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Abstract
We establish the existence of positive periodic solutions of the second-order
differential equation x′′ + a(t)x = f (t, x) + c(t) via Schauder’s fixed point theorem, where
a ∈ L1(R/TZ;R+), c ∈ L1(R/TZ;R), f is a Caratheodory function and it is singular at
x = 0. Our main results generalize some recent results by Torres (J. Differ. Equ.
232:277-284, 2007).
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1 Introduction
In this paper, we are concerned with the existence of positive periodic solutions of the
second-order differential equation

x′′ + a(t)x = f (t,x) + c(t) (.)

with a ∈ L(R/TZ;R+), c ∈ L(R/TZ;R), f ∈ Car(R/TZ × (,∞);R) is a L Caratheodory
function, and f is singular at x = .
The interest on this type of equations began with the paper of Lazer and Solimini [].

They dealt with the case that a≡  and f (x) = 
xλ , (.) reduces to the special equation

x′′ =

xλ

+ c(t), (.)

which was initially studied by Lazer and Solimini []. They proved that for λ ≥  (called a
strong force condition in the terminology first introduced by Gordon [, ]), a necessary
and sufficient condition for the existence of a positive periodic solution of (.) is that the
mean value of c is negative,

c̄ =

T

∫ T


c(t)dt < .

Moreover, if  < λ <  (weak force condition) they found examples of functions c with
negative mean values and such that periodic solutions do not exist.
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If compared with the literature available for strong singularities, see [–] and the ref-
erences therein, the study of the existence of periodic solutions in the presence of a weak
singularity is muchmore recent and the number of references is considerably smaller. The
likely reason may be that with a weak singularity, the energy near the origin becomes fi-
nite, and this fact is not helpful for obtaining the a priori bound needed for a classical
application of the degree theory, and also is not helpful for the fast rotation needed in
recent versions of the Poincaré-Birkhoff theorem. The first existence result with a weak
force condition appears in Rachunková et al. []. Since then, Eq. (.) with f having weak
singularities has been studied by several authors; see Torres [, ], Franco and Webb
[], Chu and Li [] and Li and Zhang [].
Recently, Torres [] showed how a weak singularity can play an important role if

Schauder’s fixed point theorem is chosen in the proof of the existence of positive periodic
solutions for (.). From now on, for a given function ξ ∈ L∞[,∞], we denote the essen-
tial supremum and infimum of ξ by ξ ∗ and ξ∗, respectively. We write ξ �  if ξ ≥  for a.e.
t ∈ [,T] and it is positive in a set of positive measure. Under the following assumption:
(H) the linear equation u′′ + a(t)u =  is nonresonant and the corresponding Green’s

function obeys

G(t, s)≥ , (t, s) ∈ [,T]× [,T],

Torres showed the following.

Theorem A [, Theorem ] Let (H) hold and define

γ (t) =
∫ T


G(t, s)c(s)ds. (.)

Assume that
(H) there exist b ∈ L(,T) with b �  and λ >  such that

 ≤ f (t,u) ≤ b(t)
uλ

for all u > ,a.e. t ∈ [,T].

If γ∗ > , then there exists a positive T-periodic solution of (.).

Theorem B [, Theorem ] Let (H) hold. Assume that
(H) there exist two functions b, b̂ ∈ L(,T) with b, b̂�  and a constant λ ∈ (, ) such

that

 ≤ b̂(t)
uλ

≤ f (t,u)≤ b(t)
uλ

, u ∈ (,∞),a.e. t ∈ [,T].

If γ∗ = , then (.) has a positive T-periodic solution.

Theorem C [, Theorem ] Let (H) and (H) hold. Let

β̂∗ = min
t∈[,T]

(∫ T


G(t, s)b̂(s)ds

)
, β∗ = max

t∈[,T]

(∫ T


G(t, s)b(s)ds

)
.
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If γ ∗ ≤  and

γ∗ ≥
(

β̂∗
(β∗)λ

λ
) 

–λ
(
 –


λ

)
,

then (.) has a positive T-periodic solution.

Obviously, (H) and (H) are too restrictive so that the abovementioned results are only
applicable to (.) with nonlinearity which is bounded at origin and infinity by a function
of the form 

uλ . Very recently, Ma et al. [] generalized Theorems A-C under some condi-
tions which allow the nonlinearity f to be bounded by two different functions 

uα and 
uβ .

