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Abstract

In this paper, the mathematical formulation for a quadratic optimal control problem
governed by a linear hyperbolic integro-differential equation is established. We first
show the existence and regularity for the solution of the optimal control problem.
The finite element approximation is based on the optimality conditions, which are
also derived. Then the a priori error estimates for its finite element approximation are
obtained with the optimal convergence order. Furthermore some numerical tests are
presented to verify the theoretical results.
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1 Introduction

The distributed optimal control problem has been a classic research topic in the discipline
of applied mathematics. Since it is normally difficult to obtain a closed form solution, fi-
nite element approximations of optimal control problems governed by partial differential
equations have been extensively studied in the literature. In particular, there have been
extensive studies in convergence and a priori error estimates of the standard finite ele-
ment approximation of optimal control problems; see for instance, [1-9], although it is
impossible to give even a very brief review here.

For optimal control problems governed by classic linear PDEs such as elliptic, parabolic
and hyperbolic equations, the existence and the optimality conditions are well known, see
[10]. Furthermore their finite element approximation and a priori error estimates were
established long ago, for example, see [1-7, 9]. Recently research has been carried out for
the control governed by the integro-differential equations such as elliptic and parabolic
integro-differential equations; see [11, 12]. However, there exists little research on the op-
timal control problem governed by hyperbolic integro-differential equations, in spite of
the fact that such control problems are widely encountered in practical engineering ap-
plications and scientific computations. Integro-differential equations and their control of
this nature appear in applications such as heat conduction in materials with memory, pop-
ulation dynamics, and visco-elasticity; cf, e.g., [13-15]. The physical backgrounds and the
existence and uniqueness of the solution of the hyperbolic integro-differential equations
have been studied in [15-17]. One very important characteristic of all these models is that
© 2014 Shen et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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they all express conservation of a certain quantity; mass, momentum, heat etc. in any mo-
ment for any subdomain.

Furthermore the finite element approximation of optimal control problem governed
by hyperbolic integro-differential equations has not been studied yet, although there ex-
ists much research on the finite element approximation of hyperbolic integro-differential
equations, see, e.g. [18, 19].

The purpose of this paper is to investigate the weak formulation of the optimal con-
trol problem governed by integro-differential equations of hyperbolic type, and then its
finite element approximation. Furthermore we derive the optimality conditions and es-
tablish the a priori error estimates for the constrained optimal control problems. Finally
we present some numerical tests to verify the theoretical results.

The outline of the paper is as follows. In Section 2, we present the weak formulation
and prove the existence of the solution for the optimal control problem. In Section 3, we
present the optimality conditions and the finite element approximation. In Section 4, we
establish the optimal a priori error estimates for the finite element approximation of the
control problem. Finally, we present some numerical tests, which illustrate the theoretical
results.

2 Model problem and its weak formulation

Let 2, with the Lipschitz boundary 92, and ©;; be bounded open sets in R4, 1 < d < 3,
and T > 0. We introduce some Sobolev spaces. Throughout the paper, we adopt the stan-
dard notation W"4(2) for Sobolev spaces on © with norm || - [/,4,40, and semi-norm
| - [mgq- Set Wy (Q) = {w € W™4(Q) : w|zq = 0}. Also denote W’"’Z(Q)(WS”’Z(Q)) by
H™(2) (H}'(2)), with norm || - ||,;,,, and semi-norm | - |,,,,o. Denote by L*(0, T; W"1(<2))
the Banach space of all L integrable functions from (0,7) into W”4(2) with norm
Vllzs0,mswma(q) = (fOT ||v||SW,,,,q(Q) dt)% for s € [1,00) and the standard modification for
s = 0o. Similarly, one can define the spaces H'(0, T; W"(2)) and C*(0, T; W"4(R2)). The
details can be found in [20]. In addition, c or C denotes a general positive constant inde-
pendent of the unknowns and the mesh parameters introduced later.

To fix ideas, we will take the state space W = L*(0, T; V) with V = H}(£2) and the control
space X = L2(0, T; U) with U = L?>(Qy;). Let the observation space be Y = L2(0, T; H) with
H =1%(Q). Let U,; € X be a convex subset.

