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Abstract
In this paper, the mathematical formulation for a quadratic optimal control problem
governed by a linear hyperbolic integro-differential equation is established. We first
show the existence and regularity for the solution of the optimal control problem.
The finite element approximation is based on the optimality conditions, which are
also derived. Then the a priori error estimates for its finite element approximation are
obtained with the optimal convergence order. Furthermore some numerical tests are
presented to verify the theoretical results.
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1 Introduction
The distributed optimal control problem has been a classic research topic in the discipline
of applied mathematics. Since it is normally difficult to obtain a closed form solution, fi-
nite element approximations of optimal control problems governed by partial differential
equations have been extensively studied in the literature. In particular, there have been
extensive studies in convergence and a priori error estimates of the standard finite ele-
ment approximation of optimal control problems; see for instance, [–], although it is
impossible to give even a very brief review here.
For optimal control problems governed by classic linear PDEs such as elliptic, parabolic

and hyperbolic equations, the existence and the optimality conditions are well known, see
[]. Furthermore their finite element approximation and a priori error estimates were
established long ago, for example, see [–, ]. Recently research has been carried out for
the control governed by the integro-differential equations such as elliptic and parabolic
integro-differential equations; see [, ]. However, there exists little research on the op-
timal control problem governed by hyperbolic integro-differential equations, in spite of
the fact that such control problems are widely encountered in practical engineering ap-
plications and scientific computations. Integro-differential equations and their control of
this nature appear in applications such as heat conduction inmaterials withmemory, pop-
ulation dynamics, and visco-elasticity; cf., e.g., [–]. The physical backgrounds and the
existence and uniqueness of the solution of the hyperbolic integro-differential equations
have been studied in [–]. One very important characteristic of all these models is that
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they all express conservation of a certain quantity; mass, momentum, heat etc. in any mo-
ment for any subdomain.
Furthermore the finite element approximation of optimal control problem governed

by hyperbolic integro-differential equations has not been studied yet, although there ex-
ists much research on the finite element approximation of hyperbolic integro-differential
equations, see, e.g. [, ].
The purpose of this paper is to investigate the weak formulation of the optimal con-

trol problem governed by integro-differential equations of hyperbolic type, and then its
finite element approximation. Furthermore we derive the optimality conditions and es-
tablish the a priori error estimates for the constrained optimal control problems. Finally
we present some numerical tests to verify the theoretical results.
The outline of the paper is as follows. In Section , we present the weak formulation

and prove the existence of the solution for the optimal control problem. In Section , we
present the optimality conditions and the finite element approximation. In Section , we
establish the optimal a priori error estimates for the finite element approximation of the
control problem. Finally, we present some numerical tests, which illustrate the theoretical
results.

2 Model problem and its weak formulation
Let �, with the Lipschitz boundary ∂�, and �U be bounded open sets in Rd ,  ≤ d ≤ ,
and T > . We introduce some Sobolev spaces. Throughout the paper, we adopt the stan-
dard notation Wm,q(�) for Sobolev spaces on � with norm ‖ · ‖m,q,�, and semi-norm
| · |m,q,�. Set W

m,q
 (�) = {w ∈ Wm,q(�) : w|∂� = }. Also denote Wm,(�)(Wm,

 (�)) by
Hm(�) (Hm

 (�)), with norm ‖ · ‖m,�, and semi-norm | · |m,�. Denote by Ls(,T ;Wm,q(�))
the Banach space of all Ls integrable functions from (,T) into Wm,q(�) with norm
‖v‖Ls(,T ;Wm,q(�)) = (

∫ T
 ‖v‖sWm,q(�) dt)


s for s ∈ [,∞) and the standard modification for

s = ∞. Similarly, one can define the spaces H(,T ;Wm,q(�)) and Ck(,T ;Wm,q(�)). The
details can be found in []. In addition, c or C denotes a general positive constant inde-
pendent of the unknowns and the mesh parameters introduced later.
To fix ideas, we will take the state spaceW = L(,T ;V ) with V =H

(�) and the control
space X = L(,T ;U) with U = L(�U ). Let the observation space be Y = L(,T ;H) with
H = L(�). Let Uad ⊆ X be a convex subset.
We investigate the following optimal control problem governed by a hyperbolic integro-

differential equation:

min
u∈Uad⊂X

J
(
u, y(u)

)
=

∫ T



(
g(y) + h(u)

)
dt (.)

subject to

⎧
⎪⎨

⎪⎩

ytt +Ay +
∫ t
 C(t, τ )y(τ )dτ = f + Bu, in � × (,T],

y = , on ∂� × [,T],
y|t= = y, yt|t= = y, in �,

(.)

where u is the control, y is the state, Uad is a closed convex subset with the respect to
the control, f , y, and y are some suitable functions to be specified later. A is a linear
strongly elliptic self-adjoint partial differential operator of second order with coefficients
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depending smoothly on the spatial variables, andC(t, τ ) is an arbitrary second-order linear
partial differential operator, with coefficients depending smoothly on both time and spatial
variables in the closure of their respective domains; B is a suitable continuous operator.
A precise formulation of this problem is given later.
Herewe assume g(·) is a convex functional which is continuously differentiable on L(�),

and h(·) is a strictly convex continuously differentiable functional onU .We further assume
that h(u) −→ +∞ as ‖u‖U → +∞ and that g(·) is bounded below. Details will be specified
later.
In order to give the weak formulation of problem mentioned above and study the exis-

tence and regularity of the solution, we introduce the L-inner products

(f, f) =
∫

�

ff, ∀(f, f) ∈H ×H , (u, v)U =
∫

�U

uv, ∀(u, v) ∈U ×U

and the bilinear forms

a(z,w) = (Az,w),

c(t, τ ; z,w) =
(
C(t, τ )z,w

)
, ct(t, τ ; z,w) =

(
Ct(t, τ )z,w

)
,

ctt(t, τ ; z,w) =
(
Ctt(t, τ )z,w

)
.

