  $\overline{\Omega}$  to X. Unfortunately,  $\mathcal{F}^*$  is not compact on  $\overline{\Omega}$ . We can overcome this obstacle by redefining the operator  $\mathcal{F}^*$  by means of an operator  $\mathcal{G}:\overline{\Omega} \to X$  given by

$$(\mathcal{G}u)_{k}(t) = \begin{cases} (\mathcal{F}^{*}u)_{k}(\tau_{k-1}) + \int_{\tau_{k-1}}^{t} f(s, u_{k}(s)) \, \mathrm{d}s & \text{ for } t < \tau_{k-1}, \\ (\mathcal{F}^{*}u)_{k}(t) & \text{ for } \tau_{k-1} \leq t \leq \tau_{k}, \\ (\mathcal{F}^{*}u)_{k}(\tau_{k}) + \int_{\tau_{k}}^{t} f(s, u_{k}(s)) \, \mathrm{d}s & \text{ for } t > \tau_{k}, \end{cases}$$
(26)

where  $t \in [a, b]$ , k = 1, ..., p + 1, and  $\tau_k$  are defined by (24). As we will show this will be enough for our needs (*cf.* Theorem 11).

**Remark 10** The important property of the operator G is that for  $u = (u_1, ..., u_{p+1}) \in \overline{\Omega}$  we have

$$(\mathcal{G}u)'_k(t) = f(t, u_k(t))$$
 for a.e.  $t \in [a, b], k = 1, ..., p + 1$ .

Let us note that for  $k \in \{1, ..., p + 1\}$  the operator  $\mathcal{F}^*$  satisfies this identity only on the interval  $(\tau_{k-1}, \tau_k)$ , because

$$(\mathcal{F}^*u)'_k(t) = \sum_{i=1}^{p+1} \chi_{(\tau_{i-1},\tau_i)}(t) f(t,u_i(t)) \text{ for a.e. } t \in [a,b].$$

This fact obstructs the compactness of the operator  $\mathcal{F}^*$  in *X*.

Consider  $\mathcal{A}$  from (14), and assume

$$\gamma_i(x+J_i(t,x)) \le \gamma_i(x) \quad \text{for all } (t,x) \in [a,b] \times \mathcal{A}, i=1,\ldots,p.$$
(27)

Then we are ready to prove the following theorem.

**Theorem 11** Let the assumptions of Lemma 7 and conditions (22), (25) and (27) hold. If  $u = (u_1, ..., u_{p+1})$  is a fixed point of the operator G, then a function z defined by

$$z(t) = \begin{cases} u_{1}(t), & t \in [a, \mathcal{P}_{1}u_{1}], \\ u_{2}(t), & t \in (\mathcal{P}_{1}u_{1}, \mathcal{P}_{2}u_{2}], \\ \dots, \\ u_{p+1}(t), & t \in (\mathcal{P}_{p}u_{p}, b] \end{cases}$$
(28)

*is a solution of problem* (1)-(3). *Here*  $\mathcal{P}_i : \overline{\mathcal{B}} \to (a, b), i = 1, ..., p$ , *are continuous functionals from Corollary* 9.

*Proof* Let  $\mathcal{B}$  be defined by (18) and  $\Omega = \mathcal{B}^{p+1}$ . Further, let  $u = (u_1, \dots, u_{p+1}) \in \overline{\Omega}$  be a fixed point of the operator  $\mathcal{G}$ . Then for each  $i \in \{1, \dots, p\}$  we have  $u_i \in \overline{\mathcal{B}}$  and hence, by Lemma 7, there exists a unique solution  $\tau_i = \mathcal{P}_i u_i$  of the equation  $t = \gamma_i(u_i(t))$ . Due to (15) the inequalities

$$a = \tau_0 < \tau_1 < \tau_2 < \cdots < \tau_p < \tau_{p+1} = b$$

are valid. Let us consider z defined by (28). We will prove that z is a fixed point of the operator  $\mathcal{F}$  from Theorem 4, taking

$$t_i = \tau_i$$
 and  $J_i(\tau_i, z(\tau_i))$  in place of  $J_i(z(t_i))$ ,  $i = 1, \dots, p$ . (29)

Let us denote

$$\mathcal{I}_1 = [a, \tau_1], \qquad \mathcal{I}_2 = (\tau_1, \tau_2], \qquad \mathcal{I}_3 = (\tau_2, \tau_3], \qquad \dots, \qquad \mathcal{I}_{p+1} = (\tau_p, b].$$

