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Abstract
The local existence and uniqueness of solutions for a nonlinear pseudo-parabolic
equation are established in the Sobolev space C([0, T );Hs(Rn))∩ C1([0, T );Hs–1(Rn)) with
s > n

2 . In addition, we prove the global existence of solutions for two special cases of
the equation.
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1 Introduction
The pseudo-parabolic equation possesses the form

∂u
∂t

– k
∂�u
∂t

= �u + up, x ∈ Rn, t > , ()

where constant k > , p > , and � =
∑n


∂

∂xi
. If k = , Eq. () becomes the heat equation

with sources. If k > , we call Eq. () as the pseudo-parabolicmodel (see Ting [], Showalter
and Ting []). The pseudo-parabolic equation has many important physical backgrounds
such as the seepage of homogeneous fluids through a fissured rock [], the unidirectional
propagation of nonlinear dispersive long waves [, ] and the aggregation of populations
[] (where u is the population density). Equation () is employed in the analysis of non-
stationary processes in the area of semiconductors [, ], where the term k ∂�u

∂t – ∂u
∂t is

regarded as the free electron density rate, term �u is regarded as the linear dissipation
of the free charge current and up is a source of free electron current. Equation () is also
named a Sobolev type model or a Sobolev-Galpern type model [].
The initial-boundary value problem and the initial problem for the linear pseudo-

parabolic equation were investigated in [, , ] where the existence and uniqueness
of solutions for the equation were established. Various dynamic properties of solutions
for nonlinear pseudo-parabolic equations, including singular pseudo-parabolic equations
and degenerate pseudo-parabolic equations can be found in [–]. It is worth to men-
tion that Kaikina et al. [] considered the superlinear case of the Cauchy problem for
Eq. () with p >  and showed the existence and uniqueness of the solutions. Furthermore,
it was shown that the Cauchy problem for Eq. () has a unique global solution under the
assumptions p >  + 

n and sufficiently small initial value u. The existence, uniqueness,
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and comparison principle for mild solutions of Eq. () were established in Cao et al. []
bywhom the large time behavior of the solutions and the critical global existence exponent
and the critical Fujita exponent for Eq. () were obtained.
In this work, we study the following nonlinear pseudo-parabolic equation:

∂u
∂t

– k
∂�u
∂t

= �u + αuq + βDf (u), x ∈ Rn, t > , ()

where q ≥  is an integer, α and β are constants, f (u) is a polynomial with order m,
f () = , andD =

∑n


∂
∂xi

.When β = , Eq. () reduces to Eq. (). The existence and unique-
ness of local solutions for Eq. () are established in the Sobolev space C([,T);Hs(Rn)) ∩
C([,T);Hs–(Rn)) with s > n

 . We find that the local solution in the space Hs(Rn) blows
up if and only if limt→T ‖u(t, ·)‖L∞(Rn) = ∞. For the space dimension n = , assuming that
the initial value u ∈ H(R), α < , and p is an odd number, we find the global existence
of solutions for Eq. (). For the other case n = , p = , and initial value u ∈ H(R), we also
acquire the global existence result of solutions for Eq. ().
The rest of this paper is organized as follows. The main results are stated in Section .

Several lemmas and the proofs of main results are given in Section .

2 Main results
Firstly, we state some notations.
Let Lp = Lp(Rn) ( ≤ p < +∞) be the space of all measurable functions h such that

‖h‖pLp =
∫
Rn |h(t,x)|p dx < ∞. We define L∞ = L∞(Rn) with the standard norm ‖h‖L∞ =

infm(e)= supx∈Rn\e |h(t,x)|. For any real number s, Hs = Hs(Rn) denotes the Sobolev space
with the norm defined by

‖h‖Hs =
(∫

Rn

(
 + |ξ |)s∣∣ĥ(t, ξ )∣∣ dξ

) 

< ∞,

where ĥ(t, ξ ) =
∫
Rn e

–ixξh(t,x)dx.
For T >  and nonnegative number s, C([,T);Hs(Rn)) denotes the Frechet space of all

continuous Hs-valued functions on [,T). We set � = ( –
∑n


∂

∂xi
)  and � = ( – k�)  .

For simplicity, throughout this article, we let c denote any positive constant.
We consider the Cauchy problem for Eq. ()

{
∂u
∂t – k ∂�u

∂t = �u + αuq + βDf (u), x ∈ Rn, t > ,
u(,x) = u(x), x ∈ Rn,

()

which is equivalent to

{
∂u
∂t = – 

k u +�–[ uk + αuq + βDf (u)], x ∈ Rn, t > ,
u(,x) = u(x), x ∈ Rn,

()

where �– is the inverse operator of � =  – k�.
Now, we give our main results for problem ().