In the case that f ∈ V , f ∈ V ∗, the dual pair (f, f) is understood as 〈f, f〉V×V∗ .
We shall assume the convexity conditions

(
h′(u) – h′(v),u – v

) ≥ c‖u – v‖,�U
, ∀u, v ∈ L(�U ), (.)

that is to say, h(·) is uniformly convex. Noting that g(·) is convex, it is easy to see that

(
g ′(u) – g ′(v),u – v

) ≥ , ∀u, v ∈H(�). (.)

Also, we have

∣
∣(Bv,w)

∣
∣ ≤ c‖v‖,�U‖w‖,�, ∀v ∈ L(�U ),u ∈H(�), (.)

because B is a bounded linear operator.
Then a possible weak formulation for the state equation reads

{
(ytt ,w) + a(y,w) +

∫ t
 c(t, τ ; y(τ ),w)dτ = (f + Bu,w), ∀w ∈ V , t ∈ (,T],

y|t= = y, yt|t= = y.
(.)

From [–], we know that the above weak formulation has at least one solution in y ∈
S(,T) = {y : y ∈ L(,T ;H

(�)), yt ∈ L(,T ;L(�)), ytt ∈ L(,T ;H–(�))}.
Therefore the control problem (.)-(.) can be restated as (OCP):

min
u∈Uad

J
(
u, y(u)

)
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subject to

{
(ytt ,w) + a(y,w) +

∫ t
 c(t, τ ; y(τ ),w)dτ = (f + Bu,w), ∀w ∈ V , t ∈ (,T],

y|t= = y, yt|t= = y.
(.)

Next, we will analyze the existence, uniqueness, and regularity of the solution of (.).
Assume that there are constants c >  and C > , such that for all t and τ in [,T]:

(a) a(z, z) ≥ c‖z‖,�, ∀z ∈ V ,

(b)
∣
∣a(z,w)

∣
∣ ≤ C‖z‖,�‖w‖,�, ∀z,w ∈ V ,

(c)
∣
∣c(t, τ ; z,w)

∣
∣ ≤ C‖z‖,�‖w‖,�, ∀z,w ∈ V ,

(d)
∣
∣ct(t, τ ; z,w)

∣
∣ ≤ C‖z‖,�‖w‖,�, ∀z,w ∈ V ,

(e)
∣
∣ctt(t, τ ; z,w)

∣
∣ ≤ C‖z‖,�‖w‖,�, ∀z,w ∈ V .

(.)

In the following, we will give the existence and uniqueness of the solution of the system
(.).

Theorem . Assume that the above conditions (a)-(d) hold. There exists a unique
solution (u, y) for the minimization problem (.) such that u ∈ L(,T ;L(�U )), y ∈
L∞(,T ;H

(�)), yt ∈ L∞(,T ;L(�)), ytt ∈ L(,T ;H–(�)).

Proof Let {(un, yn)}∞n= be a minimization sequence for the system (.), then it is clear
that {un}∞n= are bounded in L(,T ;L(�U )). Thus there is a subsequence of {un}∞n= (still
denoted by {un}∞n=) such that un converges to u∗ weakly in L(,T ;L(�U )). For the sub-
sequence un, we have

(
yntt ,w

)
+ a

(
yn,w

)
+

∫ t


c
(
t, τ ; yn(τ ),w(t)

)
dτ =

(
f + Bun,w

)
,

∀w ∈ V , t ∈ (,T]. (.)

Taking w = ynt in (.), we have



d
dt

{∥∥ynt
∥
∥
,� + a

(
yn, yn

)}

=
(
f + Bun, ynt

)
–

d
dt

∫ t


c
(
t, τ ; yn(τ ), yn(t)

)
dτ

+ c
(
t, t; yn(t), yn(t)

)
+

∫ t


ct

(
t, τ ; yn(τ ), yn(t)

)
dτ , t ∈ (,T]. (.)

Integrating time from  to t in (.), we obtain



∥
∥ynt

∥
∥
,� +

c

∥
∥yn

∥
∥
,� ≤ 


‖y‖,� +

c

‖y‖,� +

∫ t



(
f + Bun, ynt

)
dτ + ε

∥
∥yn

∥
∥
,�

+C
∫ t



∥
∥yn

∥
∥
,� dτ +C

∫ t



∫ τ



∥
∥yn(s)

∥
∥
,� dsdτ . (.)
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From (.) and the Gronwall lemmas, we have

∥
∥yn

∥
∥
,� ≤ C

(

‖y‖,� + ‖y‖,� +
∫ t



(
f + Bun, ynt

)
dτ

)

+C
∫ t



∫ τ



∥
∥yn(s)

∥
∥
,� dsdτ . (.)