Let us choose  $k \in \{1, ..., p + 1\}$  and consider  $t \in \mathcal{I}_k$ . Then

$$\begin{aligned} z(t) &= u_k(t) \\ &= \sum_{i=1}^{p+1} \int_{\tau_{i-1}}^{\tau_i} G(t,s) f(s,u_i(s)) \, \mathrm{d}s + \sum_{i=k}^p G_1(t,\tau_i) J_i(\tau_i,u_i(\tau_i)) \\ &+ \sum_{i=1}^{k-1} G_2(t,\tau_i) J_i(\tau_i,u_i(\tau_i)) + Y(t) [\ell(Y)]^{-1} c_0 \\ &= \sum_{i=1}^{p+1} \int_{\tau_{i-1}}^{\tau_i} G(t,s) f(s,z(s)) \, \mathrm{d}s + \sum_{i=k}^p G_1(t,\tau_i) J_i(\tau_i,z(\tau_i)) \\ &+ \sum_{i=1}^{k-1} G_2(t,\tau_i) J_i(\tau_i,z(\tau_i)) + Y(t) [\ell(Y)]^{-1} c_0. \end{aligned}$$

Of course,

$$\sum_{i=1}^{p+1} \int_{\tau_{i-1}}^{\tau_i} G(t,s) f(s,z(s)) \, \mathrm{d}s = \int_a^b G(t,s) f(s,z(s)) \, \mathrm{d}s.$$

Let  $i \in \mathbb{N}$  be such that  $k \leq i \leq p$ . Then  $t \leq \tau_k \leq \tau_i$  and therefore Remark 5 yields

$$G_1(t,\tau_i)=G(t,\tau_i).$$

Let  $i \in \mathbb{N}$  be such that  $1 \le i < k$  (such *i* exists only if k > 1). Then  $t > \tau_{k-1} \ge \tau_i$  and Remark 5 gives

$$G_2(t,\tau_i)=G(t,\tau_i).$$

These facts imply that

$$\sum_{i=k}^p G_1(t,\tau_i)J_i\big(\tau_i,z(\tau_i)\big) + \sum_{i=1}^{k-1} G_2(t,\tau_i)J_i\big(\tau_i,z(\tau_i)\big) = \sum_{i=1}^p G(t,\tau_i)J_i\big(\tau_i,z(\tau_i)\big).$$

Consequently, by virtue of Theorem 4, *z* is a solution of problem (5)-(7) with  $A \equiv 0$  and (29). The function *z* satisfies (1) a.e. on [*a*, *b*] and fulfills the boundary condition (3). In addition, since *z* fulfills the impulse conditions (6) with  $t_i = \tau_i$ , and  $J_i(\tau_i, z(\tau_i))$  in place of  $J_i(z(t_i))$ , where  $\tau_i = \gamma_i(u_i(\tau_i)) = \gamma_i(z(\tau_i))$ , i = 1, ..., p, we see that *z* fulfills (2). It remains to prove that  $\tau_1, ..., \tau_p$  are the only instants at which the function *z* crosses the barriers  $t = \gamma_1(x), ..., t = \gamma_p(x)$ , respectively. To this aim, due to (15) and (28) it suffices to prove that

$$t \neq \gamma_i(u_{i+1}(t))$$
 for all  $t \in (\tau_i, b], i = 1, \dots, p$ .

Choose an arbitrary  $i \in \{1, ..., p\}$  and consider  $\sigma_i$  from Lemma 7 for  $v = u_{i+1}$ , *i.e.* 

$$\sigma_i(t) = \gamma_i(u_{i+1}(t)) - t, \quad t \in [a, b].$$

Since z fulfills (2) we have

$$u_{i+1}(\tau_i+) = z(\tau_i+) = z(\tau_i) + J_i(\tau_i, z(\tau_i))$$

and according to (27) we get

$$\sigma_i(\tau_i+) = \gamma_i \left( u_{i+1}(\tau_i+) \right) - \tau_i = \gamma_i \left( z(\tau_i) + J_i(\tau_i, z(\tau_i)) \right) - \tau_i$$
  
$$\leq \gamma_i \left( z(\tau_i) \right) - \tau_i = \sigma_i(\tau_i) = 0.$$

Since  $\sigma_i$  is decreasing on [a, b] we have

$$\sigma_i(t) < \sigma_i(\tau_i+) \le 0$$
 for all  $t \in (\tau_i, b]$ .

### 5 Existence results

Properties of the operator  $\mathcal{G}$  which is defined by (23), (24), and (26), in particular its compactness and the existence of its fixed point, will be proved in this section. Then the existence of a solution of problem (1)-(3) will follow (*cf.* Theorem 15). Besides the conditions from Section 4 we assume in addition that

there exists  $\overline{J}_i, i = 1, \dots, p$ , such that  $|J_i(t, x)| \le \overline{J}_i$  for all  $(t, x) \in [a, b] \times \mathbb{R}^n$ , (30)

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in \mathcal{A}: \quad |x - y| < \delta \quad \Rightarrow \quad \left\| f(\cdot, x) - f(\cdot, y) \right\|_{\infty} < \varepsilon, \tag{31}$$

$$V \in \mathbb{C}([a_i, b_i]; \mathbb{R}^{n \times n}), \quad i = 1, \dots, p.$$
(32)

Here  $\mathcal{A}$  is from (14) and  $[a_i, b_i]$ ,  $i = 1, \dots, p$ , are from (15).