Theorem . Let u(x) ∈ Hs(Rn) with s > n
 . Then the Cauchy problem () has a unique

solution u(t,x) ∈ C([,T);Hs(Rn))∩C([,T);Hs–(Rn))where T is themaximum existence
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time.Moreover,

lim
t→T

∥
∥u(t, ·)∥∥Hs(Rn) = ∞

if and only if

lim
t→T

∥
∥u(t, ·)∥∥L∞(Rn) = ∞.

For the case of space dimension n = , we have the result.

Theorem. Let n = , u ∈H(R) in system (), and assume that q is an odd number and
α ≤ . Then problem () has a unique global solution u(t,x) satisfying

u(t,x) ∈ C
(
[,∞);Hs(R)

) ∩C([,∞);Hs–(R)
)
, s >



.

Theorem . Let n = , q = , and u ∈ H(R) in system (). For any constants α and β ,
then problem () has a unique global solution u(t,x) satisfying

u(t,x) ∈ C
(
[,∞);Hs(R)

) ∩C([,∞);Hs–(R)
)
, s >



.

3 Several lemmas
Lemma . Let r and ρ be real numbers such that –r < ρ ≤ r. Then

‖uv‖Hρ (Rn) ≤ c‖u‖Hr (Rn)‖v‖Hρ (Rn), if r >
n

,

‖uv‖Hr+ρ–/(Rn) ≤ c‖u‖Hr (Rn)‖v‖Hρ (Rn), if r <
n

.

This lemma can be found in [] or [].

Lemma . (Kato and Ponce []) If r ≥ , then Hr ∩ L∞ is an algebra.Moreover,

‖uv‖Hr (Rn) ≤ c
(‖u‖L∞(Rn)‖v‖Hr (Rn) + ‖u‖Hr (Rn)‖v‖L∞(Rn)

)
,

where c is a constant depending only on r.

Lemma . Assume u ∈Hs(Rn) with s > n
 . Then problem () admits a unique local solu-

tion

u(t,x) ∈ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)
.

Proof For the first equation of problem (), we have

u = u +
∫ t



(

–
u
k
+�–

[
u
k
+ αuq + βDf (u)

])

dt. ()

Letting functions u and v be in the closed ball BM () of radius M >  about the zero
function in C([,T];Hs(Rn)) and letting 	 be the operator on the right-hand side of (),
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for fixed t ∈ [,T], we get

∥
∥
∥
∥

∫ t



(

–
u
k
+�–

[
u
k
+ αuq + βDf (u)

])

dt

–
∫ t



(

–
v
k
+�–

[
v
k
+ αvq + βDf (v)

])

dt
∥
∥
∥
∥
Hs

≤ T
(

sup
≤t≤T

‖u – v‖Hs(Rn) + sup
≤t≤T

∥
∥uq – vq

∥
∥
Hs(Rn)

+ sup
≤t≤T

∥
∥f (u) – f (v)

∥
∥
Hs(Rn)

)
. ()

Using Lemma . derives

∥
∥uq – vq

∥
∥
Hs(Rn)

=
∥
∥(u – v)

(
uq– + uq–v + · · · + uvq– + vq–

)∥
∥
Hs(Rn)

≤ ‖u – v‖Hs(Rn)
∥
∥
(
uq– + uq–v + · · · + uvq– + vq–

)∥
∥
Hs(Rn)

≤ cMq–
 ‖u – v‖Hs(Rn) ()

and

∥
∥f (u) – f (v)

∥
∥
Hs(Rn) ≤ cMm–

 ‖u – v‖Hs(Rn). ()

From ()-(), we obtain

‖	u – 	v‖Hs ≤ θ‖u – v‖Hs(Rn), ()

where θ = max(cTM, cTM
q–
 , cTMm–

 ) and c is independent of T . Choosing T sufficiently
small such that θ < , we know that operator 	 is a contractive mapping. Applying the
above inequality and () yields

‖	u‖Hs(Rn) ≤ ‖u‖Hs(Rn) + θ‖u‖Hs(Rn). ()

Choosing T sufficiently small such that θM + ‖u‖Hs <M, we know that 	 maps BM ()
to itself. It follows from the contractivemapping principle that themapping	 has a unique
fixed point u in BM (). This completes the proof. �

Lemma . Let function u(t,x) be a solution of problem (), s ≥ n
 and the initial value

u(x) ∈ Hs(Rn). For r ∈ (, s – ], there is a constant c depending only on the coefficients of
the first equation of system () such that

∫

R

(
�r+u

) dx ≤
∫

R

(
�r+u

) dx

+ c
∫ t



(
 + ‖u‖q–L∞(Rn) + ‖u‖m–

L∞(Rn)
)‖u‖Hr+(Rn) dτ . ()
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Proof Using � = –� +  and the Parseval equality gives rise to
∫

R
�ru�r�udx = –

∫

R

(
�r+u

)
�r+udx +

∫

R

(
�ru

) dx.