So we get

∥
∥yn

∥
∥
,� +

∫ t



∥
∥yn

∥
∥
,� dτ ≤ C

(

‖y‖,� + ‖y‖,� +
∫ t



(
f + Bun, ynt

)
dτ

)

+C
∫ t



{
∥
∥yn(τ )

∥
∥
,� +

∫ τ



∥
∥yn(s)

∥
∥
,� ds

}

dτ , (.)

such that

∥
∥yn

∥
∥
,� ≤ C

{

‖y‖,� + ‖y‖,� +
∫ t



(
f + Bun, ynt

)
dτ

}

. (.)

Then by (.) and (.)

∥
∥ynt

∥
∥
,� ≤ C

{

‖y‖,� + ‖y‖,� +
∫ t



(
f + Bun, ynt

)
dτ

}

≤ C
{‖y‖,� + ‖y‖,�

}
+C

∫ t



∥
∥f + Bun

∥
∥
,� dτ · sup

≤τ≤t

∥
∥ynt (τ )

∥
∥
,�. (.)

Taking the supermaximum in (.), we obtain

∥
∥ynt

∥
∥
L∞(,T ;L(�)) ≤ C

{‖y‖,� + ‖y‖,� + ‖f ‖L(,T ;L(�)) +
∥
∥un

∥
∥
L(,T ;L(�U ))

}
. (.)

Then from (.) and (.), we also have

∥
∥yn

∥
∥
L∞(,T ;H(�)) ≤ C

{‖y‖,� + ‖y‖,� + ‖f ‖L(,T ;L(�)) +
∥
∥un

∥
∥
L(,T ;L(�U ))

}
. (.)

Then we have un ∈ L(,T ;L(�U )), yn ∈ L∞(,T ;H
(�)) and ynt ∈ L∞(,T ;L(�)). Thus

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un −→ u ∈ L(,T ;L(�U )),
yn −→ y ∈ L∞(,T ;H

(�)),
yn(T) −→ y(T) ∈H(�),
ynt −→ yt ∈ L∞(,T ;L(�)),
ynt (T) −→ yt(T) ∈ L(�).

Integrating time from  to T in (.), we obtain

(
ynt (T),w(T)

)
–

(
y,w()

)
–

∫ T



(
ynt ,wt

)
dt +

∫ T


a
(
yn,w

)
dt

+
∫ T



∫ t


c
(
t, τ ; yn(τ ),w

)
dτ dt =

∫ T



(
f + Bun,w

)
dt, ∀w ∈W . (.)
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Taking the limits in (.) as n→ ∞, we have

(
yt(T),w(T)

)
–

(
y,w()

)
–

∫ T


(yt ,wt)dt +

∫ T


a(y,w)dt

+
∫ T



∫ t


c
(
t, τ ; y(τ ),w

)
dτ dt =

∫ T


(f + Bu,w)dt,

and

∫ T


(ytt ,w)dt +

∫ T


a(y,w)dt +

∫ T



∫ t


c
(
t, τ ; y(τ ),w(t)

)
dτ dt

=
∫ T


(f + Bu,w)dt, ∀w ∈W . (.)

So we have

(ytt ,w) + a(y,w) +
∫ t


c
(
t, τ ; y(τ ),w

)
dτ = (f + Bu,w), ∀w ∈W . (.)

Further, from (.), we obtain

‖ytt‖L(,T ;H–(�)) = sup
w∈L(,T ;H

(�))

∫ T
 (ytt ,w)dt

‖w‖L(,T ;H
(�))

≤ C
{‖y‖,� + ‖y‖,� + ‖f ‖L(,T ;L(�)) + ‖u‖L(,T ;L(�U ))

}
.

This means ytt ∈ L(,T ;H–(�)).
Since g(·) is a convex function on space L(,T ;L(�)) and h(·) is a strictly convex func-

tion on U , we have

∫ T



(
g(y) + h(u)

)
dt ≤ lim

n→∞

∫ T



(
g
(
yn

)
+ h

(
un

))
dt.

So (u, y) is one solution of (.). Since J(u, y(u)) is a strictly convex function on Uad , hence
the solution of the minimization problem (.) is unique. �

The following theorem states the regularity of the solution of (.).

Theorem . Assume that the above condition (a)-(e) holds and A is an H-regularity
elliptic operator of second order and f , ft ,u,ut ∈ C(,T ;L(�U )), y ∈ H

(�)∩H(�).Then
the solution of (.) is regular in the sense that y ∈ L∞(,T ;H

(�)) ∩ L(,T ;H(�)), yt ∈
L∞(,T ;H(�)), ytt ∈ L∞(,T ;L(�)).

Proof Differentiating (.) with respect to t, we have

⎧
⎪⎨

⎪⎩

yttt +Ayt +C(t, t)y +
∫ t
 Ct(t, τ )y(τ )dτ = ft + But , (x, t) ∈ � × (,T],

y = , (x, t) ∈ ∂� × [,T],
y|t= = y, yt|t= = y, x ∈ �,

(.)
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and we obtain

(yttt ,w) + a(yt ,w) + c(t, t; y,w) +
∫ t


ct

(
t, τ ; y(τ ),w

)
dτ = (ft + But ,w). (.)

Taking w = ytt in (.), we have



d
dt

{‖ytt‖,� + a(yt , yt)
}

= (ft + But , ytt) –
d
dt

c(t, t; y, yt) + ct(t, t; y, yt)

+ c(t, t; yt , yt) –
d
dt

∫ t


ct

(
t, τ ; y(τ ), yt

)
dτ + ct(t, t; y, yt)

+
∫ t


ctt

(
t, τ ; y(τ ), yt

)
dτ . (.)