**Lemma 12** Let the assumptions of Lemma 7 and conditions (22), (25), (27), (30), (31), and (32) be fulfilled. Let  $\mathcal{G}$  be defined by (23), (24), and (26). Then for each  $\varepsilon > 0$  there exists  $\delta > 0$  such that each  $u, \tilde{u} \in \overline{\Omega}$  satisfy

$$\sum_{i=1}^{p+1} \|\tilde{u}_i - u_i\|_{\infty} < \delta \quad \Rightarrow \quad \left\| (\mathcal{G}\tilde{u})_k - (\mathcal{G}u)_k \right\|_{1,\infty} < \varepsilon, \quad k = 1, \dots, p+1.$$
(33)

*Proof* Consider  $\tilde{u} = (\tilde{u}_1, \dots, \tilde{u}_{p+1}), u = (u_1, \dots, u_{p+1}) \in \overline{\Omega}$  and denote

$$\begin{split} \tilde{y} &= (\tilde{y}_1, \dots, \tilde{y}_{p+1}) = \left( (\mathcal{G}\tilde{u})_1, \dots, (\mathcal{G}\tilde{u})_{p+1} \right), \\ y &= (y_1, \dots, y_{p+1}) = \left( (\mathcal{G}u)_1, \dots, (\mathcal{G}u)_{p+1} \right), \\ \tilde{x} &= (\tilde{x}_1, \dots, \tilde{x}_{p+1}) = \left( \left( \mathcal{F}^*\tilde{u} \right)_1, \dots, \left( \mathcal{F}^*\tilde{u} \right)_{p+1} \right), \\ x &= (x_1, \dots, x_{p+1}) = \left( \left( \mathcal{F}^*u \right)_1, \dots, \left( \mathcal{F}^*u \right)_{p+1} \right), \end{split}$$

where  $\mathcal{F}^*$  is defined in (23). Let us choose a fixed  $k \in \{1, \dots, p+1\}$ .

STEP 1. According to Remark 10 we have

$$\tilde{y}'_{k}(t) = (\mathcal{G}\tilde{u})'_{k}(t) = f(t, \tilde{u}_{k}(t)), 
y'_{k}(t) = (\mathcal{G}u)'_{k}(t) = f(t, u_{k}(t)) \text{ for a.e. } t \in [a, b].$$
(34)

By (31) and (34) we have

$$\forall \tilde{\varepsilon} > 0 \ \exists \tilde{\delta} > 0 \ \forall \tilde{u}, u \in \overline{\Omega}: \quad \|\tilde{u}_k - u_k\|_{\infty} < \tilde{\delta} \quad \Rightarrow \quad \left\|\tilde{y}'_k - y'_k\right\|_{\infty} < \tilde{\varepsilon}.$$
(35)

Denote (cf. (24))

$$\tilde{\tau}_i = \mathcal{P}_i \tilde{u}_i, \qquad \tau_i = \mathcal{P}_i u_i, \quad i = 1, \dots, p, \qquad \tilde{\tau}_0 = \tau_0 = a, \qquad \tilde{\tau}_{p+1} = \tau_{p+1} = b.$$

By Lemma 8, we have

$$\forall \tilde{\varepsilon} > 0 \ \exists \tilde{\delta} > 0 \ \forall \tilde{u}, u \in \overline{\Omega}: \quad \|\tilde{u}_i - u_i\|_{\infty} < \tilde{\delta} \quad \Rightarrow \quad |\tilde{\tau}_i - \tau_i| < \tilde{\varepsilon}, \quad i = 1, \dots, p.$$
(36)

Choose an arbitrary  $\varepsilon > 0$ . By (35), there exists  $\delta_1 > 0$  such that for each  $\tilde{u}, u \in \overline{\Omega}$ 

$$\|\tilde{u}_k - u_k\|_{\infty} < \delta_1 \quad \Rightarrow \quad \left\|\tilde{y}'_k - y'_k\right\|_{\infty} < \frac{\varepsilon}{7}.$$
(37)

