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Abstract
By using an infinitely many critical points theorem, we study the existence of infinitely
many solutions for a fourth-order nonlinear boundary value problem, depending on
two real parameters. No symmetric condition on the nonlinear term is assumed.
Some recent results are improved and extended.

1 Introduction
In this paper, we consider a beam equation with nonlinear boundary conditions of the
type:

⎧
⎪⎨

⎪⎩

u() = λf (x,u) +μh(x,u),  < x < ,
u() = u′() = ,
u′′() = , u′′′() = g(u()),

(.)

where λ, μ are two positive parameters, f , h are two L-Carathéodory functions, and
g ∈ C(R) is real function. This kind of problem arises in the study of deflections of elastic
beams on nonlinear elastic foundations. The problem has the following physical descrip-
tion: a thin flexible elastic beam of length  is clamped at its left end x =  and resting on
an elastic device at its right end x = , which is given by g . Then the problem models the
static equilibrium of the beam under a load, along its length, characterized by f and h. The
derivation of the model can be found in [, ].
Fourth-order boundary value problems modeling bending equilibria of elastic beams

have been considered in several papers. Most of them are concerned with nonlinear
equations with null boundary conditions; see [–]. When the boundary conditions are
nonzero or nonlinear, fourth-order equations can model beams resting on elastic bear-
ings located in their extremities; see for instance [, , –] and the references therein.
More precisely, in [], using variant fountain theorems, the author obtains the existence
of infinitely many solutions for problem (.) with λ =  and μ =  under the symmetric
condition and some other suitable assumptions of the nonlinear term f .
Motivated by the above works, in the present paper we establish some multiplicity re-

sults for problem (.) under rather different assumptions on the functions f , h and g . It
is worth noticing that in our results neither the symmetric nor the monotonic condition
on the nonlinear term is assumed. We require that f has a suitable oscillating behavior ei-
ther at infinity or at zero. In the first case, we obtain an unbounded sequence of solutions
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(Theorem .); in the second case, we obtain a sequence of nonzero solutions strongly
converging at zero (Theorem .), which improve and extend the results in [].
The remainder of this paper is organized as follows. In Section , some preliminary

results are presented. In Section , we give the proofs of our main results.

2 Variational setting and preliminaries
We prove our results applying the following smooth version of Theorem . of Bonanno
and Bisci [], which is a more precise version of Ricceri’s variational principle [, Lem-
ma .].

Theorem . Let E be a reflexive real Banach space, let �,� : E → R be two Gâteaux
differentiable functionals such that� is sequentially weakly lower semicontinuous, strongly
continuous and coercive, and � is sequentially weakly upper semicontinuous. For every
r > infE �, let

ϕ(r) := inf
u∈�–(–∞,r)

(supu∈�–(–∞,r) �(v)) –�(u)
r –�(u)

,

γ := lim inf
r→+∞ ϕ(r) and δ := lim inf

r→(infE �)+
ϕ(r).

Then the following properties hold:
(a) For every r > infE � and every λ ∈ (, /ϕ(r)); the restriction of the functional

Iλ :=� – λ�

to �–(–∞, r) admits a global minimum, which is a critical point (local minimum) of
Iλ in E.

(b) If γ < +∞; then for each λ ∈ (, /γ ), the following alternative holds: either
(b) Iλ possesses a global minimum, or
(b) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞�(un) = +∞.

(c) If δ < +∞; then for each λ ∈ (, /δ), the following alternative holds: either
(c) there is a global minimum of � which is a local minimum of Iλ, or
(c) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ

that converges weakly to a global minimum of �.

Let E be the Hilbert space

E =
{
u ∈H(, );u() = u′() = 

}

with the inner product and norm

〈u, v〉 =
∫ 


u′′(x)v′′(x)dx, ‖u‖ = ∥

∥u′′∥∥
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/191


Song Boundary Value Problems 2014, 2014:191 Page 3 of 11
http://www.boundaryvalueproblems.com/content/2014/1/191

whereH(, ) is the Sobolev space of all functions u : [, ]→R such that u and its distri-
butional derivative u′ are absolutely continuous and u′′ belongs to L([, ]), and ‖ · ‖p de-
notes the standard Lp norm. In addition, E is compactly embedded in the spaces L([, ])
and C([, ]), and therefore, there exist immersion constants S, S̄ > , such that

‖u‖ ≤ S‖u‖ and ‖u‖∞ ≤ S̄‖u‖. (.)