Notice that b �  in (H), and b, b̂ �  in (H). Of course the natural question is: what
would happen if we allow that the functions b and b̂may change sign?
It is worth remarking that if b ∈ L(R/TZ;R) changes its sign, then the existence of

T-periodic solutions for the equation

x′′ =
b(t)
x

(.)

is still open; see Bravo and Torres [] and Hakl and Torres []. Notice that (.) plays
an important role in the study of stabilization of matter-wave breathers in Bose-Einstein
condensates [], the propagation of guided waves in optical fibers [], and in the elec-
tromagnetic trapping of a neutral atom near a charged wire [].
In the sequel, we denote the set of continuous T-periodic functions by CT . Define

γ (t) =
∫ T


G(t, s)c(s)ds, (.)

which is just the unique T-periodic solution of the linear equation x′′ + a(t)x = c(t). For
y ∈ C[,T], let us define

y+ = max{y, }, y– = max{–y, }.

It is the purpose of this paper to general Theorems A-C under some assumptions which
allow the nonlinearity b and b̂ to change sign. The main tool is Schauder’s fixed point
theorem.

2 Existence of periodic solutions
We will state and prove three results on the existence of T-periodic positive solutions of
(.) according to the cases

γ ∗ > ; γ ∗ = ; γ ∗ < . (.)

Theorem . Let γ ∗ > . Assume (H) and
(A) there exists b ∈ C[,T] with

meas I+ > , meas I– > , (.)
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where

I+ =
{
t ∈ [,T] | b(t) > 

}
, I– =

{
t ∈ [,T] | b(t) < 

}
, (.)

and there exists λ >  such that

 ≤ f (t,x)≤ b(t)
xλ

, ∀x ∈ (,∞) and t ∈ I+ (.)

and

 ≥ f (t,x)≥ b(t)
xλ

, ∀x ∈ (,∞) and t ∈ I–. (.)

If

(
β–)∗ ≤

(
γ∗


)+λ

, (.)

then there exists a positive T-periodic solution of (.).

Proof A T-periodic solution of (.) is just a fixed point of the completely continuousmap
F : CT → CT defined as

F [u](t) :=
∫ T


G(t, s)

[
f
(
s,x(s)

)
+ c(s)

]
ds =

∫ T


G(t, s)f

(
s,x(s)

)
ds + γ (t). (.)

By a direct application of Schauder’s fixed point theorem, the proof is finished if we prove
that F maps the closed convex set defined as

K =
{
x ∈ CT : r ≤ x(t)≤ R for all t

}
(.)

into itself, where R > r >  are positive constants to be fixed properly. In fact, if we define
the function

β+(t) =
∫ T


G(t, s)b+(s)ds, β–(t) =

∫ T


G(t, s)b–(s)ds,

let us fix r := γ∗
 which is positive by hypothesis. Given x ∈ K , by the nonnegative sign of

G and (.)-(.),

F [u](t)≥ (β+)∗
Rλ

–
(β–)∗

rλ
+ γ∗ ≥ –

(β–)∗

rλ
+ γ∗, (.)

F [u](t)≤ (β+)∗

rλ
–
(β–)∗
Rλ

+ γ ∗ ≤ (β+)∗

rλ
+ γ ∗. (.)

Set

r :=
γ∗

, R :=

(β+)∗

(γ∗/)λ
=
λ(β+)∗

γ λ∗
+ γ ∗. (.)
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Then for x ∈ K , it follows from (.) that

F [u](t)≥ γ∗


= r

and

F [u](t)≤ λ(β+)∗

γ λ∗
+ γ ∗ = R. (.)

Thus, F (K) ⊂ K . Clearly, R > r > , so the proof is finished. �

Remark . If b �  in [,T], then β– ≡ , and accordingly (β–)∗ = . In this case, (.)
is satisfied for all λ >  and γ with γ∗ > . So, Theorem . generalizes Theorem A.

For u ∈ CT , let us define

Iu+ =
{
t ∈ [,T] | u(t) > 

}
, Iu– =

{
t ∈ [,T] | u(t) < 

}
.

Theorem . Let γ∗ = . Assume (H) and
(A) there exist b,h ∈ C[,T] and  < λ <  such that

Ih+ ⊆ Ib+, Ih– ⊆ Ib–,

 ≤ h(t)
xλ

≤ f (t,x)≤ b(t)
xλ

, ∀x ∈ (,∞) and a.e. t ∈ Ib+, (.)

 ≥ h(t)
xλ

≥ f (t,x)≥ b(t)
xλ

, ∀x ∈ (,∞) and a.e. t ∈ Ib–, (.)

(A) h and b satisfy

(
h+

)
∗s

–λ
 –

(
b–

)∗sλ+ ≥ , (.)

where

s := min
{
s | s ∈ [,∞) with

(
h+

)
∗s

–λ ≥  and
(
b+

)∗sλ + γ ∗ ≤ s
}
. (.)