Integrating time from  to t in (.), in the same way as getting (.) and (.), we can
deduce

‖ytt‖L∞(,T ;L(�)) + ‖yt‖L∞(,T ;H(�))

≤ C
{‖y‖,� + ‖y‖,� + ‖Ay‖,� + ‖f ‖L(,T ;L(�))

+ ‖ft‖L(,T ;L(�)) + ‖u‖L(,T ;L(�U )) + ‖ut‖L(,T ;L(�U ))
}
.

Then yt ∈ L∞(,T ;H(�)) and ytt ∈ L∞(,T ;L(�)). Further we have

‖Ay‖L(,T ;L(�))

≤ C
{‖ytt‖L(,T ;L(�)) + ‖f ‖L(,T ;L(�)) + ‖u‖L(,T ;L(�U )) + ‖Cy‖L(,T ;L(�))

}
.

Thus by the Gronwall lemmas, y ∈ L(,T ;H(�)). This completes the proof of Theo-
rem .. �

Remark . In this paper, we suppose that A is independent of t. The above results also
hold for the case A =A(x, t) provided suitable smoothness of the operator A is assumed.

3 The optimality conditions and its finite element approximation
In this section, we study the optimality conditions and the finite element approximation
for the optimal control problem governed by hyperbolic integro-differential equation.
For simplicity, we will only consider the case of quadratic objective functionals as fol-

lows:

J(u, y) =
∫ T



(
g(y) + h(u)

)
dt =

{



∫ T


‖y – zd‖,� dt +

α



∫ T


‖u‖,�U

dt
}

.

Here

g(y) =



∫ T


‖y – zd‖,� dt (.)

http://www.boundaryvalueproblems.com/content/2014/1/173
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and

h(u) =
α



∫ T


‖u‖,�U

dt, (.)

where zd is the observation.

3.1 The optimality conditions of model problem
The following theorem states the optimality conditions of the problem (.).

Theorem . A pair (y,u) ∈ S(,T) × X is the solution of the optimal control problem
(.), if and only there exists a co-state p ∈ S(,T), such that the triple (y,p,u) satisfies the
following optimality conditions:

{
(ytt ,w) + a(y,w) +

∫ t
 c(t, τ ; y(τ ),w)dτ = (f + Bu,w), ∀w ∈ V , t ∈ (,T],

y|t= = y, yt|t= = y;
(.)

{
(q,ptt) + a(q,p) +

∫ T
t c(τ , t;q,p(τ ))dτ = (y – zd,q), ∀q ∈ V , t ∈ [,T),

p|t=T = , pt|t=T = ;
(.)

∫ T



(
αu + B∗p, v – u

)
U dt ≥ , ∀v ∈ Uad, (.)

where B : L(�U ) → L(�) is independent with t. B∗ is the adjoint operator of B.

Proof Let J(u, y) = g(y(u)) + j(u), where

g
(
y(u)

)
=



∫ T


‖y – zd‖,� dt, j(u) =

α



∫ T


‖u‖,�U

dt.

By the standard method in [], the optimal conditions read

j′(u)(v – u) +
(
g
(
y(u)

))′(v – u) ≥ , ∀v ∈Uad, (.)

where

j′(u)(v – u)

= lim
s→+


s
(
j
(
u + s(v – u)

)
– j(u)

)

= lim
s→+


s

(
α



∫ T



[∥∥u + s(v – u)
∥
∥
,�U

– ‖u‖,�U

]
dt

)

=
∫ T


(αu, v – u)U dt, (.)

(
g
(
y(u)

))′(v – u)

= lim
s→+


s
(
g
(
y
(
u + s(v – u)

))
– g

(
y(u)

))

= lim
s→+


s

∫ T



[∥
∥y

(
u + s(v – u)

)
– zd

∥
∥
,� –

∥
∥y(u) – zd

∥
∥
,�

]
dt

http://www.boundaryvalueproblems.com/content/2014/1/173
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= lim
s→+


s

∫ T



[∥∥y
(
u + s(v – u)

)
– y(u)

∥
∥
,� + 

(
y
(
u + s(v – u)

)
– y(u), y – zd

)]
dt

=
∫ T



(
y′(u)(v – u), y – zd

)
dt. (.)

Next, we compute y′(u)(v – u). Let us differentiate the state equation (.) at u in the
direction v. By (.), we have


s

(∫ T



(
ytt(u + sv) – ytt(u),w

)
dt +

∫ T


a
(
y(u + sv) – y(u),w

)
dt

+
∫ T



∫ t


c
(
t, τ ; y(u + sv)(τ ) – y(u)(τ ),w

)
dτ dt

)

=
∫ T


(Bv,w)dt. (.)

Taking the limits in (.) as s → , we obtain

∫ T



((
y′(u)(v)

)
tt ,w

)
dt +

∫ T


a
(
y′(u)(v),w

)
dt +

∫ T



∫ t


c
(
t, τ ;

(
y′(u)(v)

)
(τ ),w

)
dτ dt

=
∫ T


(Bv,w)dt, ∀v ∈Uad,w ∈W , (.)

where we used the equality that for any z,w ∈ L(,T ;H(�)),

∫ T



∫ t


c
(
t, τ ; z(τ ),w(t)

)
dτ dt =

∫ T



∫ T

τ

c
(
t, τ ; z(τ ),w(t)

)
dt dτ . (.)