We investigate the following optimal control problem governed by a hyperbolic integro-
differential equation:

T
min ] (u,y(u)) :/0 (g) + h(w)) dt (2.1)

uely,gCX

subject to

Vi + Ay + fot C(t,t)y(r)dr =f + Bu, inQ x(0,T],
y=0, on 99 x [0, T, (2.2)
Yle=0 = Yo, Yelt=0 =31, in €2,

where u is the control, y is the state, U,; is a closed convex subset with the respect to
the control, f, yo, and y* are some suitable functions to be specified later. A is a linear
strongly elliptic self-adjoint partial differential operator of second order with coefficients
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depending smoothly on the spatial variables, and C(¢, 7) is an arbitrary second-order linear
partial differential operator, with coefficients depending smoothly on both time and spatial
variables in the closure of their respective domains; B is a suitable continuous operator.
A precise formulation of this problem is given later.

Here we assume g(-) is a convex functional which is continuously differentiable on L2(<2),
and A(-) is a strictly convex continuously differentiable functional on U. We further assume
that s#(u) — +o0 as ||u||yy — +00 and that g(-) is bounded below. Details will be specified
later.

In order to give the weak formulation of problem mentioned above and study the exis-

tence and regularity of the solution, we introduce the L2-inner products

(fhfz):fgﬁfz, Y(fi,f) e H x H, (u,v)u=/Q uv, Yu,v)el x U

and the bilinear forms

a(z,w) = (Az,w),
c(t,t;2,w) = (Ct, T)zw), a(t, 1;2,w) = (Cylt, T)z, w),

cu(t, T52, W) = (C,t(t, 1)z, w).

In the case that fi € V, f, € V*, the dual pair (fi,f>) is understood as (i, f2) v xv+-

We shall assume the convexity conditions
(W (W) -H(v),u- V) >cllu - V”(Z),Qu’ Yu,ve L*(Qu), (2.3)
that is to say, /(-) is uniformly convex. Noting that g(-) is convex, it is easy to see that
(W) -gW)u-v)=0, Yuve HYQ). (2.4)
Also, we have
|(Bv,w)| < clvliogyIWlloe, VveL*(Qu),uc H(Q), (2.5)

because B is a bounded linear operator.

Then a possible weak formulation for the state equation reads

e, w) + aly, w) + fot c(t,t;y(r),wydr = (f + Bu,w), VYwe V,te(0,T],

(2.6)
Ylt=0 = Yo, Yelt=0 = y1-

From [15-17], we know that the above weak formulation has at least one solution in y €
8(0,T) ={y:y € L*(0, T; Hy(2)),y: € L*(0, T; L*(2)), 1 € L*(0, T; H())}.
Therefore the control problem (2.1)-(2.2) can be restated as (OCP):

min ](u,y(u))

uel,y
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subject to

oo W) +a(y, w) + [y c(t, T39(0), w)dt = (f + Bu,w), Ywe V,te(0,T],

(2.7)
Yle=0 = Yo, Yelt=0 = y1-

Next, we will analyze the existence, uniqueness, and regularity of the solution of (2.7).
Assume that there are constants ¢ > 0 and C > 0, such that for all £ and 7 in [0, T]:
(@) alz,z) > c||z||i9, VzeV,
() |alzw)| < Clzlialwle, VYzweV,
© |eltTizw)| < Clizlalwlhe VzweV, (2.8)
) et t;2w)| < Clizliallwle VzweV,
@ |eu(t,T;z,w)| < Clzlhellwlhe YzweV.

In the following, we will give the existence and uniqueness of the solution of the system
(2.7).

Theorem 2.1 Assume that the above conditions (a)-(d) hold. There exists a unique
solution (u,y) for the minimization problem (2.7) such that u € L*(0,T;L*(Q)), y €
Lo9(0, T HY(R), 31 € L0, T; LX(), yue € L0, T; H()).

Proof Let {(u",y")}>2; be a minimization sequence for the system (2.7), then it is clear
that {"}°°, are bounded in L?(0, T; L?(2/)). Thus there is a subsequence of {1}, (still

denoted by {1"}%°,) such that u” converges to u* weakly in L*(0, T; L?(2;;)). For the sub-
sequence 1", we have

(0 w) +a(y",w) + /tc(t,r;y”(r),w(t)) dr = (f + Bu",w),
0

Ywe V,te(0,T]. (2.9)

Taking w = y/ in (2.9), we have

d
S+ aby)

