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Abstract
We consider the nonlinear first order periodic problem with nonlinear impulses. We
apply the Schaeffer fixed point theorem and prove the existence results under
Landesman-Lazer type sufficient conditions. We formulate also necessary conditions
in some special cases. The impulses can be viewed as a control which compensates
the influence of external forces and vice versa.
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1 Introduction
In this paper we deal with a nonlinear boundary value problem of the first order,

u′(t) + a(t)u(t) = f
(
t,u(t)

)
, t ∈ [,T],

u() = u(T).
()

At prescribed points in the interval (,T) the solution is subject to the impulses which
depend on an actual value of the solution. These impulses can be interpreted as a control
of the external forces represented by f in order to get existence or nonexistence a peri-
odic solution of (). Vice versa, the external forces can be interpreted as a control of given
impulses.
Impulsive problems have attracted the attention of mathematicians for several decades.

Let us mention the classical books [–]. The first order boundary value problems with
impulses were studied recently in many research articles such as [–]. Optimal control
of space trajectories with applications to maneuvers of spacecraft or satellite constellation
are considered in papers [–].
According to the best of our knowledge, this paper is the first one to treat the peri-

odic first order problem at resonance with external forces and impulses satisfying the
Landesman-Lazer type conditions (see ()-() below and comparewith conditions in []).
Similar conditions for Dirichlet problems at resonance, but for second order semilinear
and quasilinear equations (involving the p-Laplacian), are formulated in the authors’ pa-
pers [] and [], respectively. The authors apply the topological methods in [] and
variational methods in [] to prove the existence results. In this paper we rely on the
Schaeffer fixed point theorem, which is based on the topological degree argument.
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In order to formulate the main results precisely, we need some notation.
Let T > , J = [,T],  = t < t < t < · · · < tp < tp+ = T and set J ′ = J \ {t, t, . . . , tp}. We

denote by BC(J ′) the Banach space of all bounded and continuous functions defined on J ′

equipped with the usual supremum norm on J ′. We also let

X :=
{
u : J →R : u(t) is continuous in J ′, one-sided limits u

(
t+j

)
,

u
(
t–j

)
exist that are finite at tj,u(tj) = u

(
t–j

)
, j = , , . . . ,p;u() = u(T)

}
,

equipped with the norm

‖u‖ = max
t∈J

∣∣u(t)
∣∣.

Then (X,‖ · ‖) is a Banach space.
We assume that a ∈ X, f ∈ C(J ′ ×R) is such that ∀s ∈R, ∀j = , , . . . ,p the limits

f (tj, s) := lim
t→t–j

f (t, s) and lim
t→t+j

f (t, s)

exist.
Let Ij : R → R, Ij ∈ C(R), j = , , . . . ,p. We consider the following nonlinear impulse

conditions:

u
(
tj+

)
= u(tj) – Ij

(
u(tj)

)
, j = , , . . . ,p. ()

By a solution of (), () we understand a function u ∈ X such that u′ ∈ X and (), () hold
true.
Our main results concern the resonance case:

∫ T


a(τ ) dτ = .

We also assume that f is bounded on J ×R and for t ∈ J the limits

f±(t) := lim
s→±∞ f (t, s) and Ij(±∞) := lim

s→±∞ Ij(s), j = , , . . . ,p,

exist. We admit Ij(–∞) = –∞ and Ij(+∞) = +∞ but we require Ij to be sublinear at ±∞,
that is, we assume

lim
s→±∞

Ij(s)
s

=  for j = , , . . . ,p.

In the following theorem the mutual connection among f±(t) and Ij(±∞) plays the key
role.

Theorem  Let the following two inequalities hold:

∫ T


f+(t)e

∫ t
 a(τ ) dτ dt <

p∑

j=

Ij(+∞)e
∫ tj
 a(τ ) dτ , ()

http://www.boundaryvalueproblems.com/content/2014/1/186


Drábek and Langerová Boundary Value Problems 2014, 2014:186 Page 3 of 9
http://www.boundaryvalueproblems.com/content/2014/1/186

∫ T


f–(t)e

∫ t
 a(τ ) dτ dt >

p∑

j=

Ij(–∞)e
∫ tj
 a(τ ) dτ , ()

or, alternatively,

∫ T


f+(t)e

∫ t
 a(τ ) dτ dt >

p∑

j=

Ij(+∞)e
∫ tj
 a(τ ) dτ , ()

∫ T


f–(t)e

∫ t
 a(τ ) dτ dt <

p∑

j=

Ij(–∞)e
∫ tj
 a(τ ) dτ . ()

Then the nonlinear impulsive problem (), () has at least one solution.