Then there exists a positive T-periodic solution of (.).

Proof We follow the same strategy and notation as in the proof of Theorem .. Again, we
need to fix r < R such that F(K) ⊆ K . We define the functions

β+(t) =
∫ T


G(t, s)b+(s)ds, β–(t) =

∫ T


G(t, s)b–(s)ds,

δ+(t) =
∫ T


G(t, s)h+(s)ds, δ–(t) =

∫ T


G(t, s)h–(s)ds.

Recall

F [u](t) :=
∫ T


G(t, s)

[
f
(
s,x(s)

)
+ c(s)

]
ds =

∫ T


G(t, s)f

(
s,x(s)

)
ds + γ (t). (.)
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Some easy computations prove that it is sufficient to find r < R such that

F [u](t)≤
∫
Ib+
G(t, s)

b+(s)
rλ

ds –
∫
Ih–
G(t, s)

h–(s)
Rλ

ds + γ ∗

≤ (b+)∗

rλ
–
(h–)∗
Rλ

+ γ ∗ ≤ R, (.)

F [u](t)≥
∫
Ih+
G(t, s)

h+(s)
Rλ

ds –
∫
Ib–
G(t, s)

b–(s)
rλ

ds

≥ (h+)∗
Rλ

–
(b–)∗

rλ
≥ r. (.)

Taking R = /r, it is sufficient to find R >  such that

(
b+

)∗Rλ –
(h–)∗
Rλ

+ γ ∗ ≤ R, (.)
(
h+

)
∗R

–λ –
(
b–

)∗Rλ+ ≥ . (.)

Obviously, conditions (.) and (.) guarantee that (.) and (.) hold for R = s.
�

Theorem . Let γ ∗ ≤ . Assume (H) and (A) and
(A) there exists

r ∈
{
r
∣∣ r ∈ (, /] and rλ ≤ (

b+
)∗ and

(h+)∗
[(b+)∗]λ

rλ

+ γ∗ ≥ r

}
, (.)

such that

(h+)∗
[(b+)∗]λ

rλ


 –
(b–)∗

rλ
+ γ∗ ≥ r. (.)

Then there exists a positive T-periodic solution of (.).

Proof In this case, to prove that F (K) ⊂ K it is sufficient to find r < R such that

(b+)∗

rλ
–
(h–)∗
Rλ

≤ R, (.)

(h+)∗
Rλ

–
(b–)∗

rλ
+ γ∗ ≥ r. (.)

If we fix r = r and R = (b+)∗
rλ

, then R ≥  > 
 ≥ r and (.), (.) ensure that (.) and

(.) hold. �

Remark . It is easy to check that if Ib– = ∅, then (.) reduces to

(h)∗
[(b)∗]λ

rλ


 + γ∗ ≥ r. (.)

As in the proof of [, Theorem ], wemay take r = [ h∗
b∗λ λ]


–λ , then (.) can be reduced

by the condition (.).
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Remark . As an application of Theorem ., let us consider the problem

u′′(t) +



u(t) =
b(t)
uλ(t)

+ c(t), t ∈ (, ), (.)

u() = u(T), u′() = u′(T), (.)

where

c(t) ≡ , b(t) = t –



, t ∈ [, ]. (.)

By [, Lemma .], the Green function of the linear problem

u′′(t) +



u(t) = , t ∈ (, ),

u() = u(T), u′() = u′(T),

can be explicitly given by

G(t, s) =
(sin t

 – sin t–
 )(sin s

 – sin s–
 )

sin 
 ( – cos 

 )
+


sin 



{
sin t–

 sin s
 ,  ≤ s ≤ t ≤ ,

sin s–
 sin t

 ,  ≤ t ≤ s ≤ .

Equation (.) yields

γ (t) =
∫ 


G(t, s)c(s)ds =

(sin t
 – sin t–

 )
sin 


+


sin 



(
sin

t – 


+ sin


– sin

t


)
= 

and

β–(t) =
∫ 


G(t, s)b–(s)ds

<
∫ 




G(t, s)ds

=
(sin t

 – sin t–
 )( – cos 

 + cos 
 – cos 

 )
( – cos 

 ) sin 


+
(sin t–

 – cos 
 sin t

 + sin 
 )

sin 


,

and consequently

γ∗ = ,
(
β–)∗ .= ..

Since . ≤ +λ for all λ ∈ (,∞), Theorem . guarantees that the set (.), (.)
has at least one positive -periodic solution.
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