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Abstract
In this paper, we consider the three-dimensional generalized MHD equations, a
system of equations resulting from replacing the Laplacian –� in the usual MHD
equations by a fractional Laplacian (–�)α . We obtain a regularity criterion of the
solution for the generalized MHD equations in terms of the summation of the velocity
field u and the magnetic field b by means of the Littlewood-Paley theory and the
Bony paradifferential calculus, which extends the previous result.
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1 Introduction
In this paper, we are concerned with the following three-dimensional generalized MHD
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t + u · ∇u – b · ∇b + (–�)αu +∇P = ,
∂b
∂t + u · ∇b – b · ∇u + (–�)βb = ,

∇ · u = ∇ · b = ,

u(x, ) = u(x), b(x, ) = b(x),

x ∈R
, t > , ()

where u(x, t) denotes the fluid velocity vector field, b is the magnetic field, P = P(x, t) is
the scalar pressure; while u(x) and b(x) are the given initial velocity and initial magnetic
fields, respectively, in the sense of distributions, with ∇ · u = ∇b = ; α,β >  are the
parameters. The generalized MHD equations generalize the usual MHD equations by re-
placing the Laplacian –� by a general fractional Laplacian (–�)α , (–�)β . As α = β = ,
the generalized MHD equations reduce to the usual MHD equations; when α = β =  and
b = , the generalizedMHDequations reduce to theNavier-Stokes equations.Moreover, it
has similar scaling properties and energy estimate to the Navier-Stokes equations and the
MHD equations. The study of system () will improve our understanding of the Navier-
Stokes equations and the MHD equations.
For the D generalizedMHD equations (), Wu [] showed that the system () possesses

a global weak solutions corresponding to any L initial data. Yet, just like the D Navier-
Stokes equations and the D MHD equations, whether there exists a global smooth so-
lution for the D generalized MHD equations () or not is an open problem. Recently,
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many authors studied the regularity problem for the D generalized MHD equations ()
intensively.Wu [, ] obtained some regularity criteria only relying on the velocity u. Zhou
[] considered the following two cases:  ≤ α = β ≤ 

 and  ≤ β ≤ 
 ≤ α < 

 and estab-
lished the Serrin-type criteria involving velocity u. Wu [] obtained the classical Beal-
Kato-Majda criterion for the system (). By means of the Fourier localization technique
and the Bony paraproduct decomposition, Yuan [] extended the Serrin-type criterion to

u ∈ Lq
(
,T ;Bs

p,∞
(
R

)), ()

with α
q + 

p ≤ α –  + s, 
α–+s < p ≤ ∞, – < s ≤ , (p, s) �= (∞, ) provided that  ≤ α =

β ≤ 
 .

On the other hand, suggested by the results in [, ], one may presume upon that there
should have some cancelation properties between the velocity field u and the magnetic
field b. When α = β , plus and minus the first equation of () and the second one, respec-
tively, the system () can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W+

∂t +W– · ∇W+ + (–�)αW+ +∇P = ,
∂W–

∂t +W+ · ∇W– + (–�)αW– +∇P = ,

∇ ·W+ = ∇ ·W– = ,

W+(x, ) =W+
 (x), W–(x, ) =W–

 (x),

()

where

W± = u± b, W±
 (x) = u(x)± b(x).

In this paper, we are interested in what kind of confluence the integrability ofW+ orW–

brings to the weak solution (u,b) of the system (). Furthermore, we shall make efforts
to establish some new regularity criterion of weak solutions of the system () in terms of
W+ or W–. When α = β = , He and Wang [], Gala [], Dong et al. [] establish some
regularity criteria in Lorentz spaces, themultiplier space, and the nonhomogeneous Besov
space, respectively.
The purpose of this paper is to deal with the case α = β of the system (), to establish

certain kind of regularity criteria. The tools we use here are the Littlewood-Paley theory
and the Bony paraproduct decomposition. Before stating our main result, we firstly recall
the definition of weak solutions to the D generalized MHD equations () as follows.