We recall that f : [, ]×R →R is an L-Carathéodory function if
(a) the mapping x 
→ f (x,u) is measurable for every u ∈R;
(b) the mapping u 
→ f (x,u) is continuous for almost every x ∈ [, ];
(c) for every ρ >  there exists a function lρ ∈ L([, ]) such that

sup
|u|≤ρ

∣
∣f (x,u)

∣
∣ ≤ lρ(x),

for almost every x ∈ [, ].
Define the functions F ,H : [, ]×R→ R as follows:

F(x,u) =
∫ u


f (x, s)ds and H(x,u) =

∫ u


h(x, s)ds,

for all (x,u) ∈ [, ]×R, andG(t) =
∫ t
 g(x)dx. Thus we define the functional Iλ,μ ∈ C(E,R)

by

Iλ,μ(u) :=


‖u‖ – λ

∫ 


F(x,u)dx –μ

∫ 


H(x,u)dx +G

(
u()

)
, for all u ∈ E.

Definition . We say that a function u ∈ E is a weak solution of problem (.) if

∫ 


u′′(x)v′′(x)dx – λ

∫ 


f (x,u)vdx –μ

∫ 


h(x,u)vdx + g

(
u()

)
v() = 

holds for any v ∈ E.

3 Main results
In this section we establish the main abstract results of this paper. Let

A := lim inf
ξ→+∞

∫ 
 max|u|≤ξ F(x,u)dx

ξ  ,

B := lim sup
ξ→+∞

∫ b
a max|u|≤ξ F(x,u)dx

ξ  ,


c :=
α

c
+

β

σ + 
cσ–

and

λ :=
∫ a
 |d′′| dx + ∫ 

b |e′′| dx
B

, λ :=


S̄A
,

where α, β are given by (A), c is a positive constant, and d(x), e(x) are given by (A).
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Theorem . Let f : [, ] × R → R be an L-Carathéodory function and  < a < b < .
Assume that
(A) there exist constants α,β >  and σ ∈ [, ) such that

∣
∣g(u)

∣
∣ ≤ α + β|u|σ , for all u ∈R;

(A) F(x,u)≥  for all (x,u) ∈ ([,a]∪ [b, ])×R;
(A) there exist two functions d ∈ C([,a]) and e ∈ C([b, ]) satisfying

d() = d′() = , d(a) = e(b) = , d′(a) = e′(b) = 

and
∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx = ,

such that

S̄A
[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

< B. (.)

Then, for every λ ∈ (λ,λ) and for any L-Carathéodory function h : [, ] × R → R,
whose potential H(x,u) =

∫ u
 h(x, s)ds for all (x,u) ∈ [, ] × R, is a nonnegative function

satisfying the condition

H∞ := lim sup
ξ→+∞

∫ 
 max|u|≤ξ H(x,u)dx

ξ  < +∞, (.)

if we put

μH,λ :=


S̄H∞
( – S̄λA),

where μH,λ = +∞ when H∞ = , for every μ ∈ [,μH,λ) problem (.) has an unbounded
sequence of weak solutions in E.

Proof Obviously, it follows from (A) that λ < λ. Fix λ̄ ∈ (λ,λ). Since λ̄ < λ, we have

μH,λ̄ =


S̄H∞
( – S̄λ̄A) > .

Now fix μ̄ ∈ (,μH,λ̄) and set

J(x,u) := F(x,u) +
μ̄

λ̄
H(x,u), for all (x,u) ∈ [, ]×R.

Let the functionals �,� : E → R be defined by

�(u) =


‖u‖,

�(u) =
∫ 


J(x,u)dx –


λ̄
G

(
u()

)
,
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where G(t) =
∫ t
 g(x)dx. Put

Iλ̄,μ̄(u) := �(u) – λ̄�(u), for all u ∈ E.

Using the property of f , h and the continuity of g , we obtain �,� ∈ C(E,R) and for any
v ∈ E, we have

〈
�′(u), v

〉
=

∫ 


u′′(x)v′′(x)dx

and

〈
� ′(u), v

〉
=

∫ 


f
(
x,u(x)

)
v(x)dx +

μ̄

λ̄

∫ 


h
(
x,u(x)

)
v(x)dx –


λ̄
g
(
u()

)
v().