For r ∈ (, s–], applying (�ru)�r on both sides of the first equation of system (), noting
the above equality and integrating the resultant equation with respect to x by parts, we
obtain the equation



d
dt

[∫

R

((
�ru

) + k
(
�rux

))dx
]

= –
∫

Rn

(
�r+u

)
�r+udx +

∫

Rn

(
�ru

) dx

+ α

∫

Rn

(
�ru

)
�r(uq

)
dx + β

∫

Rn

(
�ru

)
�rf (u)dx

= I + I + I + I. ()

For the terms I and I, we have

|I| ≤ ‖u‖Hr+(Rn) ()

and

|I| ≤ ‖u‖Hr+(Rn). ()

For the terms I and I, using Lemma . gives rise to

|I| ≤
∥
∥�ru

∥
∥
L(Rn)

∥
∥�r(uq

)∥
∥
L(Rn)

≤ c‖u‖Hr (Rn)‖u‖q–L∞(Rn)‖u‖Hr (Rn)

≤ c‖u‖q–L∞(Rn)‖u‖Hr+(Rn) ()

and

|I| ≤ c
∥
∥�ru

∥
∥
L(Rn)

∥
∥�r[Df (u)

]∥
∥
L(Rn)

≤ c
∥
∥�ru

∥
∥
L(Rn)

∥
∥�r+f (u)

∥
∥
L(Rn)

≤ c‖u‖Hr (Rn)
(
 + ‖u‖m–

L∞(Rn)
)‖u‖Hr+(Rn)

≤ c
(
 + ‖u‖m–

L∞(Rn)
)‖u‖Hr+(Rn). ()

It follows from ()-() that




∫

R

[(
�ru

) + k
(
�rux

)]dx –



∫

R

[(
�ru

) + k
(
�rux

)]dx

≤ c
∫ t



(
 + ‖u‖q–L∞(Rn) + ‖u‖m–

L∞(Rn)
)‖u‖Hr+ dτ ,

which results in (). �
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Proof of Theorem . Using Lemma ., for any s > n
 , we have

‖u‖Hs(Rn) ≤ c‖u‖Hs(Rn)e
∫ t
[+‖u‖q–L∞(Rn)+‖u‖m–

L∞(Rn)] dt. ()

For s > n
 , the Sobolev imbedding theorem yields

‖u‖L∞(Rn) ≤ c‖u‖Hs(Rn). ()

Applying the inequalities (), (), and Lemma . completes the proof. �

Proof of Theorem . For the space dimension n = , we write problem () in the form

{
ut – kutxx = uxx + αuq + β[f (u)]x, x ∈ R, t > ,
u(,x) = u(x), x ∈ R.

()

Using
∫
R u

jux dx =  for any integer j and integration by parts, we have




∫

R
u dx

=
∫

R
uut dx

=
∫

R
u
[
kutxx + uxx + αuq + β

[
f (u)

]
x

]
dx

=
∫

R

[
–kuxutx – ux + αuq+

]
dx, ()

which results in



d
dt

∫

R

(
u + kux

)
dx +

∫

R
ux dx – α

∫

R
uq+ dx = , ()

from which we obtain




∫

R

(
u + kux

)
dx +

∫ t



∫

R

[
ux – αuq+

]
dxdt =




∫

R

(
u + kux

)
dx. ()

If q is an odd integer, α ≤ , and u ∈H(R), we get

∥
∥u(t, ·)∥∥L∞(R) ≤ c‖u‖H(R). ()

Using the conclusion of Theorem ., we finish the proof of Theorem .. �

Proof of Theorem . For n =  and q = , using () yields




∫

R

(
u + kux

)
dx +

∫ t



∫

R

[
ux – αu

]
dxdt =




∫

R

(
u + kux

)
dx. ()

Since
∣
∣
∣
∣

∫

R

[
ux – αu

]
dx

∣
∣
∣
∣ ≤ (

 + |α|)‖u‖H(R), ()
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it follows from () and () that

‖u‖H(R) ≤ ‖u‖H(R)e
(+|α|)t , ()

from which we obtain

‖u‖L∞(R) ≤ ‖u‖H(R)e(+|α|)t , ()

which together with Theorem . completes the proof of Theorem .. �
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