For  $t \in [a, b]$  we have

$$\tilde{y}_k(t) = \tilde{y}_k(\tilde{\tau}_k) + \int_{\tilde{\tau}_k}^t \tilde{y}'_k(s) \,\mathrm{d}s, \qquad y_k(t) = y_k(\tau_k) + \int_{\tau_k}^t y'_k(s) \,\mathrm{d}s,$$

and therefore, by (26),

$$\begin{split} \left| \tilde{y}_k(t) - y_k(t) \right| &\leq \left| \tilde{y}_k(\tilde{\tau}_k) - y_k(\tau_k) \right| + \left| \int_{\tilde{\tau}_k}^t \tilde{y}'_k(s) \, \mathrm{d}s - \int_{\tau_k}^t y'_k(s) \, \mathrm{d}s \right| \\ &\leq \left| \tilde{x}_k(\tilde{\tau}_k) - x_k(\tau_k) \right| + \left| \int_{\tau_k}^t \left| \tilde{y}'_k(s) - y'_k(s) \right| \, \mathrm{d}s \right| + \left| \int_{\tilde{\tau}_k}^{\tau_k} \left| \tilde{y}'_k(s) \right| \, \mathrm{d}s \right|. \end{split}$$

Then, using (25) and (34), we get

$$\|\tilde{y}_k - y_k\|_{\infty} \leq \left|\tilde{x}_k(\tilde{\tau}_k) - x_k(\tau_k)\right| + (b-a)\left\|\tilde{y}'_k - y'_k\right\|_{\infty} + |\tilde{\tau}_k - \tau_k|\bar{f}.$$

Due to (35) and (36) there exists  $\delta_2 \in (0, \delta_1)$  such that for each  $\tilde{u}, u \in \overline{\Omega}$ 

$$\|\tilde{u}_k - u_k\|_{\infty} < \delta_2 \quad \Rightarrow \quad (b-a) \|\tilde{y}'_k - y'_k\|_{\infty} + |\tilde{\tau}_k - \tau_k|\bar{f} < \frac{\varepsilon}{7}.$$
(38)

It remains to discuss the expression  $|\tilde{x}_k(\tilde{\tau}_k) - x_k(\tau_k)|$ . We have

$$\begin{split} \tilde{x}_{k}(\tilde{\tau}_{k}) - x_{k}(\tau_{k}) &= \sum_{i=1}^{p+1} \left( \int_{\tilde{\tau}_{i-1}}^{\tilde{\tau}_{i}} G(\tilde{\tau}_{k}, s) f\left(s, \tilde{u}_{i}(s)\right) \mathrm{d}s - \int_{\tau_{i-1}}^{\tau_{i}} G(\tau_{k}, s) f\left(s, u_{i}(s)\right) \mathrm{d}s \right) \\ &+ \sum_{i=k}^{p} \left( G_{1}(\tilde{\tau}_{k}, \tilde{\tau}_{i}) J_{i}\left(\tilde{\tau}_{i}, \tilde{u}_{i}(\tilde{\tau}_{i})\right) - G_{1}(\tau_{k}, \tau_{i}) J_{i}\left(\tau_{i}, u_{i}(\tau_{i})\right) \right) \\ &+ \sum_{i=1}^{k-1} \left( G_{2}(\tilde{\tau}_{k}, \tilde{\tau}_{i}) J_{i}\left(\tilde{\tau}_{i}, \tilde{u}_{i}(\tilde{\tau}_{i})\right) - G_{2}(\tau_{k}, \tau_{i}) J_{i}\left(\tau_{i}, u_{i}(\tau_{i})\right) \right). \end{split}$$
(39)

STEP 2. Treating the first term on the right-hand side of equality (39) we have

$$\sum_{i=1}^{p+1} \left( \int_{\tilde{\tau}_{i-1}}^{\tilde{\tau}_{i}} G(\tilde{\tau}_{k}, s) f(s, \tilde{u}_{i}(s)) \, \mathrm{d}s - \int_{\tau_{i-1}}^{\tau_{i}} G(\tau_{k}, s) f(s, u_{i}(s)) \, \mathrm{d}s \right)$$
  
$$= \sum_{i=1}^{p+1} \left( \int_{\tau_{i-1}}^{\tau_{i}} \left[ G(\tilde{\tau}_{k}, s) f(s, \tilde{u}_{i}(s)) - G(\tau_{k}, s) f(s, u_{i}(s)) \right] \, \mathrm{d}s$$
  
$$+ \int_{\tilde{\tau}_{i-1}}^{\tau_{i-1}} G(\tilde{\tau}_{k}, s) f(s, \tilde{u}_{i}(s)) \, \mathrm{d}s + \int_{\tau_{i}}^{\tilde{\tau}_{i}} G(\tilde{\tau}_{k}, s) f(s, \tilde{u}_{i}(s)) \, \mathrm{d}s \right)$$
  
