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Abstract
In this paper, we study the existence and multiplicity of coexistence states for an
elliptic system modeling two subpopulations of the same species competing for
resources. Our results generalize and complement the work of Bouguima et al.
(Nonlinear Anal., Real World Appl. 9:1184-1201, 2008). In particular, an open problem
proposed by Bouguima et al. is partially solved.
MSC: 34B10; 34B18

Keywords: elliptic systems; coexistence states; existence; multiplicity; bifurcation

1 Introduction
This paper studies the coexistence states of the nonlinear elliptic system

⎧
⎪⎪⎨

⎪⎪⎩

–�u = a(x)v – e(x)u – c(x)u(u + v), x ∈ �,

–�v = b(x)u – f (x)v – d(x)v(u + v), x ∈ �,

u = v = , x ∈ ∂�,

(.)

where � is a bounded regular domain of Rn (n ≥ ), i.e., �̄ is an n-dimensional compact
connected smooth submanifold of Rn with boundary ∂�. Throughout the paper, we sup-
pose that a, b, c, d, e, and f are positive functions in Cα(�̄) for a certain α ∈ (, ).
System (.) arises from population dynamics where it models the steady-state solutions

of the corresponding nonlinear evolution problem [], where u and v represent, respec-
tively, the concentrations of the adult and juvenile populations. The function a gives the
rate at which juveniles become adults and as adults give birth to juveniles, the function
b corresponds to the birth rate of the population, e and f reflect the result of harvesting
a portion of the population (fishing effort for marine population), c and d measure the
competition between u and v. Both populations are living in the same region �, and the
boundary conditions in (.) may be interpreted as the condition that the populations u
and vmay not stay on ∂�. The Laplacian operator shows the diffusive character of u and
v within �.
Obviously, system (.) can be rewritten as

⎧
⎨

⎩

LU = A(x)U – F(U), x ∈ �,

U = , x ∈ ∂�,

© 2014 Ma et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://www.boundaryvalueproblems.com/content/2014/1/185
mailto:mary@nwnu.edu.cn


Ma et al. Boundary Value Problems 2014, 2014:185 Page 2 of 7
http://www.boundaryvalueproblems.com/content/2014/1/185

where U = (u, v)T , L = diag(–�, –�),

A(x) =

(
–e(x) a(x)
b(x) –f (x)

)

and F the nonlinear term such that F(U)(x) =
( c(x)u(u+v)
d(x)v(u+v)

)
. In the following, for q ∈ L∞(�),

we denote by q and q the essential infimum and supremum of q, respectively. Let ρ(q) be
the principal eigenvalue of the linear problem

⎧
⎨

⎩

–�u + q(x)u = ρu, x ∈ �,

u = , x ∈ ∂�,

and ϕ(q) the principal eigenfunction associated to ρ(q). Then it is not difficult to check
that ρ(q) = q + λ and ϕ(q) = ϕ if q(·) ≡ q is a constant. Here (λ,ϕ) is the principal
eigen-pair of –� under a homogeneous Dirichlet boundary condition such that ϕ(x) > ,
x ∈ �, and

‖ϕ‖∞ = max
x∈�̄

∣
∣ϕ(x)

∣
∣ = .

In recent years, system (.) has been studied by several authors, see for example, [–]
and the references listed therein. In [] and [], system (.) was discussed as a problem in
optimal control. Existence and uniqueness results are given in terms of hypotheses which
are appropriate for control problems, that is, the coefficients are required to satisfy certain
uniform bounds. Brown and Zhang [] studied system (.) subject to Neumann boundary
condition, and obtainedmore precise existence results in terms of the principal eigenvalue
of

⎧
⎨

⎩

LU –A(x)U = μU , x ∈ �,
∂U
∂n = , x ∈ ∂�,

where n is the outward unit normal vector on ∂�; see [, Theorem .]. Recently,
Bouguima et al. [] investigated system (.) and showed that it has a positive solution
if and only if λ(L – A(x)) <  via fixed point theory, where λ(L – A(x)) is the principal
eigenvalue of the linear eigenvalue problem

⎧
⎨

⎩

LU –A(x)U = λU , x ∈ �,

U = , x ∈ ∂�.
(.)