N =

d t
= (f +Bu”,yf’) - E/ C(t; t;yn(t);)’n(t)) dt
0
t
+ c(t, t;y”(t),y”(t)) + / ct(t, t;y”(r),y"(t)) dr, te€(0,T]. (2.10)
0
Integrating time from 0 to ¢ in (2.10), we obtain
1 c 1 c t
1716+ 517 e < 5 nlise + 5 Ioliig + /0 (F + B, 5;) dv + ey

t t T
+C / |y ||iQ dr+C / / Iy(s) ||f,9 dsdr. (2.11)
0 0 0

Page 4 of 17
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From (2.11) and the Gronwall lemmas, we have

t
P = C(nylné,g +lyolliq + /0 (f + Bu",y}) dr)
t T
+C / / Hy”(s)”iszdsdt. (2.12)
0 0
So we get
2 t 2 t
ly" [ + / ||y”||1,9drsC<||y1||3,g+||yo||ig+ / (f+Bu”,y’Z)dr)
0 0
t 9 T )
cc [{lrolas [ rolaa)e e
such that
t
71 = c{intia  olko s [ (75 t)ae . an

Then by (2.14) and (2.11)

t
Iy loq < C{ Iyl + lyollf g + /0 (f +Bu",y}) dr}
t
<Cllnlg s olio)+C [ I+ Burloqdr: sup e @15

Taking the supermaximum in (2.15), we obtain

19 e 07200 = CUIII g + 0le + 1220z + 19 |20 riziayy b 216)

Then from (2.14) and (2.16), we also have
2 2 2 2 2
ly" ||L°°(0,T;H1(Q)) < ClInlsg + 1y0l3q + I 20 720y + " ||L2(0,T;L2(§2u))}' (2.17)

Then we have u” € L*(0, T; L*(Q27)), y" € L=(0, T; H3(R2)) and ¥/ € L>(0, T; L*(R2)). Thus

u — ueL*0,T;L*(Qu)),

¥y — y € L™(0, T; Hy()),

y'(T) — y(T) € H(R),

¥ —> ¥ € L%(0, T;LX(R)),

YHT) —> y(T) € L(Q2).

Integrating time from O to 7 in (2.9), we obtain

T T
(/(T), w(T)) = (32, w(0)) - fo (o wi) dt + / a(y, w) dt

0
T T
+/ /c(t,r;y”(r),w)drdtzf (f + Bu",w)dt, YweW. (2.18)
o Jo 0

Page 5 of 17
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Taking the limits in (2.18) as n — oo, we have

T T
(e(T), (T)) = (31, w(0)) - / (e we) it + / aly,w) dt
0 0

T ot T
+/ / c(t,Tp(x), w) d‘L’dt=/ (f + Bu,w)dt,
o Jo 0

and

T T T rt
/O(y“,w)dt+/0 a(y,w)dt+/0 /;c(t,r;y(r),w(t))dtdt

T
:/ (f + Bu,w)dt, YweW. (2.19)
0
So we have
t
e, w) + aly,w) +/ c(t, t;y(r),w) dt = (f + Bu,w), YweW. (2.20)
0

Further, from (2.9), we obtain

T
el 20,5010 = sup
wer2, st @) Wiz, rmi)

2 2 2
= C{”J’l”o,g + ”yO”l,Q + ”f||L2(0,T;L2(Q)) + ||u||L2(0,T;L2(Qu))}‘

This means y;; € L2(0, T; H™1(Q)).
Since g(-) is a convex function on space L2(0, T; L*(S2)) and k(-) is a strictly convex func-

tion on U, we have

T

fOT<g0’) +h(u)dt < lim | (g(y") +h(u"))dt.

n— 00 0

So (u,y) is one solution of (2.7). Since J(u, y(u)) is a strictly convex function on U, hence

the solution of the minimization problem (2.7) is unique. d
The following theorem states the regularity of the solution of (2.7).

Theorem 2.2 Assume that the above condition (a)-(e) holds and A is an H*-regularity
elliptic operator of second order and ff;, u,u; € C(0, T; L*(Q1)), yo € Hy(Q) NH*(Q). Then
the solution of (2.7) is regular in the sense that y € L>(0, T; Hy(Q2)) N L*(0, T; HX(RQ)), y: €
L>(0, T; HY(R2)), yu € L>(0, T; L*(R2)).