Definition . Suppose that u,b ∈ L(R). The vector-valued function (u,b) is called a
weak solution to the system () on R

 × (,T), if it satisfies the following properties:
() u ∈ L∞(,T ;L(R))∩ L(,T ;Hα(R)), b ∈ L∞(,T ;L(R))∩ L(,T ;Hβ (R));
() ∇ · u =  and ∇ · b =  in the sense of a distribution;
() for any φ,ϕ ∈ C∞

 (R × [,T)) with ∇ · φ =  and ∇ · ϕ = , one has

∫ T



∫

R

(
∂φ

∂t
+u ·∇φ

)

udxdt+
∫

R
u ·φ(x, )dx =

∫ T



∫

R

(
u�αφ+b ·∇φb

)
dxdt,
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and

∫ T



∫

R

(
∂ϕ

∂t
+u ·∇ϕ

)

bdxdt+
∫

R
b ·ϕ(x, )dx =

∫ T



∫

R

(
b�βϕ +b ·∇ϕu

)
dxdt,

where � = (–�)  .

The weak solution (W+,W–) to the system () can be defined in a similar way as follows.

Definition . Suppose that W+
 ,W–

 ∈ L(R). The vector-valued function (W+,W–) is
called a weak solution to the system () on R

 × (,T), if it satisfies the following proper-
ties:
() W+,W– ∈ L∞(,T ;L(R))∩ L(,T ;Hα(R));
() ∇ ·W+ =  and ∇ ·W– =  in the sense of a distribution;
() for any φ,ϕ ∈ C∞

 (R × [,T)) with ∇ · φ =  and ∇ · ϕ = , one has

∫ T



∫

R

(

W+ · ∂φ

∂t
+∇φ :

(
W– ⊗W+) +W+ · �αφ

)

dxdt

+
∫

R
W+

 · φ(x, )dx = 

and

∫ T



∫

R

(

W– · ∂ϕ

∂t
+∇ϕ :

(
W+ ⊗W–) +W– · �αϕ

)

dxdt

+
∫

R
W–

 · ϕ(x, )dx = ,

where � = (–�)  .

From the above two definitions as regards weak solutions, the systems () and () are
equivalent. It is easy to see that (W+,W–) also verifies the system () in the sense of dis-
tribution, provided that (u,b) is a weak solution to the system () as α = β .
Now our main result can be stated.

Theorem . Suppose that  ≤ α = β ≤ 
 , the initial velocity and magnetic field (u,b) ∈

H(R) and ∇ · u = ∇ · b =  in the sense of distribution. Assume that (u,b) is a weak so-
lution to the system () on some interval [,T] with  < T ≤ ∞. If W+ satisfies the following
condition:

W+ ∈ Lq
(
,T ;Bs

p,∞
(
R

)), ()

with α
q + 

p ≤ α –  + s, 
α–+s < p ≤ ∞, – < s ≤ , (p, s) �= (∞, ). Then the weak solution

(u,b) remains smooth on R
 × (,T].

Remark . It should be mentioned that our condition () onW+ does not seem compa-
rable with () on u at least there is no inclusion between them.
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Remark . Our result here improves the recent result obtained by Dong et al. [] as
α = β =  except that s = . However, the method of [] cannot also be applied to the case
s =  in this paper. We shall consider this problem in the future.

Notation Throughout the paper, C stands for generic constant. We use the notation
A� B to denote the relationA≤ CB, and the notationA≈ B to denote the relationsA� B
and B� A. For convenience, given a Banach space X, we denote its norm by ‖ · ‖X . If there
is no ambiguity, we omit the domain of function spaces.

This paper is structured as follows. In Section , we introduce the Littlewood-Paley de-
composition and the Bony paradifferential calculus. In Section , we give the proof of
Theorem . by means of the Littlewood-Paley theory and the Bony paradifferential cal-
culus.

2 The Littlewood-Paley theory
In this section, we will provides the Littlewood-Paley theory and the related facts.
Let S(R) be the Schwarz functions of rapidly decreasing functions. Given f ∈ S(R),

its Fourier transformation F f = f̂ is defined by

f̂ (ξ ) = (π )–



∫

R
e–ix·ξ f (x)dx.