We note that λ(L – A(x)) exists if a(x) > , b(x) >  for x ∈ �; see Lemma  and Corol-
lary  in [] for the details. In addition, implicit function theorem was adopted in [] to
discuss the limit case of system (.), where the authors supposed that a(x) = ρ(e)+εa(x),
b(x) = ρ(e) + εb(x) with ε >  sufficiently small and a,b ∈ L∞

+ (�); the strength of the
crowding effect and the competition between u and v are negligible, i.e., c(x) = εc(x),
d(x) = εd(x) for c,d ∈ L∞

+ (�), and small ε > ; the functions e and f are assumed to
have the same effect, that is, f (x) = e(x) + εf(x) with f ∈ L∞

+ (�) and ε >  is small enough.
Under the above assumptions, Bouguima et al. obtained the followingmultiplicity results.
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Theorem A [, Theorem ] Assume that

α :=



∫

�

(a + b – f)ϕ
 (e)dx > , β :=




∫

�

(c + d)ϕ
 (e)dx > .

Then there exists ε > , such that system (.) has two nontrivial solutions of the form

ξi(ε) = Si(ε)
(
ϕ(e),ϕ(e)

)
+U

(
Si(ε), ε

)
, i = , , (.)

where S : (–ε, ε) → V and S : (–ε, ε) → V∗ are some functions w.r.t. ε, and V, V∗ are
neighborhoods of  and α

β
, respectively. The function U(Si(ε), ε) (i = , ) appearing in (.)

is given as in [, Lemma ].

By an inspection of the arguments in [, Section ], it is easy to see that the second
nontrivial solution ξ obtained in Theorem A is positive and satisfies

(
u(ε), v(ε)

) → α

β

(
ϕ(e),ϕ(e)

)
as ε → ,

see also [, Theorem ]. However, Bouguima et al. pointed out that the positiveness of the
small solution ξ is not obvious and the question remains open. In this paper, we shall give
a partial answer to this open problem.
Our main result can be stated as below.

Theorem . Let a, b, f, and e be positive constants such that a + b – f > . Then the
small solution ξ is positive.

Remark . We note that the constants α and β defined in [] were wrong, and this mis-
take is corrected in the statement of Theorem A. Moreover, we would like to point out
that under the assumptions (which are similar to the corresponding ones of TheoremA) of
Theorem ., the discussions in [, Section ] can also be carried out, and thus the positive-
ness of ξ remains unclear. However, in our case the positiveness of ξ could be obtained.
Consequently, the open problem proposed by Bouguima et al. [] is partially solved, and
it is the first time to obtain the multiplicity of positive solutions for system (.). For other
related results on this topic, we refer the readers to [–] and the references therein.

2 Proof of Theorem 1.1
To obtain the positiveness of ξ, we introduce the following nonlinear elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = ãu + b̃v + f (x,u, v), x ∈ �,

–�v = c̃u + d̃v + g(x,u, v), x ∈ �,

u = v = , x ∈ ∂�,

(.)

where ã, b̃, c̃, d̃ are real parameters. For a matrix Ã =
( ã b̃
c̃ d̃

)
, we denote by σ (Ã) the spec-

trum of Ã. Let σ (–�) be the spectrum of –� under a homogeneous Dirichlet boundary
condition. We shall also use the notation Ã =

( ã b̃
c̃ d̃

)
. Let S be the closure of the set of

nontrivial solutions of system (.). We define the Banach space

E =
{
u ∈ C+α(�̄) : u =  on ∂�

}
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equipped with the usual norm. Denoting by ∂/∂n the outward normal derivative, we in-
troduce

K+ :=
{

u ∈ E : u >  in �,
∂u
∂n

<  on ∂�

}

, K– = –K+.