$$= \sum_{i=1}^{p+1} \left( \int_{\tau_{i-1}}^{\tau_{i}} G(\tilde{\tau}_{k}, s) (f(s, \tilde{u}_{i}(s)) - f(s, u_{i}(s))) \, \mathrm{d}s \right)$$

$$+ \int_{\tau_{i-1}}^{\tau_i} \left( G(\tilde{\tau}_k, s) - G(\tau_k, s) \right) f\left(s, u_i(s)\right) \mathrm{d}s \right) \\ + \sum_{i=1}^{p+1} \left( \int_{\tilde{\tau}_{i-1}}^{\tau_{i-1}} G(\tilde{\tau}_k, s) f\left(s, \tilde{u}_i(s)\right) \mathrm{d}s + \int_{\tau_i}^{\tilde{\tau}_i} G(\tilde{\tau}_k, s) f\left(s, \tilde{u}_i(s)\right) \mathrm{d}s \right) .$$

The function *G* is bounded on  $[a, b] \times [a, b]$ ; it follows from (31) that there exists  $\delta_3 \in (0, \delta_2)$  such that for each  $\tilde{u}, u \in \overline{\Omega}$ 

$$\sum_{i+1}^{p+1} \|\tilde{u}_i - u_i\|_{\infty} < \delta_3 \quad \Rightarrow \quad \sum_{i=1}^{p+1} \int_{\tau_{i-1}}^{\tau_i} \left| G(\tilde{\tau}_k, s) \left( f\left(s, \tilde{u}_i(s)\right) - f\left(s, u_i(s)\right) \right) \right| \, \mathrm{d}s < \frac{\varepsilon}{7}. \tag{40}$$

In view of Remark 6

$$\int_a^b \left| G(\tilde{\tau}_k, s) - G(\tau_k, s) \right| \mathrm{d}s = \int_a^b \left| \chi_{[a, \tilde{\tau}_k)}(s) - \chi_{[a, \tau_k)}(s) \right| \mathrm{d}s = |\tilde{\tau}_k - \tau_k|,$$

and therefore, by (25) and (36), there exists  $\delta_4 \in (0, \delta_3)$  such that for each  $\tilde{u}, u \in \overline{\Omega}$ 

$$\sum_{i=1}^{p+1} \|\tilde{u}_i - u_i\|_{\infty} < \delta_4 \quad \Rightarrow \quad \sum_{i=1}^{p+1} \int_{\tau_{i-1}}^{\tau_i} \left| G(\tilde{\tau}_k, s) - G(\tau_k, s) \right| \left| f\left(s, u_i(s)\right) \right| \, \mathrm{d}s < \frac{\varepsilon}{7}. \tag{41}$$

Similarly, since *G* is bounded on  $[a, b] \times [a, b]$  and *f* fulfills (25), we can find  $\alpha > 0$  satisfying

$$\begin{split} &\sum_{i=1}^{p+1} \left| \int_{\tilde{\tau}_{i-1}}^{\tau_{i-1}} G(\tilde{\tau}_i, s) f\left(s, \tilde{u}_i(s)\right) \mathrm{d}s + \int_{\tau_i}^{\tilde{\tau}_i} G(\tilde{\tau}_k, s) f\left(s, \tilde{u}_i(s)\right) \mathrm{d}s \right| \\ &< \alpha \sum_{i=1}^{p+1} \left( |\tilde{\tau}_{i-1} - \tau_{i-1}| + |\tilde{\tau}_i - \tau_i| \right). \end{split}$$

Consequently, by (36), there exists  $\delta_5 \in (0, \delta_4)$  such that for each  $\tilde{u}, u \in \overline{\Omega}$ 

$$\sum_{i=1}^{p+1} \|\tilde{u}_i - u_i\|_{\infty} < \delta_5$$

$$\Rightarrow \sum_{i=1}^{p+1} \left| \int_{\tilde{\tau}_{i-1}}^{\tau_{i-1}} G(\tilde{\tau}_i, s) f\left(s, \tilde{u}_i(s)\right) \mathrm{d}s + \int_{\tau_i}^{\tilde{\tau}_i} G(\tilde{\tau}_k, s) f\left(s, \tilde{u}_i(s)\right) \mathrm{d}s \right| < \frac{\varepsilon}{7}.$$
(42)

STEP 3. Finally we discuss the second and third term on the right-hand side of equality (39). According to Remark 6, we have

$$G_{1}(\tilde{\tau}_{k},\tilde{\tau}_{i}) - G_{1}(\tau_{k},\tau_{i}) = -K^{-1}V(\tilde{\tau}_{i}) + K^{-1}V(\tau_{i}) = -K^{-1}(V(\tilde{\tau}_{i}) - V(\tau_{i})),$$
  

$$G_{2}(\tilde{\tau}_{k},\tilde{\tau}_{i}) - G_{2}(\tau_{k},\tau_{i}) = -K^{-1}V(\tilde{\tau}_{i}) + E - (-K^{-1}V(\tau_{i}) + E) = -K^{-1}(V(\tilde{\tau}_{i}) - V(\tau_{i})).$$