In particular, for the linear equation we have the following necessary and sufficient con-
dition.

Corollary  Let f (t, s) = f (t) ∈ X for all s ∈R, and

p∑

j=

Ij(–∞)e
∫ tj
 a(τ ) dτ <

∫ T


f (t)e

∫ t
 a(τ ) dτ dt <

p∑

j=

Ij(+∞)e
∫ tj
 a(τ ) dτ . ()

Then the impulsive problem (), () has at least one solution. Moreover, if for all s ∈ R,
j = , , . . . ,p, we have

Ij(–∞) < Ij(s) < Ij(+∞), ()

then () is also a necessary condition for the existence of a solution. A similar assertion
holds true if we switch Ij(–∞) and Ij(+∞) in the above inequalities.

We give the following simple examples, which illustrate our main results.

Example  Let us consider the linear periodic problem

u′(t) + u(t) cos t = f (t), t ∈ [, π ],

u() = u(π ).
()

It is well known that () has a solution if and only if

∫ π


f (t)esin t dt = . ()

The impulse condition

u
(
π+) = u(π ) – arctanu(π ) ()

corresponds to t = π , I(s) = arctan s and

–
π


= I(–∞) < I(s) < I(+∞) =

π


.
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It follows from Corollary  that the linear problem () with nonlinear impulse () has a
solution if and only if

–
π


<

∫ π


f (t)esin t dt <

π


. ()

Comparison of () and () shows that the problem with impulses has a solution for a
wider class of external forces f than the original problem without impulses.
Similarly, applying Corollary , we obtain an existence result for the linear problem ()

with impulse condition

u
(
π+) = u(π ) – arccotu(π ) ()

if and only if

 <
∫ π


f (t)esin t dt < π . ()

Comparison of () and () shows that the sets of external forces f for which the problem
with impulse () and the problem without impulse () have a solution have an empty
intersection.

Example  Let us consider the nonlinear periodic problem

u′(t) + u(t) cos t = cos t · arctanu(t), t ∈ [, π ],

u() = u(π )
()

with impulses (). In this case, we have f±(t) = ±π
 cos t and

∫ π


f±(t)e

∫ t
 a(τ ) dτ dt = .

It follows from Theorem  that the nonlinear impulse problem (), () has at least one
solution, provided that

p∑

j=

Ij(–∞)esin tj <  <
p∑

j=

Ij(+∞)esin tj .

Example  Let us consider the nonlinear periodic problem () with impulses (). Assume
Ij(+∞) = +∞ for at least one j ∈ {, . . . ,p}, |Ij(+∞)| < ∞ otherwise and, similarly, Ik(–∞) =
–∞ for at least one k ∈ {, . . . ,p} and |Ik(–∞)| < –∞ otherwise. Then the impulse problem
(), () has at least one solution.

The above examples illustrate that suitably chosen impulses may control the forcing
term in order to get existence or nonexistence of periodic solutions.
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2 Some elementary facts
For the reader’s convenience we provide a survey of well-known facts about the linear
periodic problem and constant impulses:

(i) (Nonresonance case) Periodic problem

u′(t) + a(t)u(t) = f (t), t ∈ J ,

u() = u(T),
()

has a unique solution for all f if and only if
∫ T
 a(τ ) dτ �= .

This solution is expressed in the following form:

u(t) =
∫ T


ga(t, s)f (s) ds,

where

ga(t, s) =

⎧
⎪⎨

⎪⎩

e–(
∫ t
 a(τ ) dτ–

∫ s
 a(τ ) dτ )

–e–
∫ T
 a(τ ) dτ

,  ≤ s ≤ t ≤ T ,

e–(
∫ T
 a(τ ) dτ+

∫ t
 a(τ ) dτ–

∫ s
 a(τ ) dτ )

–e–
∫ T
 a(τ ) dτ

,  ≤ t ≤ s ≤ T .

In particular,
∫ T
 a(τ ) dτ >  implies ga(t, s) >  ∀t, s ∈ J .

(ii) (Nonresonance case with impulses) If
∫ T
 a(τ ) dτ �= , the solution of () on J ′ with

constant impulses

u
(
tj+

)
= u(tj) + θj, j = , , . . . ,p, ()

is given by

u(t) =
∫ T


ga(t, s)f (s) ds +

p∑

j=

ga(t, tj)θj.

(iii) (Resonance case) If
∫ T
 a(τ ) dτ = , then () has a solution if and only if

∫ T


f (t)e

∫ t
 a(τ ) dτ dt = .