The subsets K+, K–, and K = K+ ∪K– are open in E.

Lemma . [, Lemma .] Assume that f and g are continuous functions in � ×R
 sat-

isfying the following conditions:
(H) f (x, r) and g(x, r) are continuous and locally Lipschitz with respect to

r = (r, r) ∈R
.

(H) f (·, r) = o(|r|), g(·, r) = o(|r|) at , uniformly in x ∈ �̄.
Suppose σ (Ã)∩σ (–�) = {λ} and either b̃(λ – ã) >  or c̃(λ – d̃) > .Then there exists
a neighborhood U of (Ã, (, )), such that if (A, (u, v)) ∈ U ∩ S for some matrix A and
(u, v) �= (, ), then either u, v ∈ K+ or u, v ∈ K–.

Proof of Theorem . We shall consider the system

⎧
⎪⎪⎨

⎪⎪⎩

–�u = –eu + (λ + e)v – εc(x)u(u + v), x ∈ �,

–�v = (λ + e)u – ev – εd(x)v(u + v), x ∈ �,

u = v = , x ∈ ∂�.

(.)

Let

A =

(
–e λ + e

λ + e –e

)

.

Then it is not hard to check that A has two eigenvalues μ = λ and μ = –λ – e, and
therefore σ (A)∩ σ (–�) = {λ}. Moreover,

b̃(λ – ã) = (λ + e)
(
λ – (–e)

)
= (λ + e) > ,

c̃(λ – d̃) = (λ + e)
(
λ – (–e)

)
= (λ + e) > .

Clearly, the functions f (x,u, v) := –εc(x)u(u+v) and g(x,u, v) := –εd(x)v(u+v) satisfy (H)
and (H). Consequently, all of the assumptions of Lemma . are satisfied.
On the other hand, by Theorem A, we know that the system

⎧
⎪⎪⎨

⎪⎪⎩

–�u = –eu + (λ + e + εa)v – εc(x)u(u + v), x ∈ �,

–�v = (λ + e + εb)u – (e + εf)v – εd(x)v(u + v), x ∈ �,

u = v = , x ∈ ∂�

(.)

admits the nontrivial small solution ξ, i.e., the nontrivial solution (Aε , (uε , vε)) with uε and
vε small, where

Aε = A + ε

(
 a
b –f

)

.
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In addition, since ε >  is sufficiently small, it follows from Lemma . that the nontrivial
small solution (Aε , (uε , vε)) lies in the neighborhood U of (A, (, )), and either uε , vε ∈
K+ or uε , vε ∈ K–.
We claim that uε , vε ∈ K+.
Suppose on the contrary that uε , vε ∈ K–. Then we have

uε(x) < , vε(x) < , x ∈ �, (.)

and they satisfy

⎧
⎪⎪⎨

⎪⎪⎩

–�uε = –euε + (λ + e + εa)vε – εc(x)uε(uε + vε), x ∈ �,

–�vε = (λ + e + εb)uε – (e + εf)vε – εd(x)vε(uε + vε), x ∈ �,

uε = vε = , x ∈ ∂�.

(.)

LetAT
ε be the transpose ofAε . Then it is easy to verify thatL–AT

ε is the adjoint operator of
L–Aε . By thewell-known functional analytic techniques (see [, ] and [, Lemma.]),
we know that the principal eigenvalue λ(L–Aε) of L–Aε is also the principal eigenvalue
of L – AT

ε . In the following, we denote by (ψ,ψ)T the unique eigenfunction of L – AT
ε

(up a constant multiple) associated to λ(L – Aε), such that ψ > , ψ >  in �. Then
(ψ,ψ)T verifies that

⎧
⎪⎪⎨

⎪⎪⎩

–�ψ = –eψ + (λ + e + εb)ψ + λ(L –AT
ε )ψ, x ∈ �,

–�ψ = (λ + e + εa)ψ – (e + εf)ψ + λ(L –AT
ε )ψ, x ∈ �,

ψ = ψ = , x ∈ ∂�.