Then (.) is equivalent to

∫ T



((
y′(u)(v)

)
tt ,w

)
dt +

∫ T


a
(
y′(u)(v),w

)
dt

+
∫ T



∫ T

t
c
(
τ , t;

(
y′(u)(v)

)
(t),w(τ )

)
dτ dt

=
∫ T


(Bv,w)dt, ∀v ∈ Uad,w ∈W . (.)

Define the co-state p ∈ S(,T) satisfying

⎧
⎪⎨

⎪⎩

∫ T
 [(qtt ,p) + a(q,p) +

∫ T
t c(τ , t;q(t),p(τ ))dτ ]dt

=
∫ T
 (y – zd,q)dt, ∀q ∈W ,

p(x,T) = , pt(x,T) = .
(.)

Since p ∈ S(,T), (.) is equivalent to

⎧
⎪⎨

⎪⎩

∫ T
 [(q,ptt) + a(q,p) +

∫ T
t c(τ , t;q(t),p(τ ))dτ ]dt

=
∫ T
 (y – zd,q)dt, ∀q ∈W ,

p(x,T) = , pt(x,T) = .
(.)
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Letting w = p in (.), we have

∫ T



(
B(v – u),p

)
dt =

∫ T



(
v – u,B∗p

)
U dt

=
∫ T



[
(
y′(u)(v – u),ptt

)
+ a

(
y′(u)(v – u),p

)

+
∫ T

t
c
(
τ , t; y′(u)(v – u)(t),p(τ )

)
dτ

]

dt

=
∫ T



(
y – zd, y′(u)(v – u)

)
dt, ∀v ∈ Uad. (.)

By (.) and (.), we have

(
g
(
y(u)

))′(v – u) =
∫ T



(
y′(u)(v – u), y – zd

)
dt

=
∫ T



(
v – u,B∗p

)
U dt, ∀v ∈Uad. (.)

By (.)-(.), and (.), the optimality conditions read

J ′(u)(v – u) =
∫ T



(
αu + B∗p, v – u

)
U dt ≥ , ∀v ∈ Uad, (.)

where p is defined in (.). This completes the proof of Theorem .. �

3.2 Finite element approximation
In the following, we discuss the finite element approximation of the control problem (.).
Here we only consider triangular and conforming elements.
Let �h be a polygonal approximation to � with boundary ∂�h. Let Th be a partitioning

of �h into disjoint regular n-simplices τ , so that �̄h =
⋃

τ∈Th τ̄ . Each element has at most
one face on ∂�h, and τ̄ and τ̄ ′ have either only one common vertex or a whole edge or
face if τ̄ and τ̄ ′ ∈ Th. We further require that Pi ∈ ∂�h �⇒ Pi ∈ ∂� where Pi (i = , . . . , J)
is the vertex set associated with the triangulation Th. As usual, h denotes the diameter of
the triangulation Th. For simplicity, we assume that � is a convex polygon so that � = �h.
Associated with Th is a finite-dimensional subspace Sh of C(�̄h), such that χ |τ are poly-

nomials of order m (m ≥ ) for all χ ∈ Sh and τ ∈ Th. Let Vh = {vh ∈ Sh : vh(Pi) =  (i =
, . . . , J)},Wh = L(,T ;Vh). It is easy to see that Vh ⊂ V ,Wh ⊂W .
Let Th

U be a partitioning of �h
U into disjoint regular n-simplices τU , so that �̄h

U =
⋃

τU∈Th
U

τ̄U . τ̄U and τ̄ ′
U have either only one common vertex or a whole edge or face if

τ̄U and τ̄ ′
U ∈ Th

U . We further require that Pi ∈ ∂�h
U �⇒ Pi ∈ ∂�U where Pi (i = , . . . , J) is

the vertex set associated with the triangulation Th
U . For simplicity, we again assume that

�U is a convex polygon so that �U = �h
U .

Associated with Th
U is another finite-dimensional subspaceUh of L(�h

U ), such that χ |τU
are polynomials of order m (m ≥ ) for all χ ∈ Uh and τU ∈ Th

U . Here there is no require-
ment of continuity. Let Xh = L(,T ;Uh). It is easy to see that Xh ⊂ X. Let hτ (hτU ) denote
the maximum diameter of the element τ (τU ) in Th(Th

U ). To simplify our presentation we
here only consider the piecewise constant finite element space for the approximation of

http://www.boundaryvalueproblems.com/content/2014/1/173
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the control. Let P(�) denote all the zeroth-order polynomial over�. Therefore we always
take Xh = {u ∈ X : u(x, t)|x∈τU ∈ P(τU ),∀t ∈ [,T]}. Uh

ad is a closed convex set in Xh. For
ease of exposition, in this paper we assume that Uh

ad ⊂ (Uad ∩Xh).
Then the finite element approximation of (OCP) is thus defined by (OCP)h:

min
uh∈Uh

ad

{



∫ T


‖yh – zd‖,� dt +

α



∫ T


‖uh‖,�U

dt
}

(.)

such that

⎧
⎪⎨

⎪⎩

( ∂

∂t yh,wh) + a(yh,wh) +
∫ t
 c(t, τ ; yh(τ ),wh)dτ

= (f + Buh,wh), ∀wh ∈ Vh, t ∈ (,T],
yh|t= = yh,

∂
∂t yh|t= = yh ,

(.)

where yh ∈ Wh, yh ∈ Vh, and yh ∈ Vh are the approximations of y and y.
Since (.) is a linear functional equation, and (.) is a strictly convex and finite di-

mensional optimal problem, we can prove that the problem (.)-(.) has a unique so-
lution (yh,uh) ∈ Wh × Uh

ad in the same way as proving the uniqueness of the solution of
(.)-(.).
It is well known that a pair (yh,uh) ∈ Wh ×Uh

ad is a solution of (.)-(.), if and only
there exists a co-state ph ∈ Wh such that the triple (yh,ph,uh) satisfies the following opti-
mality conditions:

{
( ∂

∂t yh,wh) + a(yh,wh) +
∫ t
 c(t, τ ; yh(τ ),wh)dτ = (f + Buh,wh), ∀wh ∈ Vh,

yh|t= = yh,
∂
∂t yh|t= = yh ;

(.)