Take two nonnegative radial functions X ,ψ ∈ S(R) supported respectively in B =
{ξ ∈ R

, |ξ | ≤ 
 } and C = {ξ ∈R

,  ≤ |ξ | ≤ 
 } such that

X (ξ ) +
∑

j≥

ψ
(
–jξ

)
= , ξ ∈R

. ()

Let h =F–ψ and h̃ =F–X . The frequency localization operator is defined by

�jf = ψ
(
–jD

)
f = j

∫

R
h
(
jy

)
f (x – y)dy, j ≥ ,

Sjf =X
(
–jD

)
f =

∑

–≤k≤j–

�kf = j
∫

R
h̃
(
jy

)
f (x – y)dy,

�–f = Sf , �jf =  for j ≤ –.

Formally, �j is a frequency projection to the annulus {|ξ | ≈ j}, and Sj is a frequency
projection to the ball {|ξ | � j}. The above dyadic decomposition has a nice quasi-
orthogonality, with the choice of X and ψ ; namely, for any f , g ∈ S(R), we have the fol-
lowing properties:

�i�jf ≡ , |i – j| ≥ ,

�i(Sj–f�jg) ≡ , |i – j| ≥ .
()

Details of the Littlewood-Paley decomposition theory can be found in [, ].
Let s ∈R, the homogeneous Sobolev space is defined by

Hs(
R

) =
{
f ∈ S ′(

R
);‖f ‖Hs < +∞}

,
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where

‖f ‖Hs =
∞∑

j=–

js‖�jf ‖L

and the set S ′(R) of temperate distributions is the dual set of S for the usual pairing.
When dealing with our problems, we will use some paradifferential calculus [, ]. It

is a nice way to define a generalized product between temperate distributions, which is
continuous in fractional Sobolev spaces, and which yet does not make any sense for the
usual product. Let f , g be two temperate distributions. We denote

Tf g �
∑

i≤j

�if�jg =
∑

j

Sj–f�jg, R(f , g)�
∑

|i–j|≤

�if�jg. ()

At least, we have the following the Bony decomposition:

fg = Tf g + Tgf + R(f , g), ()

where the paraproduct T is a bilinear continuous operator. For simplicity, we denote

T ′
f g = Tf g + R(f , g).

We now introduce the inhomogeneous Besov spaces.

Definition . Let s ∈ R,  ≤ p,q ≤ ∞. The inhomogeneous Besov space Bs
p,q(R) is de-

fined by

Bs
p,q

(
R

) =
{
f ∈ S ′(

R
);‖f ‖Bsp,q < ∞}

,

where

‖f ‖Bsp,q =
⎧
⎨

⎩

(
∑∞

j=– jsq‖�jf ‖qLp )

q , for q < ∞,

supj≥– js‖�jf ‖Lp , for q = ∞.

The following lemmas will be useful in the proof of our main result.

Lemma . (Bernstein Inequality, []) Let  ≤ p ≤ q. Assume that f ∈ Lp(R), then there
exists a constant C independent of f , j such that

supp f̂ ⊂ {
ξ : |ξ | ≈ j

} �⇒ ‖f ‖Lp ≤ C–j|α| sup
|β|=|α|

∥
∥∂β f

∥
∥
Lp ,

supp f̂ ⊂ {
ξ : |ξ |� j

} �⇒ ∥
∥∂α f

∥
∥
Lq ≤ Cj|α|+j( p– 

q )‖f ‖Lp .

Lemma . (Embedding Results, [])
() Let  ≤ p ≤ ∞,  ≤ q,q ≤ ∞, and s ≥ s > . Assume that either s > s or s = s and

q ≤ q. Then Bs
p,q(R) ↪→ Bs

q,q (R).
() If  ≤ p ≤ p ≤ ∞ and s = s + ( p –


p
), then Bs

p,q(R) ↪→ Bs
p,q(R).
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3 Proof of Theorem 1.3
This section is devoted to the proof of Theorem .. Since B

α
q + 

p–(α–)
p,∞ (R) ↪→

B
α
q –(α–)

∞,∞ (R) by Lemma ., we only need to prove that Theorem . holds in the case
p = ∞, that is, to prove that if W+ ∈ Bs∞,∞(R) satisfies α

q ≤ α –  + s, then the weak
solution (u,b) to the system () is regular on R

 × (,T].
Now, we denote uk = �ku, θk = �kθ , Pk = �kP, and take γ = α

α–+s . Then we have s =
α
γ
– (α – ). Applying the operator �k to both sides of (), we get