The solution (if it exists) is then not unique. It is given by

u(t) = ce–
∫ t
 a(τ ) dτ + e–

∫ t
 a(τ ) dτ

∫ t


f (τ )e

∫ τ
 a(σ ) dσ dτ ,

where c ∈ R is arbitrary.
(iv) (Resonance case with impulses) If

∫ T
 a(τ ) dτ = , then () on J ′ with impulses ()

has a solution if and only if

∫ T


f (t)e

∫ t
 a(τ ) dτ dt +

p∑

i=

e
∫ tj
 a(τ ) dτ θj = .
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The solution (if it exists) is not unique. It is given by

u(t) = ce–
∫ t
 a(τ ) dτ + e–

∫ t
 a(τ ) dτ

[∫ t


f (τ )e

∫ τ
 a(σ ) dσ dτ +

p∑

i=

e
∫ tj
 a(τ ) dτ θj

]

,

where c ∈ R is arbitrary.
The properties (i)-(iv) follow from the variation of constants formula.

3 Proofs
Fix δ >  and set aδ(t) := a(t) + δ. Then aδ ∈ X and

∫ T
 aδ(t) dt = Tδ > . The periodic prob-

lem () with impulses () can be written in an equivalent form:

u′(t) + aδ(t)u(t) = δu(t) + f
(
t,u(t)

)
, t ∈ J ′,

u() = u(T), u
(
tj+

)
= u(tj) – Ij

(
u(tj)

)
, j = , , . . . ,p.

()

We define operator F : X → X as follows:

F(u)(t) :=
∫ T


gaδ

(t, s)
[
δu(s) + f

(
s,u(s)

)]
ds –

p∑

j=

gaδ
(t, tj)Ij

(
u(tj)

)
.

According to (ii), u ∈ X is a solution of () (and hence also of (), ()) if and only if u is a
fixed point of F , i.e.,

u = F(u).

The operator F is compact. Indeed, letM ⊂ X be a bounded set. Then it follows from the
definition of F that the family of functions F(M) is equicontinuous in BC(J ′) and for each
t ∈ J ′ the set {u(t) : u ∈ F(M)} is bounded in R. It follows from Arzela-Ascoli’s theorem
(see [, Theorem ..]) that F(M) is relatively compact in BC(J ′) and hence also in X.
Since F is clearly continuous, compactness of F follows.
The following a priori estimate is the key to the proof of Theorem .

Lemma  There exists K >  such that for all λ ∈ [, ] and u ∈ X satisfying u = λF(u) we
have ‖u‖ < K .

Proof Assume via contradiction that there exist un ∈ X, λn ∈ [, ] (n ∈ N) such that
‖un‖ ≥ n and

un = λnF(un).

This is equivalent to

u′
n(t) + aδ(t)un(t) = λn

(
δun(t) + f

(
t,un(t)

))
, t ∈ J ′,

un() = un(T), un
(
tj+

)
= un(tj) – λnIj

(
un(tj)

)
, j = , , . . . ,p.

()
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Set vn := un
‖un‖ . Then vn ∈ X; ‖vn‖ = , satisfy

v′
n(t) + aδ(t)vn(t) = λn

(
δvn(t) +

f (t,un(t))
‖un‖

)
, t ∈ J ′,

vn() = vn(T), vn
(
tj+

)
= vn(tj) – λn

Ij(un(tj))
‖un‖ , j = , , . . . ,p.

This is equivalent to the integral equation

vn(t) = λn

∫ T


gaδ

(t, s)
[
δvn(s) +

f (s,un(s))
‖un‖

]
ds – λn

p∑

j=

gaδ
(t, tj)

Ij(un(tj))
‖un‖ . ()

Since |vn(s)| ≤ , f (s,un(s))
‖un‖ → , uniformly with respect to s ∈ [,T], Ij(un(tj))

‖un‖ → , j =
, , . . . ,p, by similar argument as above, the family {vn} is equicontinuous in BC(J ′) and
for each t ∈ J ′ the set {vn(t)} is bounded. It follows from Arzela-Ascoli’s theorem that {vn}
is relatively compact in BC(J ′) and hence also in X.
Passing to subsequences, if necessary, wemay assume that there exist v ∈ X and λ ∈ [, ]

such that vn → v in X, λn → λ. Taking the limit for n→ ∞ in () we get

v(t) = λ

∫ T


gaδ

(t, s)δv(s) ds,

or equivalently

v′(t) + aδ(t)v(t) = λδv(t), t ∈ J ,

v() = v(T).
()