{
(qh, ∂

∂t ph) + a(qh,ph) +
∫ T
t c(τ , t;qh,ph(τ ))dτ = (yh – zd,qh), ∀qh ∈ Vh,

ph|t=T = , ∂
∂t ph|t=T = ;

(.)

∫ T



(
αuh + B∗ph, vh – uh

)
U dt ≥ , ∀vh ∈Uh

ad. (.)

The optimality conditions in (.)-(.) are the semi-discrete approximation to the
problem (.)-(.). Let πhU be the local averaging operator given by

(πhUw)|τU :=

∫
τU

w
∫
τU


, ∀τU ∈ Th

U . (.)

It is an obvious fact that
∫
�U

w =
∫
�U

πhUw for any w ∈ L(�U ). By the operator πhU , (.)
is equivalent to

∫ T



(
αuh + πhU

(
B∗ph

)
, vh – uh

)
U dt ≥ , ∀vh ∈Uh

ad. (.)

In the next sections, we will analyze the a priori error estimates of the approximation
solution.
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4 A priori error analysis
For simplicity, we consider the zero obstacle problem:

Uad =
{
v ∈ X; v ≥ , a.e. x ∈ �U , t ∈ [,T]

}
, (.)

or the integration obstacle problem:

Uad =
{

v ∈ X;
∫

�U

v ≥ , t ∈ [,T]
}

. (.)

In the case of (.), (.) and (.) yield

(y,p,u) ∈ L
(
,T ;H(�)

) × L
(
,T ;H(�)

) × L
(
,T ;H(�U )

)
. (.)

In the case of (.), (.) and (.) yield

(y,p,u) ∈ L
(
,T ;H(�)

) × L
(
,T ;H(�)

) × L
(
,T ;H(�U )

)
. (.)

In the following, we will give the a priori error estimates in L∞(,T ;H(�))-norm. We
first present some lemmas.

Lemma . Let Uad be given by (.) or (.). Then πhUw ∈Uh
ad for any w ∈Uad .

Let us introduce the auxiliary problem

⎧
⎪⎨

⎪⎩

( ∂

∂t yh(u),wh) + a(yh(u),wh) +
∫ t
 c(t, τ ; yh(u)(τ ),wh)dτ

= (f + Bu,wh), ∀wh ∈ Vh,
yh(u)|t= = yh,

∂
∂t yh(u)|t= = yh ;

(.)

⎧
⎪⎨

⎪⎩

(qh, ∂

∂t ph(u)) + a(qh,ph(u)) +
∫ T
t c(τ , t;qh,ph(u)(τ ))dτ

= (y – zd,qh), ∀qh ∈ Vh,
ph(u)|t=T = , ∂

∂t ph(u)|t=T = .
(.)

Since (yh(u),ph(u)) is the standard finite element of (y,p), from [], we get the following
results.

Lemma . Let (yh(u),ph(u)) be the solutions of the systems (.)-(.). Then we have the
a priori error estimates

∥
∥y – yh(u)

∥
∥
L∞(,T ;H(�)) +

∥
∥
∥
∥

∂

∂t
(
y – yh(u)

)
∥
∥
∥
∥
L∞(,T ;L(�))

+
∥
∥p – ph(u)

∥
∥
L∞(,T ;H(�)) +

∥
∥
∥
∥

∂

∂t
(
p – ph(u)

)
∥
∥
∥
∥
L∞(,T ;L(�))

≤ Ch, (.)

∥
∥y – yh(u)

∥
∥
L(,T ;L(�)) +

∥
∥p – ph(u)

∥
∥
L(,T ;L(�)) ≤ Ch. (.)

Lemma . Let (yh(u),ph(u)) and (yh,ph,uh) be the solutions of the systems (.)-(.) and
(.)-(.). Then we have the a priori error estimate
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∥
∥yh – yh(u)

∥
∥
L∞(,T ;H(�)) +

∥
∥
∥
∥

∂

∂t
(
yh – yh(u)

)
∥
∥
∥
∥
L∞(,T ;L(�))

+
∥
∥ph – ph(u)

∥
∥
L∞(,T ;H(�))

+
∥
∥
∥
∥

∂

∂t
(
ph – ph(u)

)
∥
∥
∥
∥
L∞(,T ;L(�))

+ ‖u – uh‖L(,T ;L(�U )) ≤ C
(
hU + h

)
. (.)

Proof From (.) and (.), we obtain

⎧
⎪⎨

⎪⎩

( ∂

∂t (yh – yh(u)),wh) + a(yh – yh(u),wh) +
∫ t
 c(t, τ ; (yh – yh(u))(τ ),wh)dτ

= (B(uh – u),wh), ∀wh ∈ Vh,
(yh – yh(u))|t= = , ∂

∂t (yh – yh(u))|t= = .
(.)