Proof Differentiating (2.2) with respect to £, we have

Ve + Ay + Ct, )y + [y Cot, T)y(T) dT = f, + Buy,  (x,£) € 2 % (0, T,
y=0, (x, 1) € 02 x [0, T7, (2.21)
Yle=0 = Yo, Yelt=0 = y1, x e,
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and we obtain
t
G W) + a(yy, w) + c(t, 5y, W) + / ¢ (t; 5 9(1), w) dt = (f; + Buy, w). (2.22)
0

Taking w = y, in (2.22), we have

d
E { ||ytt||(2),g + ﬂ()/tyyt)}

N =

d
= (f; + Bup, yu) - %C(t, 55,9e) + c(6: 59, 1)
d t
+ C(ty t;yt:yt) - Z / ct(ty T;J/(T);)/t) dt + Ct(t7 tyy,yt)
0

+/ cu(t, T59(1), ) d. (2.23)
0

Integrating time from O to ¢ in (2.23), in the same way as getting (2.16) and (2.17), we can
deduce

2 2
”ytt”Loo(OyT;LZ(Q)) + ”yt”Loo(olT;Hl(Q))
< C{lyolg + IilZg + 1450136 + 11220 1200

2 2 2
+ ”ft”LZ(O,T;LZ(SZ)) + ||u”L2(O,T;L2(Qu)) + ”ut”LZ(O,T;LZ(QU))}'
Then y; € L*(0, T; H(2)) and y;; € L>°(0, T; L2(2)). Further we have

1Ayl 20,7522

< C{yullzo, 2@ + W l2o, @) + 14ll20 ri2@p) + 1CY120,r2@) }-

Thus by the Gronwall lemmas, y € L2(0, T; H(2)). This completes the proof of Theo-
rem 2.2. O

Remark 2.3 In this paper, we suppose that A is independent of ¢. The above results also

hold for the case A = A(x, t) provided suitable smoothness of the operator A is assumed.

3 The optimality conditions and its finite element approximation

In this section, we study the optimality conditions and the finite element approximation

for the optimal control problem governed by hyperbolic integro-differential equation.
For simplicity, we will only consider the case of quadratic objective functionals as fol-

lows:

T 1 T T
Juwy) = /0 (g(y>+h(u))dt={E /0 Iy -zl e+ /0 ||u||é,gudt}.

Here

1 T
)= / Iy - zall2 g d (3.1)
0

Page 7 of 17
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and

a [T )
h(u) = E /0 ”M”o,gu dt, (3.2)
where z, is the observation.

3.1 The optimality conditions of model problem
The following theorem states the optimality conditions of the problem (2.7).

Theorem 3.1 A pair (y,u) € S(0,T) x X is the solution of the optimal control problem
(2.7), if and only there exists a co-state p € S(0, T), such that the triple (y, p, u) satisfies the
following optimality conditions:

e w) + aly, w) + fot c(t,T;9(r),w)dr = (f + Bu,w), VYwe V,te€(0,T], (33)
Ye=0 = Yo, Yele=o = y15 ’
(@) +alg:p) + [ c(t,t;q,p(1)dT = (y~24,q), VqeV,te(0,T), (3.4)
ple=r =0, Pile-1 = 0;
T
f (au +B* ,v—u)udtzo, Yve Uy, (3.5)
0
where B : L*(Qy) — L*(RQ) is independent with t. B* is the adjoint operator of B.
Proof Let J(u,y) = g(y(u)) + j(u), where
1 T a (T
g0)=5 [ Ir-zilbadn =5 [ ulfg,
By the standard method in [21], the optimal conditions read
J @) —-u)+ (g(y®)) v-u) =0, Yve U, (3.6)
where
J@)(v—u)
~ lim = (i + s(v - 1) —j(w)
_si%;(](quS v—u)) - j(u
. 1fa [T 2
- (5 sl -t 1)
T
= f (out, v — u)y dt, (3.7)
0

(W) v-u)

= lim 1(g(y(u +s(v-u)) -g(y(w))

s—0t §

.17 2 2
= Jim oo [ [y stv=10) =2l = Lyt 2l o e

s—0*t 28

Page 8 of 17
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T
- S]_i)r& 2% \ [[ly( + s(v - u)) —y(u)||3Q +2(y(u+s(v—w) —y(u),y - z4) ] dt
T
= /0 (V@) (v - u),y - z4) dt. (3.8)

Next, we compute ¥ (u#)(v — u). Let us differentiate the state equation (2.7) at u in the

direction v. By (2.7), we have

T T
% </0 (ee (e + 5v) =y (), w) dit + /0 a(y(u + sv) - y(u), w) dt

T ot T
+/0 /0c(t,r;y(u+sv)(r)—y(u)(t),w)alrdt):/0 (Bv,w) dt. (3.9)

Taking the limits in (3.9) as s — 0, we obtain

T T T ot
/ ((y’(u)(v))tt, w) dt + / a(y’(u)(v), w) dt + / / c(t, 75 (y’(u)(v))(t), w) drtdt
0 0 o Jo