Therefore, due to the uniform continuity of  $J_i$ , i = 1, ..., p, on  $[a, b] \times A$  (*cf.* (4) and (14)), the uniform continuity of V on  $[a_i, b_i]$ , i = 1, ..., p (*cf.* (32) and (15)) and by (36), there exists

 $\Box$ 

 $\delta \in (0, \delta_5)$  such that for each  $\tilde{u}, u \in \overline{\Omega}$ 

$$\sum_{i=1}^{p+1} \|\tilde{u}_i - u_i\|_{\infty} < \delta \quad \Rightarrow \quad \sum_{i=k}^p \left| G_1(\tilde{\tau}_k, \tilde{\tau}_i) J_i(\tilde{\tau}_i, \tilde{u}_i(\tilde{\tau}_i)) - G_1(\tau_k, \tau_i) J_i(\tau_i, u_i(\tau_i)) \right| < \frac{\varepsilon}{7}, \quad (43)$$

$$\sum_{i=1}^{p+1} \|\tilde{u}_i - u_i\|_{\infty} < \delta \quad \Rightarrow \quad \sum_{i=1}^{k-1} \left| G_2(\tilde{\tau}_k, \tilde{\tau}_i) J_i(\tilde{\tau}_i, \tilde{u}_i(\tilde{\tau}_i)) - G_2(\tau_k, \tau_i) J_i(\tau_i, u_i(\tau_i)) \right| < \frac{\varepsilon}{7}.$$
(44)

Relations (37), (38), (40), (41), (42), (43), and (44) imply (33).

**Lemma 13** Let the assumptions of Lemma 12 be fulfilled. Then the operator  $\mathcal{G}$  defined by (23), (24), and (26) is compact on  $\overline{\Omega}$ .

*Proof* First, we prove the continuity of  $\mathcal{G}$ . Choose  $\varepsilon > 0$ . Then there exists  $\delta > 0$  such that each  $u, \tilde{u} \in \overline{\Omega}$  satisfy (33). Since  $\|\tilde{u}_i - u_i\|_{\infty} \le \|\tilde{u}_i - u_i\|_{1,\infty}$ , i = 1, ..., p + 1, each  $u, \tilde{u} \in \overline{\Omega}$  satisfy

$$\sum_{i=1}^{p+1} \|\tilde{u}_i - u_i\|_{1,\infty} < \delta \quad \Rightarrow \quad \left\| (\mathcal{G}\tilde{u})_k - (\mathcal{G}u)_k \right\|_{1,\infty} < \varepsilon, \quad k = 1, \dots, p+1.$$

Now, we prove the relative compactness of the set  $\mathcal{G}(\overline{\Omega})$ . Let  $\{y^m\}_{m=1}^{\infty}$  be a sequence of elements from the set  $\mathcal{G}(\overline{\Omega})$ . Then there exists a sequence  $\{u^m\}_{m=1}^{\infty} \subset \overline{\Omega}$  such that  $y^m = \mathcal{G}(u^m)$  for every  $m \in \mathbb{N}$ . Since  $u_i^m \in \overline{\mathcal{B}}$ , we have (*cf.* (18))

$$\left\|u_{i}^{m}\right\|_{\infty} \leq \mu_{i}, \qquad \left\|\left(u_{i}^{m}\right)'\right\|_{\infty} \leq \rho_{i}$$

for each  $i = 1, ..., p + 1, m \in \mathbb{N}$ . This implies

$$\left|u_{i}^{m}(t_{1})-u_{i}^{m}(t_{2})\right|=\left|\int_{t_{1}}^{t_{2}}(u_{i}^{m})'(s)\,\mathrm{d}s\right|\leq\rho_{i}|t_{1}-t_{2}|.$$

The Arzelà-Ascoli theorem and the diagonalization principle give the existence of a subsequence which is convergent in the  $\|\cdot\|_{\infty}$ -norm. Let us denote it as  $\{u^{\nu}\}_{\nu=1}^{\infty}$ . Then, by Lemma 12, for each  $\varepsilon > 0$  there exist  $\delta > 0$  and  $\nu_0 \in \mathbb{N}$  such that for each  $\nu \in \mathbb{N}$ ,  $\nu \ge \nu_0$  the inequality  $\sum_{i=1}^{p+1} \|u_i^{\nu} - u_i^{\nu_0}\|_{\infty} < \delta$  holds, and consequently, by (33),

$$\nu \geq \nu_0 \quad \Rightarrow \quad \left\| \left( \mathcal{G}u^{\nu} \right)_k - \left( \mathcal{G}u^{\nu_0} \right)_k \right\|_{1,\infty} < \varepsilon, \quad k = 1, \dots, p+1.$$