If λ �=  then () has only a trivial solution (see (i)). But this contradicts ‖v‖ = ! Hence,
λ =  and v ∈ X solves

v′(t) + a(t)v(t) = , t ∈ J ,

v() = v(T),

i.e.,

v(t) = ±c · e–
∫ t
 a(τ ) dτ ,

where c >  is such that ‖v‖ = .
Consider first the case v(t) = +c · e–

∫ t
 a(τ ) dτ >  in J . Since vn → v in X (i.e., uniformly in

J) we have un(t)→ +∞ as n→ ∞ uniformly in J . Multiply the equation in () by e
∫ t
 a(τ ) dτ ,

integrate over J and perform the integration by parts in the first integral to get

p∑

j=

[
un(t)e

∫ t
 a(τ ) dτ

]tj+
tj

–
∫ T


a(t)e

∫ t
 a(τ ) dτun(t) dt +

∫ T


a(t)un(t)e

∫ t
 a(τ ) dτ dt

︸ ︷︷ ︸


+ δ( – λn)
∫ T


un(t)e

∫ t
 a(τ ) dτ dt =

∫ T


f
(
t,un(t)

)
e
∫ t
 a(τ ) dτ dt.
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Since

p∑

j=

[
un(t)e

∫ t
 a(τ ) dτ

]tj+
tj

=
p∑

j=

[
un(tj+)e

∫ tj+
 a(τ ) dτ – un

(
t+j

)
e
∫ tj
 a(τ ) dτ ]

= un(T)e
∫ T
 a(τ ) dτ – un()︸ ︷︷ ︸



+
[
un(t) – un

(
t+

)]

︸ ︷︷ ︸
I(un(t))

e
∫ t
 a(τ ) dτ + · · ·

+
[
un(tp) – un

(
t+p

)]

︸ ︷︷ ︸
Ip(un(tp))

e
∫ tp
 a(τ ) dτ =

p∑

j=

Ij
(
un(tj)

)
e
∫ tj
 a(τ ) dτ ,

we arrive at

p∑

j=

Ij
(
un(tj)

)
e
∫ tj
 a(τ ) dτ + δ( –λn)

∫ T


un(t)e

∫ t
 a(τ ) dτ dt =

∫ T


f
(
t,un(t)

)
e
∫ t
 a(τ ) dτ dt. ()

Recall that un(t) → +∞ uniformly in J . In particular, we have also un(tj) → +∞, j =
, , . . . ,p. These facts together with (), boundedness of f , and the Lebesgue dominated
convergence theorem yield

∫ T


f+(t)e

∫ t
 a(τ ) dτ dt ≥

p∑

j=

Ij(+∞)e
∫ tj
 a(τ ) dτ ,

a contradiction with ().
Similarly, if v(t) = –c · e–

∫ t
 a(τ ) dτ <  in J , we arrive at a contradiction with (). �

Compactness of F , Lemma  and the Schaeffer fixed point theorem (see [, Exam-
ple ..]) imply that (), () has a solution provided that () and () hold true. Choosing
δ <  at the beginning of the proof, we get the existence result provided that () and ()
hold.
The proof of Theorem  is finished.

Let f = f (t, s) be independent of s, that is, f (t, s) = f (t), t ∈ J , s ∈R. Then f (t) = f+(t) = f–(t)
and (), () reduces to (). Hence the linear problem () with nonlinear impulses () has
a solution provided that () holds.
We prove that condition () is also necessary under assumption (). Indeed, let u be a

solution of (), (). Multiply the equation in () by e
∫ t
 a(τ ) dτ and integrate over J with

respect to t:

∫ T


u′(t)e

∫ t
 a(τ ) dτ dt +

∫ T


a(t)u(t)e

∫ t
 a(τ ) dτ dt =

∫ T


f (t)e

∫ t
 a(τ ) dτ dt.

Integrating by parts the first integral we get

p∑

j=

[
u(t)e

∫ t
 a(τ ) dτ

]tj+
tj

–
∫ T


a(t)e

∫ t
 a(τ ) dτu(t) dt +

∫ T


a(t)u(t)e

∫ t
 a(τ ) dτ dt

︸ ︷︷ ︸


=
∫ T


f (t)e

∫ t
 a(τ ) dτ dt.
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Evaluating the sum on the left-hand side as above, we arrive at

p∑

j=

Ij
(
u(t)

)
e
∫ tj
 a(τ ) dτ =

∫ T


f (t)e

∫ t
 a(τ ) dτ dt. ()

Inequality () follows immediately from () provided that () holds true. The proof of
Corollary  is finished.
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