∂W+
k

∂t
+�k

(
W– · ∇W+) + (–�)αW+

k +∇Pk = ,

∂W–
k

∂t
+�k

(
W+ · ∇W–) + (–�)αW–

k +∇Pk = .
()

Then multiplying the first and the second equation of () byW+
k ,W

–
k , respectively, and by

Lemma ., we obtain for k ≥ 



d
dt

∥
∥W+

k
∥
∥
L + ckα

∥
∥W+

k
∥
∥
L = –

〈
�k

(
W– · ∇W+),W+

k
〉
,



d
dt

∥
∥W–

k
∥
∥
L + ckα

∥
∥W–

k
∥
∥
L = –

〈
�k

(
W+ · ∇W–),W–

k
〉
.

()

Denote �k(t)� (‖W+
k (t)‖L + ‖W–

k (t)‖L )

 . Adding the two equations in (), we have



d
dt

�
k(t) + ckα�

k(t) = –
〈
�k

(
W– · ∇W+),W+

k
〉
–

〈
�k

(
W+ · ∇W–),W–

k
〉
. ()

Note that

〈
W– · ∇W+,W+〉 = ,

〈
W+ · ∇W–,W–〉 = .

Then () can be rewritten as



d
dt

�
k(t) + ckα�

k(t) =
〈[
W–,�k

]∇W+,W+
k
〉
+

〈[
W+,�k

]∇W–,W–
k
〉

� I + II, ()

where the commutator operator [A,B] = AB – BA. By the Bony decomposition (), the
term I can be rewritten as

I =
〈
[T(W–)i ,�k]∂iW+,W+

k
〉
+

〈
T ′

�k∂iW+
(
W–)i,W+

k
〉

–
〈
�k

(
T∂iW+

(
W–)i),W+

k
〉
–

〈
�k

(
R
((
W–)i, ∂iW+)),W+

k
〉

� I + I + I + I.

From the definition of �k , we have

[T(W–)i ,�k]∂iW+

=
∑

|k–k′|≤

[
Sk′–

(
W–)i,�k

]
∂iW+

k′

http://www.boundaryvalueproblems.com/content/2014/1/178
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=
∑

|k–k′|≤

[
Sk′–

((
W–)i)�k∂iW+

k′ –�k
(
Sk′–

((
W–)i)∂iW+

k′
)]

=
∑

|k–k′|≤

k
∫

R
h
(
k(x – y)

)[
Sk′–

(
W–)i(x) – Sk′–

(
W–)i(y)

]
∂iW+

k′ (y)dy

=
∑

|k–k′|≤

k
∫

R

∫ 


y · ∇Sk′–

(
W–)i(x – τy)dτ∂ih

(
ky

)
W+

k′ (x – y)dy.

Then by the Minkowski inequality, we get

|I|�
∥
∥W+

k
∥
∥
L

∑

|k–k′|≤

∥
∥∇Sk′–W–∥∥

L
∥
∥W+

k′
∥
∥
L∞

�
∑

k′′≤k′–

∑

|k–k′|≤

k
′′∥∥W–

k′′
∥
∥
L

∥
∥W+

k
∥
∥
L

∥
∥W+

k′
∥
∥
L∞

�
∑

k′′≤k′–

∑

|k–k′|≤

k
′′
k

′(α–– α
γ )

�k�k′′
∥
∥W+∥∥

Bs∞,∞

�
∑

k′≤k–

k′k(α––
α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞ .

For the term I,

T ′
�k∂iW+

(
W–)i =

∑

j

Sj–
(
�k∂iW+)�j

(
W–)i +

∑

|j–j′|≤

�j′
(
�k∂iW+)�j

(
W–)i

=
∑

j

( ∑

–≤j′≤j–

�j′
(
�k∂iW+)

+
(
�j–

(
�k∂iW+) +�j

(
�k∂iW+) +�j+

(
�k∂iW+))

)

· �j
(
W–)i

=
∑

j

( ∑

–≤j′≤j+

�j′
(
�k∂iW+)

)