Therefore there exists a subsequence  $\{y^{\nu}\}_{\nu=1}^{\infty} \subset \{y^{m}\}_{m=1}^{\infty}$  which is convergent in *X*.  $\Box$ 

**Theorem 14** Assume that (25) and (30) hold and that numbers  $\mu_j$ ,  $\rho_j$ , j = 1, ..., n, satisfy

$$\mu_{j} \geq |K^{-1}| \sup_{s \in [a,b]} |V(s)| \bar{f}(b-a) + 2\bar{f}(b-a) + |K^{-1}| \sup_{s \in [a,b]} |V(s)| \sum_{k=1}^{p} \bar{J}_{k} + \sum_{k=1}^{p} \bar{J}_{k} + |K^{-1}c_{0}|,$$

$$\rho_{j} \geq \bar{f}, \quad j = 1, \dots, n.$$

$$(45)$$

Define sets  $\mathcal{A}$ ,  $\mathcal{B}$  and  $\Omega$  by (14), (18), and (21), respectively, and assume that conditions (15), (16), (17), (27), (31), and (32) hold. Then the operator  $\mathcal{G}$  has a fixed point in  $\overline{\Omega}$ .

*Proof* It suffices to show that  $\mathcal{G}(\overline{\Omega}) \subset \overline{\Omega}$ . Let  $u \in \overline{\Omega}$  and  $x = \mathcal{F}^*u$ ,  $y = \mathcal{G}(u)$  (*cf.* (23) and (26)). That is  $x = (x_1, \dots, x_{p+1})$  and  $y = (y_1, \dots, y_{p+1})$ , where  $y_i = (y_{i,1}, \dots, y_{i,n})^T$  for  $i = 1, \dots, p + 1$ . Choose  $j \in \{1, \dots, n\}, i \in \{1, \dots, p + 1\}$ . Having in mind (24), we get by (23), (26), (45), and Remark 6

$$\begin{aligned} |y_{i,j}(t)| &\leq |y_i(t)| \\ &\leq |K^{-1}| \sup_{s \in [a,b]} |V(s)| \bar{f}(b-a) + \bar{f}(b-a) \\ &+ |K^{-1}| \sup_{s \in [a,b]} |V(s)| \sum_{k=1}^{p} \bar{J}_k + \sum_{k=1}^{p} \bar{J}_k + |K^{-1}c_0| \\ &\leq \mu_j - \bar{f}(b-a) \quad \text{for } t \in [\tau_{i-1}, \tau_i], \\ |y_{i,j}(t)| &\leq |y_i(t)| \leq |x_i(\tau_{i-1})| + \left| \int_{\tau_{i-1}}^{t} f(s, u_i(s)) \, \mathrm{d}s \right| \\ &\leq |y_i(\tau_{i-1})| + \bar{f}(b-a) \leq \mu_j \quad \text{for } t < \tau_{i-1}, \\ |y_{i,j}(t)| &\leq |y_i(t)| \leq |x_i(\tau_i)| + \left| \int_{\tau_i}^{t} f(s, u_i(s)) \, \mathrm{d}s \right| \\ &\leq |y_i(\tau_i)| + \bar{f}(b-a) \leq \mu_j \quad \text{for } t > \tau_i. \end{aligned}$$

Therefore

$$\|y_{i,j}\|_{\infty} \leq \mu_j, \quad j=1,\ldots,n, i=1,\ldots,p+1.$$

From (25) and Remark 10 we have

$$\left|y_{i,j}'(t)\right| \leq \left|y_{i}'(t)\right| = \left|f\left(t, u_{i}(t)\right)\right| \leq \overline{f}$$
 for a.e.  $t \in [a, b]$ ,

which yields, due to (45),

$$\left\|y_{i,j}'\right\|_{\infty} \leq \rho_j, \quad j=1,\ldots,n, i=1,\ldots,p+1.$$

Consequently, by virtue of (18),  $y_i \in \overline{\mathcal{B}}$  for i = 1, ..., p + 1, that is,  $y \in \overline{\Omega}$ .

Theorems 11 and 14 give an existence result for problem (1)-(3).

**Theorem 15** Under the assumptions of Theorem 14 problem (1)-(3) has at least one solution *z* such that

$$||z||_{\infty} \leq \max\{\mu_1,\ldots,\mu_n\}.$$

#### Competing interests

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### Acknowledgements

This work was supported by the grant No. 14-06958S of the Grant Agency of the Czech Republic.