T
= / (Bv,w)dt, Vvel,,weW, (3.10)
0

where we used the equality that for any z, w € L2(0, T; H(R)),

T ot T pT
f / c(t, 7;2(1), w(t)) drdt= f f c(t, 7;2(1), w(t)) dtdr. (3.11)
0 0 0 T

Then (3.10) is equivalent to

T T
| (0w, we+ [ a/ o)
0 0
T T
5 , dtd
[ enswm)omo)

T
=/ (Bv,w)dt, Vvel,;,weW. (3.12)
0

Define the co-state p € S(0, T') satisfying

[ (Gqup) + algp) + [ ez, t:q(t), p(z)) dr) dt
= [ o -zaq)dt, YgeWw, (3.13)
p(xy T) =0, pt(x, T) =0.

Since p € §(0, T), (3.13) is equivalent to

I g pe) + alg.p) + [ ez, :9(8), p(e)) dr] dt
= Jy G—zaq)dt, YgeW, (3.14)
px,T) =0, pix, T) = 0.
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Letting w = p in (3.12), we have

T T
/ (B(v—u),p)dt = / (v- u,B*p)Udt
0 0
T
= /0 [(y/(u)(v —u),pu) +a(y () (v - u), p)
T
+ / c(r, ty () (v - u)(t),p(t)) d{| dt
T
= / (V= 2za,y (W) (v —w)) dt, Vv e Uy (3.15)
0

By (3.8) and (3.15), we have

T

() (v 1) = / 0/ ) = ),y —za) dit

0

T
= / (v - u,B*p)u dt, Yvel,. (3.16)
0
By (3.6)-(3.8), and (3.16), the optimality conditions read
T
J(u)(v—u)= / (au +B'p,v— u)udt >0, Vveluy, (3.17)
0

where p is defined in (3.14). This completes the proof of Theorem 3.1. d

3.2 Finite element approximation
In the following, we discuss the finite element approximation of the control problem (2.7).
Here we only consider triangular and conforming elements.

Let Q" be a polygonal approximation to Q2 with boundary dQ". Let T be a partitioning
of Q" into disjoint regular n-simplices 7, so that Q" = | J, ;4 T. Each element has at most
one face on 9Q", and 7 and 7’ have either only one common vertex or a whole edge or
face if 7 and 7’ € T". We further require that P; € Q" = P, € 3Q where P; (i=1,...,])
is the vertex set associated with the triangulation 7j,. As usual, / denotes the diameter of
the triangulation T". For simplicity, we assume that 2 is a convex polygon so that Q = Q.

Associated with 7" is a finite-dimensional subspace " of C(Q"), such that x|, are poly-
nomials of order m (m > 1) forall x € S" and t € T". Let V" = {v, € S, : v,(P;) = 0 (i =
L...,J)}, W' =120, T; V"). It is easy to see that V" C V, Wh c W.

Let T}, be a partitioning of Q¥ into disjoint regular n-simplices 77, so that Qf; =
UrueTf, Ty. Ty and 7j; have either only one common vertex or a whole edge or face if
Ty and T € T{‘,. We further require that P; € BQi’J = P; € 0Qy where P; (i=1,...,]) is
the vertex set associated with the triangulation T7. For simplicity, we again assume that
Qy is a convex polygon so that Q; = Q.

Associated with T{‘, is another finite-dimensional subspace UI" of LZ(QZ), such that x|,
are polynomials of order m (m > 0) for all y € U" and 7;; € TZ. Here there is no require-
ment of continuity. Let X* = L2(0, T; U"). It is easy to see that X C X. Let hy(hy,) denote
the maximum diameter of the element (1) in Th(Tf‘,). To simplify our presentation we
here only consider the piecewise constant finite element space for the approximation of
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the control. Let Py(£2) denote all the zeroth-order polynomial over Q. Therefore we always
take X" = {u € X : u(x, B)lxery € Poltu), YVt € [0, T1}. Ufl’d is a closed convex set in X”. For
ease of exposition, in this paper we assume that Ui’d C (Ug N XM,

Then the finite element approximation of (OCP) is thus defined by (OCP)":

(1T 9 a [T )
min § — lyn —zallg o dt + = lunllo,q dt (3.18)
2 Jo 2 Jo

Mheuahd
such that

a2
(L0 wh) + alyn, wi) + [y c(t, T5yu(1), wy) dt
= (f + Bup, wp), Ywy, eV te(0,T], (3.19)

L)
Yile=0 =yﬁ, g}’hh:o =)’{’,

where y, € W", y4 € V", and y/ € V" are the approximations of y, and y;.