�j
(
W–)i

=
∑

k′≥k–

Sk′+
(
�k∂iW+)�k′

(
W–)i,

where j is replaced by k′ in the last equality. Noticing that Sk′+�kW+ = �kW+ for k′ > k,
then by Lemma . and the Minkowski inequality, we have

|I| =
∣
∣
∣
∣

∑

k′≥k–

〈
Sk′+�k∂iW+�k′

(
W–)i,W+

k
〉
∣
∣
∣
∣

�
∑

|k–k′|≤

∣
∣
〈
Sk′+�k∂iW+�k′

(
W–)i,W+

k
〉∣
∣

+
∑

k′≥k–

∣
∣
〈
Sk′+�k∂iW+�k′

(
W–)i,W+

k
〉∣
∣

�
∥
∥W+

k
∥
∥
L

∑

|k′–k|≤

∥
∥∇Sk′–W+∥∥

L∞
∥
∥W–

k′
∥
∥
L + k

∥
∥W+

k
∥
∥
L∞

∑

k′≥k–

∥
∥W+

k′
∥
∥
L

∥
∥W–

k′
∥
∥
L
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�
∑

k′′≤k′–

∑

|k–k′|≤

k
′′α(– 

γ )
�k�k′

∥
∥W+∥∥

Bs∞,∞ +
∑

k′≥k–

kα(–

γ )

�
k′
∥
∥W+∥∥

Bs∞,∞

�
∑

k′≤k–

k
′α(– 

γ )
�

k
∥
∥W+∥∥

Bs∞,∞ +
∑

k′≥k–

kα(–

γ )

�
k′
∥
∥W+∥∥

Bs∞,∞ .

Using the support of the Fourier transformation of the term T∂iW+ (W–)i, we get

�k
(
T∂iW+

(
W–)i) = �k

(∑

k′
Sk′–

(
∂iW+)�k′

(
W–)i

)

=
∑

|k–k′|≤

�k
(
Sk′–

(
∂iW+)(W–

k′
)i).

By the Minkowski inequality and Lemma ., we have

|I|�
∑

|k–k′|≤

∥
∥�k

(
Sk′–

(
∂iW+)(W–

k′
)i)∥∥

L
∥
∥W+

k
∥
∥
L

�
∥
∥W+

k
∥
∥
L

∑

|k–k′|≤

∥
∥∇Sk′–W+∥∥

L∞
∥
∥W–

k′
∥
∥
L

�
∑

k′′≤k′–

∑

|k–k′|≤

k
′′α(– 

γ )
�k�k′

∥
∥W+∥∥

Bs∞,∞

�
∑

k′≤k–

k
′α(– 

γ )
�

k
∥
∥W+∥∥

Bs∞,∞ .

With the incompressibility condition ∇ · u = , we have

�kR
((
W–)i, ∂iW+) = �k

( ∑

|k′–k′′|≤

�k′
(
W–)i�k′′

(
∂iW+)

)

=
∑

k′ ,k′′≥k–;|k′–k′′|≤

�k
(
�k′

(
W–)i�k′′

(
∂iW+))

=
∑

k′ ,k′′≥k–;|k′–k′′|≤

∂i�k
(
�k′

(
W–)i�k′′W+),

then by Lemma ., we get

|I|� k
∥
∥W+

k
∥
∥
L∞

∑

k′≥k–

∥
∥W+

k′
∥
∥
L

∥
∥W–

k′
∥
∥
L

�
∑

k′≥k–

kα(–

γ )

�
k′
∥
∥W+∥∥

Bs∞,∞ .

Combining the above estimates for I-I, we have

|I| �
∑

k′≤k–

k
′
k(α––

α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞ +
∑

k′≤k–

k
′α(– 

γ )
�

k
∥
∥W+∥∥

Bs∞,∞

+
∑

k′≥k–

kα(–

γ )

�
k′
∥
∥W+∥∥

Bs∞,∞ . ()
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For the second term II of (), by similar arguments to the ones used to derive () one
can get

|II|�
∑

k′≤k–

k
′α(– 

γ )
�

k
∥
∥W+∥∥

Bs∞,∞

+
∑

k′≤k–

k
′
k(α––

α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞

+
∑

k′≥k–

kk
′(α–– α

γ )
�k�k′

∥
∥W+∥∥

Bs∞,∞ . ()

Inserting () and () into () one infers that



d
dt

�
k(t) + kα�

k(t)