#### Received: 27 March 2014 Accepted: 27 June 2014 Published online: 24 September 2014

#### References

- 1. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
- Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
- 3. Bainov, D, Simeonov, P: Impulsive Differential Equations: Periodic Solutions and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 66. Longman, Harlow (1993)
- 4. Graef, JR, Henderson, J, Ouahab, A: Impulsive Differential Inclusion. de Gruyter, Berlin (2013)
- 5. Yang, T: Impulsive Systems and Control: Theory and Applications. Nova Science Publishers, New York (2001)
- 6. Bainov, DD, Covachev, V: Impulsive Differential Equations with Small Parameter. Series on Advances in Mathematics for Applied Sciences, vol. 4. World Scientific, Singapore (1994)
- 7. Jiao, JJ, Cai, SH, Chen, LS: Analysis of a stage-structured predator-prey system with birth pulse and impulsive harvesting at different moments. Nonlinear Anal., Real World Appl. **12**, 2232-2244 (2011)
- 8. Nie, L, Teng, Z, Hu, L, Peng, J: Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Anal., Real World Appl. **11**, 1364-1373 (2010)
- 9. Nie, L, Teng, Z, Torres, A: Dynamic analysis of an SIR epidemic model with state dependent pulse vaccination. Nonlinear Anal., Real World Appl. **13**, 1621-1629 (2012)
- Tang, S, Chen, L: Density-dependent birth rate birth pulses and their population dynamic consequences. J. Math. Biol. 44, 185-199 (2002)
- 11. Wang, F, Pang, G, Chen, L: Qualitative analysis and applications of a kind of state-dependent impulsive differential equations. J. Comput. Appl. Math. 216, 279-296 (2008)
- 12. Cordova-Lepe, F, Pinto, M, Gonzalez-Olivares, E: A new class of differential equations with impulses at instants dependent on preceding pulses. Applications to management of renewable resources. Nonlinear Anal., Real World Appl. **13**, 2313-2322 (2012)
- Bajo, I, Liz, E: Periodic boundary value problem for first order differential equations with impulses at variable times. J. Math. Anal. Appl. 204, 65-73 (1996)
- 14. Belley, J, Virgilio, M: Periodic Duffing delay equations with state dependent impulses. J. Math. Anal. Appl. 306, 646-662 (2005)
- Belley, J, Virgilio, M: Periodic Liénard-type delay equations with state-dependent impulses. Nonlinear Anal., Theory Methods Appl. 64, 568-589 (2006)
- Frigon, M, O'Regan, D: First order impulsive initial and periodic problems with variable moments. J. Math. Anal. Appl. 233, 730-739 (1999)
- Benchohra, M, Graef, JR, Ntouyas, SK, Ouahab, A: Upper and lower solutions method for impulsive differential inclusions with nonlinear boundary conditions and variable times. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 12, 383-396 (2005)
- Frigon, M, O'Regan, D: Second order Sturm-Liouville BVP's with impulses at variable times. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 8, 149-159 (2001)
- Rachůnek, L, Rachůnková, L: First-order nonlinear differential equations with state-dependent impulses. Bound. Value Probl. 2013, 195 (2013)
- Rachůnková, L, Tomeček, J: A new approach to BVPs with state-dependent impulses. Bound. Value Probl. 2013, 22 (2013). doi:10.1186/1687-2770-2013-22
- 21. Rachůnková, L, Tomeček, J: Second order BVPs with state-dependent impulses via lower and upper functions. Cent. Eur. J. Math. 12(1), 128-140 (2014)
- 22. Rachůnková, L, Tomeček, J: Existence principle for BVPs with state-dependent impulses. Topol. Methods Nonlinear Anal. (to appear)
- 23. Rachůnková, L, Tomeček, J: Impulsive system of ODEs with general linear boundary conditions. Electron. J. Qual. Theory Differ. Equ. **2013**, 25 (2013)
- 24. Rachůnková, L, Tomeček, J: Existence principle for higher order nonlinear differential equations with state-dependent impulses via fixed point theorem. Bound. Value Probl. **2014**, 118 (2014). doi:10.1186/1687-2770-2014-118
- 25. Hönig, CS: The Adjoint Equation of a Linear Volterra-Stieltjes Integral Equation with a Linear Constraint. Lecture Notes in Mathematics, vol. 957, pp. 118-125. Springer, Berlin (1982)
- 26. Azbelev, NV, Maksimov, VP, Rakhmatullina, LF: Introduction to the Theory of Functional Differential Equations. Nauka, Moscow (1991)

#### doi:10.1186/s13661-014-0172-9

Cite this article as: Rachůnková and Tomeček: Fixed point problem associated with state-dependent impulsive boundary value problems. Boundary Value Problems 2014 2014:172.