Since (3.19) is a linear functional equation, and (3.18) is a strictly convex and finite di-
mensional optimal problem, we can prove that the problem (3.18)-(3.19) has a unique so-
lution (yy,, uy) € W" x U", in the same way as proving the uniqueness of the solution of
(2.1)-(2.2).

It is well known that a pair (yy,, ;) € W x Ll:’d is a solution of (3.18)-(3.19), if and only
there exists a co-state pj, € W” such that the triple (y;, p, u;,) satisfies the following opti-

mality conditions:

:(%yh, wi) + a(yn, wi) + fot c(t, T;yu(t), wp) dt = (f + Buy, wy), Vwy, eV, (3.20)
Yile=o :ylé, %)’hh:o =J’f; )
{(qh, o) +algnpn) + [ (g pu(0)de = i~ zaq), Van € V7, (3.21)
Pule=T =0, S pnle-1 = 0; '

T
/ (ctta + B*pp,vi — up) , dt > 0, Vv, € Ul (3.22)
0

The optimality conditions in (3.20)-(3.22) are the semi-discrete approximation to the

problem (3.3)-(3.5). Let 7, be the local averaging operator given by

S ¥

(T W)l ey = , Ve Th. (3.23)
ftu 1

It is an obvious fact that fﬂu w= fﬂu 7, w for any w € L?(Q2y/). By the operator 7, (3.22)

is equivalent to

T
/ (ozuh + 7Ty, (B*ph), vy — uh)udt >0, Vy,¢€ de. (3.24)
0

In the next sections, we will analyze the a priori error estimates of the approximation

solution.
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4 A priori error analysis
For simplicity, we consider the zero obstacle problem:

Ua={veX;v=0,aexeQyte0,T]} (4.1)
or the integration obstacle problem:

L[adz{veX;/ sz,te[O,T]}. (4.2)

Qu

In the case of (4.1), (3.5) and (3.22) yield

(,p,u) € L*(0, T HA(R)) x L*(0, T; H*(R)) x L*(0, T; H'(Qu)). (4.3)
In the case of (4.2), (3.5) and (3.22) yield

(0, p,u) € L*(0, T HA(R)) x L*(0, T; HA(R)) x L*(0, T; H*(R)). (4.4)

In the following, we will give the a priori error estimates in L>°(0, T; H*(R2))-norm. We
first present some lemmas.

Lemma 4.1 Let U,y be given by (4.1) or (4.2). Then mp, w € U:dfor any w € Uy,y.

Let us introduce the auxiliary problem

(2 yn(ua), wh) + aly (), wi) + [ ot T3y () (1), wy) dt
=(f +Bu,wy), VYw,eVh (4.5)

yu()le=0 = ¥ yn(W)li=0 = ¥
(i Z5pn () + algn pu(@) + [T (v, 6 qu pa(u) (0)) d

= (J/ =24, qh)) th S Vh; (4‘6)
prW)le=1 =0, 2 pn(w)le-1 = 0.

Since (yn(#), pn(u)) is the standard finite element of (y, p), from [18], we get the following
results.

Lemma 4.2 Let (y,(u), pr(u)) be the solutions of the systems (4.5)-(4.6). Then we have the
a priori error estimates

d
= (W) | oo 0.1 + | = —yn()
|y = ||L oTH@) T || 57 (0~ yn(w) O
ad
+ ”p _Ph(”) ”L"Q(O,T;Hl(ﬂ)) + 5([9 _Ph(”)) L OT2(@) <Ch, (4'7)
ly = () ||L2(0,T;L2(SZ)) + |- pn(w) ||L2(0,T;L2(Q)) <Cn’. (4-8)

Lemma 4.3 Let (y,(u), pr(u)) and (v, py, up) be the solutions of the systems (4.5)-(4.6) and
(3.20)-(3.22). Then we have the a priori error estimate
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0
||yh —J’h(u) ||LOO(0,T;H1(Q)) + 8t( J’h(u)) o0 T:L2(@) + ||ph _ph(u)”Loc(O,T;Hl(Q))
d
— (o1 — pu(w)) + = upll 20,1200, = C(huy + hz). (4.9)
dt 150, T5L2()

Proof From (4.5) and (3.20), we obtain

(& O =y, i) + alyn =y ), wi) + [ (8, 75 (o — yu (@) (2), i) de
= (B(up — u),wp), Vwy eV, (4.10)

On = yn())e=0 = 0, 3= yn(w))]1=0 = .