So, with standard arguments, we deduce that the critical points of the functional Iλ̄,μ̄ are
the weak solutions of problem (.) and so they are classical. We first observe that the
functionals � and � satisfy the regularity assumptions of Theorem ..
First of all, we show that λ̄ < 

γ
. Let {ξn} be a sequence of positive numbers such that

limn→+∞ ξn = +∞ and

lim
n→+∞

∫ 
 max|u|≤ξn F(x,u)dx

ξ 
n

= A.

Set rn := 
S̄ ξ


n for all n ∈ N. Then, for all v ∈ E with �(v) < rn, taking (.) into account, one

has ‖v‖∞ < ξn. Note that �() =�() = . Then, for all n ∈N,

ϕ(rn) = inf
u∈�–(–∞,rn)

(supv∈�–(–∞,rn) �(v)) –�(u)
rn –�(u)

≤ supu∈�–(–∞,rn) �(u)
rn

≤
∫ 
 max|u|≤ξn J(x,u)dx + 

λ̄
(αξn + β

σ+ξ
σ+
n )


S̄ ξ


n

≤ S̄
[∫ 

 max|u|≤ξn F(x,u)dx
ξ 
n

+
μ̄

λ̄

∫ 
 max|u|≤ξn H(x,u)dx

ξ 
n

+

λ̄


ξn

]

.

Since limn→+∞ 
ξn = , from the assumption (A) and the condition (.), we have

γ < lim inf
n→+∞ ϕ(rn)≤ S̄

(

A +
μ̄

λ̄
H∞

)

< +∞,

and combining the assumption μ̄ ∈ (,μG,λ̄), we obtain

γ < lim inf
n→+∞ ϕ(rn)≤ S̄

(

A +
μ̄

λ̄
H∞

)

< S̄A +
 – S̄λ̄A

λ̄
.

This implies that

λ̄ <

γ
.
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Let λ̄ be fixed. We claim that the functional Iλ̄,μ̄ is unbounded from below. Since


λ̄
<

B
∫ a
 |d′′| dx + ∫ 

b |e′′| dx ,

there exist a sequence {ηn} of positive numbers and τ >  such that limn→+∞ ηn = +∞ and


λ̄
< τ <


∫ b
a F(x,ηn)dx

η
n[

∫ a
 |d′′| dx + ∫ 

b |e′′| dx] ,

for each n ∈ N large enough. For all n ∈N we define vn by

vn(x) :=

⎧
⎪⎨

⎪⎩

d(x)ηn, x ∈ [,a],
ηn, x ∈ (a,b],
e(x)ηn, x ∈ (b, ].

(.)

From the condition (A), it is easy to verify that vn ∈ E. For any n ∈ N, one has

�(vn) =


‖vn‖ = η

n


[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

. (.)

On the other hand, by (A) and since H is nonnegative, from the definition of � , we infer

�(vn) ≥
∫ b

a
F(x,ηn)dx –


λ̄

η
n
(S̄ηn).

By (.) and (.), we have

Iλ̄,μ̄(vn) ≤ η
n


[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

– λ̄

∫ b

a
F(x,ηn)dx + η

n
(S̄ηn)

<
η
n


[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

( – λ̄τ ) + η
n
(S̄ηn),

for every n ∈N large enough. Since σ < , λ̄τ >  and limn→+∞ ηn = +∞, we have

lim
n→+∞ Iλ̄,μ̄(vn) = –∞.

Then the functional Iλ̄,μ̄ is unbounded from below, and it follows that Iλ̄,μ̄ has no global
minimum. Therefore, by Theorem .(b), there exists a sequence {un} of critical points of
Iλ̄,μ̄ such that

lim
n→+∞‖un‖ = +∞,

and the conclusion is achieved. �

Remark . Indeed, it is not difficult to find such functions d(x) and e(x) satisfying the
condition (A). For example, let a = 

 and b = 
 . We can choose

d(x) = –x
(

x –



)

, x ∈
[

,



]
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and

e(x) = –x
(


x – 

)

, x ∈
[


, 

]

.

Remark . Under the conditions A =  and B = +∞, from Theorem . we see that for
every λ >  and for each μ ∈ [, 

S̄H∞ ), problem (.) admits a sequence of classical solu-
tions which is unbounded in E. Moreover, if H∞ = , the result holds for every λ >  and
μ > .