�
∑

k′≤k–

k
′α(– 

γ )
�

k
∥
∥W+∥∥

Bs∞,∞ +
∑

k′≥k–

kα(–

γ )

�
k′
∥
∥W+∥∥

Bs∞,∞

+
∑

k′≤k–

k′k(α––
α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞

+
∑

k′≥k–

kk
′(α–– α

γ )
�k�k′

∥
∥W+∥∥

Bs∞,∞ . ()

The proof of Theorem . in the rest of this section is divided into two cases.
Case I: s ∈ [, ). Take σ ∈ (, 

α
), then  – σα > . Let

ϕ(t)� sup
k≥–

kσα�k(t), ω(t)� sup
k≥–

kα(σ+)
∫ t


�

k(τ )dτ .

Multiplying () with kσα and integrating with respect to t, we have

kσα�
k(t) – kσα�

k() + kα(σ+)
∫ t


�

k(τ )dτ

�
∫ t



∑

k′≤k–

kσαk
′α(– 

γ )
�

k
∥
∥W+∥∥

Bs∞,∞ dτ

+
∫ t



∑

k′≥k–

kσαkα(–

γ )

�
k′
∥
∥W+∥∥

Bs∞,∞ dτ

+
∫ t



∑

k′≤k–

kσαk
′
k(α––

α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞ dτ

+
∫ t



∑

k′≥k–

kσαkk
′(α–– α

γ )
�k�k′

∥
∥W+∥∥

Bs∞,∞ dτ

�A +A +A +A. ()

http://www.boundaryvalueproblems.com/content/2014/1/178


Zhang and Qiu Boundary Value Problems 2014, 2014:178 Page 10 of 13
http://www.boundaryvalueproblems.com/content/2014/1/178

By Lemma . and the Hölder inequality, we have

A =
∫ t



∑

k′≤k–

(
kσα�k

) 
γ
(
k(σ+)α�k

)– 
γ (k

′–k)(– 
γ )∥∥W+∥∥

Bs∞,∞ dτ

�
∫ t



(
sup
k≥–

kσα�k

) 
γ
(

sup
k≥–

kα(σ+)�k

)– 
γ ∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ

) 
γ

ω
– 

γ (t),

A =
∫ t



∑

k′≥k–

(
k′σα�k′

) 
γ
(
k′(σ+)α�k′

)– 
γ α(k–k

′)(σ+– 
γ )∥∥W+∥∥

Bs∞,∞ dτ

�
∫ t



(
sup
k′≥–

k
′σα�k′

) 
γ
(

sup
k′≥–

k
′α(σ+)�k′

)– 
γ ∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ

) 
γ

ω
– 

γ (t),

A =
∫ t



∑

k′≤k–

(
kσα�k

) 
γ –(k

′σα�k′
)(
k(σ+)α�k

)– 
γ (k

′–k)(–σα)∥∥W+∥∥
Bs∞,∞ dτ

�
∫ t



(
sup
k≥–

kσα�k

) 
γ
(

sup
k≥–

kα(σ+)�k

)– 
γ ∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ

) 
γ

ω
– 

γ (t),

and

A =
∫ t



∑

k′≥k–

(
k

′σα�k′
)(
kσα�k

) 
γ –(k(σ+)α�k

)– 
γ

· (k–k′)(+σα+ α
γ –α)∥∥W+∥∥

Bs∞,∞ dτ

�
∫ t



(
sup
k′≥–

k
′σα�k′

) 
γ
(

sup
k′≥–

k
′α(σ+)�k′

)– 
γ ∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ

) 
γ

ω
– 

γ (t).

Combining the above estimates for A-A with () and the Young inequality, we have

ϕ(t) – ϕ() +ω(t)≤ C
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ

) 
γ

ω
– 

γ (t)

≤ C
∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ +ω(t),

which implies that

ϕ(t) ≤ ϕ() +C
∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕ(τ )dτ .
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Then the Gronwall inequality gives

ϕ(t) ≤ Cϕ() exp

(

C
∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ dτ

)

. ()

Case II: s ∈ (–, ). Let

ϕ(t)� sup
k≥–

k(–

γ )

�k(t), ω(t)� sup
k≥–

kαγ

∫ t


�

γ
k (τ )dτ .