(.)

Multiplying the system (.) by (ψ,ψ)T , the system (.) by (uε , vε)T , integrating over �,
and subtracting, we can get

λ
(
L –AT

ε

) ·
∫

�

(ψuε +ψvε)dx

= –ε

∫

�

(
c(x)uε(uε + vε)ψ + d(x)vε(uε + vε)ψ

)
dx,

which together with (.) implies λ(L–AT
ε ) > , and hence λ(L–Aε) > . Consequently,

by [, Corollary ], we know that system (.) has no positive solutions. But this is impos-
sible since (.) admits a positive solution ξ. �

3 Related results
In this section, we shall investigate the effect of death rates and birth rates on the coexis-
tence states. Bouguima et al. [] established the following existence result.

Theorem B [, Theorem ] Assume f = e + k with k ∈ R. If ab > ρ(e)ρ(f ), then system
(.) admits at least one positive solution.

Obviously, the assumption f = e + k, k ∈ R used in Theorem B is too restrictive, we
shall weaken it below. Since a, b, c, d, e, and f are Cα(�̄) continuous positive functions,

http://www.boundaryvalueproblems.com/content/2014/1/185
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system (.) has a principal eigenvalue λ(L–A(x)), which corresponds to a unique (up to
a constant multiple) eigenfunction

U = (u, v)T ∈ C,α(�̄)×C,α(�̄)

satisfying u > , v >  in �.

Theorem . System (.) has at least one positive solution provided that

max{e + λ, f + λ} < min

{

a
∫

�
ϕ(e)v dx

∫

�
ϕ(e)u dx

,b
∫

�
ϕ(f )u dx

∫

�
ϕ(f )v dx

}

. (.)

Proof By [, Corollary ], to prove the theoremweneed only to show thatλ(L–A(x)) < .
Recall that U = (u, v)T satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–�u + e(x)u – a(x)v = λ(L –A(x))u, x ∈ �,

–�v + f (x)v – b(x)u = λ(L –A(x))v, x ∈ �,

u = v = , x ∈ ∂�.

(.)

Multiplying (.) with
( ϕ(e)

ϕ(f )
)
, multiplying the system

⎧
⎨

⎩

–�ϕ(e) + e(x)ϕ(e) = ρ(e)ϕ(e), x ∈ �,

–�ϕ(f ) + f (x)ϕ(f ) = ρ(f )ϕ(f ), x ∈ �,
(.)

with (u, v)T , integrating over �, and subtracting, we can obtain

λ
(
L –A(x)

)
(∫

�

ϕ(e)u dx +
∫

�

ϕ(f )v dx
)

= ρ(e)
∫

�

ϕ(e)u dx –
∫

�

a(x)ϕ(e)v dx + ρ(f )
∫

�

ϕ(f )v dx –
∫

�

b(x)ϕ(f )u dx

≤ (ē + λ)
∫

�

ϕ(e)u dx – a
∫

�

ϕ(e)v dx

+ (f̄ + λ)
∫

�

ϕ(f )v dx – b
∫

�

ϕ(f )u dx, (.)

which together with (.) implies λ(L –A(x)) < . �

Remark . Theorem B was established in the special case f = e+ k, k ∈R. In such a case,
we have ρ(f ) = ρ(e) + k and ϕ(e) = ϕ(f ). By (.) we can easily get

a
∫

�
vϕ(e)dx

∫

�
uϕ(e)dx

> e + λ ≥ ρ(e), b
∫

�
uϕ(e)dx

∫

�
vϕ(e)dx

> f + λ ≥ ρ(f ),

and therefore ab > ρ(e)ρ(f ), which is just the crucial condition used in Theorem B. Al-
though (.) seems to be stronger than the assumption of Theorem B, the restrictive con-
dition f = e + k, k ∈R is weakened, and Theorem . is applicable to more general classes
of f and e rather than f = e + k, k ∈R.
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