Similarly, from (.) and (.), we have

⎧
⎪⎨

⎪⎩

(qh, ∂

∂t (ph – ph(u))) + a(qh,ph – ph(u)) +
∫ T
t c(τ , t;qh, (ph – ph(u))(τ ))dτ

= (yh – y,qh), ∀qh ∈ Vh,
(ph – ph(u))|t=T = , ∂

∂t (ph – ph(u))|t=T = .
(.)

Taking wh = ∂
∂t (yh – yh(u)) in (.), we obtain



d
dt

{∥
∥
(
yh – yh(u)

)
t

∥
∥
,� + a

(
yh – yh(u), yh – yh(u)

)}

=
(
B(uh – u),

(
yh – yh(u)

)
t

)

–
d
dt

∫ t


c
(
t, τ ;

(
yh – yh(u)

)
(τ ), yh – yh(u)

)
dτ + c

(
t, t; yh – yh(u), yh – yh(u)

)

+
∫ t


ct

(
t, τ ;

(
yh – yh(u)

)
(τ ), yh – yh(u)

)
dτ . (.)

Integrating time from  to t in (.) and noting that (yh–yh(u))|t= = , ∂
∂t (yh–yh(u))|t= =

, we have

∥
∥
∥
∥

∂

∂t
(
yh – yh(u)

)
∥
∥
∥
∥



,�
+

∥
∥yh – yh(u)

∥
∥
,�

≤ C
∫ t


‖uh – u‖,�U

dτ +C
∫ t



∥
∥
∥
∥

∂

∂t
(
yh – yh(u)

)
∥
∥
∥
∥



,�
dτ + ε

∥
∥yh – yh(u)

∥
∥
,�

+C
∫ t



∥
∥yh – yh(u)

∥
∥
,� dτ +C

∫ t



∫ τ



∥
∥(
yh – yh(u)

)
(s)

∥
∥
,� dsdτ . (.)

Letting ε be small enough, we get

∥
∥
∥
∥

∂

∂t
(
yh – yh(u)

)
∥
∥
∥
∥



,�
+

∥
∥yh – yh(u)

∥
∥
,� +

∫ t



∥
∥yh – yh(u)

∥
∥
,� dτ

≤ C
∫ t


‖uh – u‖,�U

dτ +C
∫ t



{∥
∥
∥
∥

∂

∂t
(
yh – yh(u)

)
∥
∥
∥
∥



,�
+

∥
∥yh – yh(u)

∥
∥
,�

+
∫ τ



∥
∥(
yh – yh(u)

)
(s)

∥
∥
,� ds

}

dτ .
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By the Gronwall lemma, we have
∥
∥
∥
∥

∂

∂t
(
yh – yh(u)

)
∥
∥
∥
∥
L∞(,T ;L(�))

+
∥
∥yh – yh(u)

∥
∥
L∞(,T ;H(�))

≤ C‖uh – u‖L(,T ;L(�U )). (.)

Similarly letting qh = ∂
∂t (ph – ph(u)) in (.), we also have

∥
∥
∥
∥

∂

∂t
(
ph – ph(u)

)
∥
∥
∥
∥
L∞(,T ;L(�))

+
∥
∥ph – ph(u)

∥
∥
L∞(,T ;H(�))

≤ C‖yh – y‖L(,T ;L(�))

≤ C
∥
∥y – yh(u)

∥
∥
L(,T ;L(�)) +C‖u – uh‖L(,T ;L(�U )). (.)

From (.), (.), and Lemma ., we only need to estimate ‖u – uh‖L(,T ;L(�U )).
Since

‖u – uh‖L(,T ;L(�U )) ≤ ‖u – πhU u‖L(,T ;L(�U )) + ‖πhU u – uh‖L(,T ;L(�U )),

we need the estimate ‖πhU u – uh‖L(,T ;L(�U )).
From (.), (.), we have

α‖πhU u – uh‖L(,T ;L(�U ))

= α

∫ T



[
(u,u – uh)U + (uh,uh – πhU u)U + (u,πhU u – u)U

]
dt

≤
∫ T



[(
B∗p,uh – u

)
U +

(
B∗ph,πhU u – uh

)
U + α(u,πhUu – u)U

]
dt

=
∫ T



[(
B∗(p – ph),uh – πhU u

)
U +

(
B∗p + αu,πhU u – u

)
U

]
dt. (.)

On the one hand, we take wh = ph – ph(u) in (.), and qh = yh – yh(u) in (.), and inte-
grate time from  to T , to have

∫ T



((
B(uh – u),ph – ph(u)

)
–

(
yh – y, yh – yh(u)

))
dt

=
(

∂

∂t
(
yh – yh(u)

)
,ph – ph(u)

)∣
∣
∣
t=T

t=
–

(

yh – yh(u),
∂

∂t
(
ph – ph(u)

)
)∣

∣
∣
t=T

t=

+
∫ T



∫ t


c
(
t, τ ;

(
yh – yh(u)

)
(τ ),

(
ph – ph(u)

)
(t)

)
dτ dt

–
∫ T



∫ T

t
c
(
τ , t;

(
yh – yh(u)

)
(t),

(
ph – ph(u)

)
(τ )

)
dτ dt = .