Multiplying () by kα(γ–)�(γ–)
k , and integrating with respect to t, it follows that

kα(γ–)�γ
k (t) – kα(γ–)�γ

k () + kαγ

∫ t


�

γ
k (τ )dτ

�
∫ t



∑

k′≤k–

kα(γ–)�(γ–)
k k

′α(– 
γ )

�
k
∥
∥W+∥∥

Bs∞,∞ dτ

+
∫ t



∑

k′≥k–

kα(γ–)�(γ–)
k kα(–


γ )

�
k′
∥
∥W+∥∥

Bs∞,∞ dτ

+
∫ t



∑

k′≤k–

kα(γ–)�(γ–)
k k

′
k(α––

α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞ dτ

+
∫ t



∑

k′≥k–

kα(γ–)�(γ–)
k kk

′(α–– α
γ )

�k�k′
∥
∥W+∥∥

Bs∞,∞ dτ

� B +B +B +B. ()

By Lemma . and the Hölder inequality, we have

B =
∫ t



∑

k′≤k–

(
kαγ �

γ
k

)– 
γ
(
kα(–


γ )

�k
)α(k

′–k)(– 
γ )∥∥W+∥∥

Bs∞,∞ dτ

�
∫ t



(
sup
k≥–

kαγ �
γ
k

)– 
γ
(

sup
k≥–

kα(–

γ )

�k

)∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ

) 
γ

ω
– 

γ (t),

B =
∫ t



∑

k′≥k–

(
kαγ �

γ
k

)– 
γ
(
k

′α(– 
γ )

�k′
)α(k–k

′)(– 
γ )∥∥W+∥∥

Bs∞,∞ dτ

�
∫ t



(
sup
k′≥–

k
′αγ �

γ
k′

)– 
γ
(

sup
k′≥–

k
′α(– 

γ )
�k′

)∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ

) 
γ

ω
– 

γ (t),

B =
∫ t



∑

k′≤k–

(
kαγ �

γ
k

)– 
γ · kα(– 

γ )
�k · k′α(– 

γ )
�k′

· (k′–k)(–α+ α
γ )∥∥W+∥∥

Bs∞,∞ dτ
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�
∫ t



(
sup
k≥–

kαγ �
γ
k

)– 
γ
(

sup
k≥–

kα(–

γ )

�k

)∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ

) 
γ

ω
– 

γ (t),

and

B =
∫ t



∑

k′≥k–

(
kαγ �

γ
k

)– 
γ · kα(– 

γ )
�k · k′α(– 

γ )
�k′

· (k–k′)(–α+ α
γ )∥∥W+∥∥

Bs∞,∞ dτ

�
∫ t



(
sup
k′≥–

k
′αγ �

γ
k′

)– 
γ
(

sup
k′≥–

k
′α(– 

γ )
�k′

)∥
∥W+∥∥

Bs∞,∞ dτ

�
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ

) 
γ

ω
– 

γ (t).

Inserting the above estimates for B-B into () and by the Young inequality, we have

ϕγ (t) – ϕγ () +ω(t) ≤ C
(∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ

) 
γ

ω
– 

γ (t)

≤ C
∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ +ω(t),

which gives

ϕγ (t) ≤ ϕγ () +C
∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ϕγ (τ )dτ .

Again, by the Gronwall inequality, we have

sup
t∈(,T]

ϕγ (t)≤ ϕγ () exp

(

C
∫ t



∥
∥W+(τ )

∥
∥γ

Bs∞,∞ dτ

)

. ()

By Lemma ., as s ∈ [, ), for some η < σα, the following embedding holds:

Bσα
,∞

(
R

) ↪→ Bη
,

(
R

) =Hη
(
R

).

According to the local existence with the condition [] η > 
 – α, thus σ can be taken as


 –α

α
< σ < 

α
. When s ∈ (–, ), for α ∈ (,  ), one has

–s
 ≥ 

 – α, which infers that

B
–s


,∞
(
R

) ↪→ Bη
,

(
R

) =Hη
(
R

).

Then for any q ≥ γ , ifW+ ∈ Lq(,T ;Bs∞,∞(R)) with α
q ≤ α

γ
= α –  + s, by the standard

Picard method [, ], we can easily show that the solution (u,b) remains smooth at time
t = T .
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