Similarly, from (4.6) and (3.21), we have

(an, %(ph — pu()) + alqu pr— pr) + [ et & qu (01 — pu(w)) (1)) de
=On-2qn), g€V, (4.11)
n = pn@)li=r =0, 5(pn — pa(@))=1 = 0.

Taking wy, = %(yh — y,(u)) in (4.10), we obtain

1d
o E{ | 0h = 90)) 6. + @ (v = 300), 71— yn(20)) }

= (B(uh - u), (yh _yh(u)):)

“a ), c(t,T5 (v = yn()) (0), i — yu(w)) d + (& 8.9 — yn (1), yi — yn(ws))
[t 7 0= 30) @) - 00) (412)

Integrating time from O to ¢ in (4.12) and noting that (y, — y4())l:=0 = 0, 3; O (yp =y ()| =0 =
0, we have

2
+ lyn =1,

”— Vi — yn(n))

t
<C —ul?, dr+C
< /onuh ul2q, dr + /o :

2

de + ey -y,

3
> (7 — yn(w))
0,2

+ C/o Hyh —yh(u)HiQ dt + C/o /0 H (yh —yh(u))(s) ”fg dsdr. (4.13)

Letting ¢ be small enough, we get

2

t
H— (3 = 74 (w)) ||yh-yh<u>Hf,g + /0 9 = (@) g d
t a 2 9
< C/ lloen — Mll(z),gu dr + C/ { y —On =)+ |yn—yn(@) ||1Q
0 0,2

* /0 | h = 9@) ) ds} dr.
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By the Gronwall lemma, we have

. [y = @) | oo 0,701 @)

H— (v = yu(w))
< Cllun — ull200,7:2(02,))- (4.14)

Similarly letting g, = %(ph — pi(u)) in (4.11), we also have

H (Ph pr(u

< Cllyn = yll 20,7520

Lw<o,T,~L2(Q>) + |0 = pul) ||LDO(O’T;H1(Q»

< Cly-yn(w) ||L2(0'T;L2(Q)) + Cllu = upll 20,1202 (4.15)

From (4.14), (4.15), and Lemma 4.2, we only need to estimate ||u — upll12(0,7:12(2,))-

Since
lee = unll 20,7200,y < 18 = Tny vl 20,5020 + 170y 4 = Unll 20, 722(00)

we need the estimate |7, % — unll 1200, 7302 (02,))-
From (3.5), (3.22), we have

2
o ||7Thuu —Up ||L2(0,T;L2(Qu))

T
=oz/ [(u,u—uh)u + (wpy vy, — Ty Wy + (u,nhuu—u)u] dt
0
T
5[ [(B*p,un — u) , + (B pus Tony 1t — ) + oe(thy Ty 1t — 1) s clt
0

T
= / [(B*(p - pn), un — T 1), + (B*p + ocut, 701 — ”)u] dt. (4.16)
0

On the one hand, we take wy, = pj, — p;(u) in (4.10), and gy, = y;, — yu(u) in (4.11), and inte-
grate time from O to T, to have

T
/0 (Bt = ), = p1(10)) = (3 = 303 — y(w0) ) dt

t=T

9 =T 9
= (a_t(yh — (W), pn —ph(u)> L:o - <yh - yn(u), &(ph —ph(u))) o

T pt
* / / c(t, T (v = yu(@)) (), (1 = pu()) (1)) d dt
0 0

T T
. /0 / (2,85 (9 — y00)) (0), (91 — p(0)) (0)) dz e = .
Then
T
/(uh—m,uu,B*(p—ph))udt
0

T T
:/(; (uh—ﬂhuu,B*(p—ph(u)))udt+/0 () =y yn = y) , At
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T
+/ (7tny 1t = w, B* (p1 — pu(w))) , dt
0
. T
5/ (uh—m,uu,B*(p—Ph(M)))udtJr/ (}’h(u)—yh’yh(u)_y)dt
; 0

T
[ e,
0

< C{ly =310 a0 20 + 12 = Pr 20 120y + Hial0 = T W10 12
2 2
+e{llun - Ty Wl 120, 702(00)) o = a0 HLZ(O'T;LZ(Q))
2
+ 2w = 2r@) | 20 7ia11 0}