Then
∫ T



(
uh – πhU u,B

∗(p – ph)
)
U dt

=
∫ T



(
uh – πhU u,B

∗(p – ph(u)
))

U dt +
∫ T



(
yh(u) – yh, yh – y

)
U dt
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+
∫ T



(
πhU u – u,B∗(ph – ph(u)

))
U dt

≤
∫ T



(
uh – πhU u,B

∗(p – ph(u)
))

U dt +
∫ T



(
yh(u) – yh, yh(u) – y

)
dt

+
∫ T



(
πhU u – u,B∗(ph – ph(u)

))
U dt

≤ C
{∥∥y – yh(u)

∥
∥
L(,T ;L(�)) +

∥
∥p – ph(u)

∥
∥
L(,T ;L(�)) + hU‖u – πhU u‖L(,T ;L(�U ))

}

+ ε
{‖uh – πhU u‖L(,T ;L(�U )) +

∥
∥yh – yh(u)

∥
∥
L(,T ;L(�))

+
∥
∥ph – ph(u)

∥
∥
L(,T ;H(�))

}

≤ C
{
h + hU‖u – πhU u‖L(,T ;L(�U ))

}
+ ε

{‖uh – πhU u‖L(,T ;L(�U ))

+
∥
∥yh – yh(u)

∥
∥
L(,T ;L(�)) +

∥
∥ph – ph(u)

∥
∥
L(,T ;H(�))

}
. (.)

On the other hand

(
B∗p + αu,πhU u – u

)
U ≤ C

(∥∥B∗p – πhU
(
B∗p

)∥∥
,�U

+ ‖u – πhU u‖,�U

)
. (.)

Applying the above two estimates, from Lemma ., we can get

‖πhU u – uh‖L(,T ;L(�U )) ≤ C
(
hU + h

)
. (.)

Thus we complete the proof of Lemma .. �

Then from Lemma ., Lemma ., and the triangle inequality, we have the following.

Theorem . Let (y,p,u) and (yh,ph,uh) be the solutions of the systems (.)-(.) and
(.)-(.). Then we have the a priori error estimate:

‖y – yh‖L∞(,T ;H(�)) +
∥
∥
∥
∥

∂

∂t
(y – yh)

∥
∥
∥
∥
L∞(,T ;L(�))

+ ‖p – ph‖L∞(,T ;H(�))

+
∥
∥
∥
∥

∂

∂t
(p – ph)

∥
∥
∥
∥
L∞(,T ;L(�))

+ ‖u – uh‖L(,T ;L(�U )) ≤ C(hU + h). (.)

5 Numerical experiment
In this section, we carry out a numerical experiment to verify the a priori error estimates
derived in Section . The numerical tests were done by using AFEpack software package
(see []).
In the numerical example, we take � = �U = [, ]. We use linear finite element spaces

to approximate the state and co-state, and the piecewise constant finite element spaces to
approximate the control. For the time variable, a Euler backward-difference procedure is
used to solve the discrete system. Here the time step size is controlled to demonstrate the
relation between the error function and the spatial sizes.
The numerical example is the following control problem:

min
u≥




∫ 



{∫

�

(y – zd) +
∫

�

u
}

dt (.)
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Table 1 Numerical result: for adaptive time steps 50

L2 – L2 L∞ –H1 L∞ – L2

# nodes # sides # elements u – uh y – yh p – ph ∂
∂t (y – yh)

∂
∂t (p – ph)

7,089 19,074 12,036 3.3e–01 2.1e–01 7.3e–01 2.9e–01 1.5e–01
26,163 74,256 48,144 1.6e–01 1.1e–01 3.5e–01 1.4e–01 7.1e–02
100,419 292,944 192,576 8e–02 5.2e–02 1.6e–01 7.1e–02 3.5e–02
393,363 1,163,616 770,304 4.9e–02 2.5e–02 8e–02 3.5e–02 1.7e–02

subject to

{
ytt –	y –

∫ t
 (t – τ )	ydτ = f + u, x ∈ �,  < t < ,

y|∂� = .
(.)

The solutions of (.)-(.) are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p = –(T – t) sinπx sinπx, T = ,
u = max{–p, },
y = tx( – x)x( – x),
zd = y – ptt +	p +

∫ T
t (t – τ )	pdτ ,

f = ytt –	y –
∫ t
 (t – τ )	ydτ – u.

(.)

The numerical results are put in Table . In Table , the errors in L∞(,T ;H(�)) (L –
L)-norm, L∞(,T ;H(�)) (L –H)-norm and L∞(,T ;L(�)) (L∞ –L)-norm are listed.
From Table , we see that the L-norm convergent rate of the control variable u – uh

is O(h), i.e., we have first-order accuracy with respect to the spatial size; the H-norm
convergent rate of the state and co-state variables y – yh and p – ph also are O(h); and
the L-norm convergent rate of the state and co-state approximation errors ∂

∂t (y– yh) and
∂
∂t (p – ph) are O(h), consistent with our theoretical analysis.

6 Conclusions
In this paper, a quadratic optimal control problem governed by a linear hyperbolic integro-
differential equation and its finite element approximation are investigated for the first
time. By selecting suitable state and control spaces, and defining the bilinear forms, the
mathematical formulation is established. Then a priori estimates have been carried out
using the standard functional analysis techniques, and the existence and regularity of the
solution are provided by using these estimates. We then approximate the optimal control
using the standard finite element method and study the approximation errors. Based on
these studies, a priori error estimates with the optimal convergence rates are derived. Fi-
nally numerical results are presented. Through our investigation, it is clear the standard
finite element method works well, both from the point of view of theory and practice, for
the quadratic optimal control governed by a linear hyperbolic integro-differential equation
when there is no convection term present. However, when there exists strong convection,
it is very likely that very different finite element approximation schemes need to be used.
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