4 2 2 2
=< C{h + hu”u - ﬂhUu”LZ(O,T;LZ(Qu))} + 8{ ||I/lh - nhU””LZ(O,T;LZ(Qu))

) ”iz(O,T;LZ(Q)) + |l 2n — puur) ”ii’(o,r;Hl(Q))}' (4.17)
On the other hand
(B*p + U, Ty U — u)u < C(”B*p = Ty, (B*p) Hz,szu + |lu— nhuu||(2)‘gu). (4.18)

Applying the above two estimates, from Lemma 4.2, we can get
I7hy = wnll 20,7020 < Clhu + 1°). (4.19)
Thus we complete the proof of Lemma 4.3. O
Then from Lemma 4.1, Lemma 4.2, and the triangle inequality, we have the following.

Theorem 4.4 Let (y,p,u) and (yu, pu, un) be the solutions of the systems (3.3)-(3.5) and
(3.20)-(3.22). Then we have the a priori error estimate:

0
&(y—yh) + 12 = prll oo, 11 (2)

Lo0(0,T5L2(R))

1y = ynllLoe 0,511 () +

0
+ E(lﬂ ~Pn) + e = unll 20,7020y < Clhu + h). (4.20)

L%°(0,T;L2(R))

5 Numerical experiment

In this section, we carry out a numerical experiment to verify the a priori error estimates
derived in Section 4. The numerical tests were done by using AFEpack software package
(see [22]).

In the numerical example, we take © = Q;; = [0,1]2. We use linear finite element spaces
to approximate the state and co-state, and the piecewise constant finite element spaces to
approximate the control. For the time variable, a Euler backward-difference procedure is
used to solve the discrete system. Here the time step size is controlled to demonstrate the
relation between the error function and the spatial sizes.

The numerical example is the following control problem:

gE%AI{AU—Zd)2+Au2}dt (5.1)
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Table 1 Numerical result: for adaptive time steps 50

LZ_LZ Loo_H1 Loo_LZ
# nodes # sides # elements u-up Y-Yn P-Ph % (y-yn) % (p-pn)
7,089 19,074 12,036 3.3e-01 2.1e-01 7.3e-01 2.9e-01 1.5e-01
26,163 74,256 48,144 1.6e-01 1.17e-01 3.5e-01 1.4e-01 7.1e-02
100,419 292,944 192,576 8e-02 5.2e-02 1.6e-01 7.1e-02 3.5e-02
393,363 1,163,616 770,304 49e-02 2.5e-02 8e-02 3.5e-02 1.7e-02
subject to
ytt—Ay—fOt(t—r)Aydtzf+u, x€Q,0<t<], (5.2)
ylaa = 0.
The solutions of (5.1)-(5.2) are
p=—(T-t)?sinmx;sinmwxy, T =1,
u = max{-p, 0},
y =21 (1 - x)w (1 - x2), (53)

Z4=Yy—Pu+t Ap+ftT(t—r)Apdr,
f=yu- Ay—fot(t— T)Aydt —u.

The numerical results are put in Table 1. In Table 1, the errors in L>(0, T; H(S2)) (L* -
L?)-norm, L=(0, T; HY(2)) (L* = HY)-norm and L*®(0, T; L*(R2)) (L*® — L*)-norm are listed.
From Table 1, we see that the L2-norm convergent rate of the control variable u — u,

is O(h), i.e., we have first-order accuracy with respect to the spatial size; the H*-norm

convergent rate of the state and co-state variables y — y;, and p — p;, also are O(h); and

the L2-norm convergent rate of the state and co-state approximation errors % (y —yn) and

%(p — pi) are O(h), consistent with our theoretical analysis.

6 Conclusions

In this paper, a quadratic optimal control problem governed by a linear hyperbolic integro-

differential equation and its finite element approximation are investigated for the first

time. By selecting suitable state and control spaces, and defining the bilinear forms, the

mathematical formulation is established. Then a priori estimates have been carried out

using the standard functional analysis techniques, and the existence and regularity of the

solution are provided by using these estimates. We then approximate the optimal control

using the standard finite element method and study the approximation errors. Based on

these studies, a priori error estimates with the optimal convergence rates are derived. Fi-

nally numerical results are presented. Through our investigation, it is clear the standard

finite element method works well, both from the point of view of theory and practice, for

the quadratic optimal control governed by a linear hyperbolic integro-differential equation

when there is no convection term present. However, when there exists strong convection,

it is very likely that very different finite element approximation schemes need to be used.
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