Corollary . Let f : R → R be an L-Carathéodory function and  < a < b < . Suppose
that hypotheses (A)-(A) hold.Moreover, the condition (A) is satisfied if (.) is replaced
by

∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx < B, S̄A < .

Then, for any L-Carathéodory function h : [, ] × R → R, whose potential H(x,u) :=
∫ u
 h(x, s)ds for all (x,u) ∈ [, ]×R, is a nonnegative function satisfying the condition (.),
if we put

μH :=


S̄H∞
( – S̄A),

where μH = +∞ when H∞ = , the problem

⎧
⎪⎨

⎪⎩

u() = f (x,u) +μh(x,u),  < x < ,
u() = u′() = ,
u′′() = , u′′′() = g(u()),

has an unbounded sequence of weak solutions for every μ ∈ [,μH ) in E.

Corollary . Under the assumptions of Corollary ., for any nonnegative continuous
function h : [, ]→R, the problem

⎧
⎪⎨

⎪⎩

u() = f (x,u) + h(x),  < x < ,
u() = u′() = ,
u′′() = , u′′′() = g(u()),

has infinitely many distinct weak solutions in E.

Now, let

Ā := lim inf
ξ→+

∫ 
 max|u|≤ξ F(x,u)dx

ξ  ,

B̄ := lim sup
ξ→+

∫ b
a max|u|≤ξ F(x,u)dx

ξ  ,

�c := min|u|≤c

∫ u()


g(x)dx, for all c > 

http://www.boundaryvalueproblems.com/content/2014/1/191
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and

λ̄ :=
∫ a
 |d′′| dx + ∫ 

b |e′′| dx
B̄

, λ̄ :=


S̄Ā
.

Theorem . Let f : [, ] × R → R be an L-Carathéodory function and  < a < b < .
Moreover, assume that (A) and

(A)′ g(u) ≤  for all u ∈R and limu→+
∫ u
 g(s)ds
u = ;

(A)′ there exist two functions d ∈ C([,a]) and e ∈ C([b, ]) satisfying

d() = d′() = , d(a) = e(b) = , d′(a) = e′(b) = , e() > 

and

∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx = ,

such that

S̄Ā
[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

< B̄,

are satisfied. Then, for every λ ∈ (λ̄, λ̄) and for any L-Carathéodory function h :
[, ] × R → R, whose potential H(x,u) :=

∫ u
 h(x, s)ds for all (x,u) ∈ [, ] × R, is a

nonnegative function satisfying the condition

H := lim sup
ξ→+

∫ 
 max|u|≤ξ H(x,u)dx

ξ  < +∞,

if we put

μ̄H,λ :=


S̄H
( – S̄λĀ),

where μ̄H,λ = +∞ when H = , for every μ ∈ [, μ̄H,λ) problem (.) has a sequence of
weak solutions, which strongly converges to zero in E.

Proof It follows from (A)′ that λ̄ < λ̄. Fix λ̄ ∈ (λ̄, λ̄). Since λ̄ < λ̄, we have

μH,λ̄ =


S̄H
( – S̄λ̄Ā) > .

Now fix μ̄ ∈ (, μ̄H,λ̄) and set

J(x,u) := F(x,u) +
μ̄

λ̄
H(x,u), for all (x,u) ∈ [, ]×R.

We take�,� , and Iλ̄,μ̄ as in the proof of Theorem.. Now, as has been pointed out before,
the functionals � and � satisfy the regularity assumptions required in Theorem .. As

http://www.boundaryvalueproblems.com/content/2014/1/191
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first step, we will prove that λ̄ < /δ. Let {ξn} be a sequence of positive numbers such that
limn→+∞ ξn =  and

lim
n→+∞

∫ 
 max|u|≤ξn F(x,u)dx

ξ 
n

= Ā.

By the fact that infu∈E �(u) =  and the definition of δ, we have δ = lim infr→+ ϕ(r). Set
rn := 

S̄ ξ

n for all n ∈ N. Then, for all v ∈ E with �(v) < rn, taking (.) into account, one

has ‖v‖∞ < ξn. Note that �() =�() = . Then, for all n ∈N,

ϕ(rn) = inf
u∈�–(–∞,rn)

(supv∈�–(–∞,rn) �(v)) –�(u)
rn –�(u)

≤ supu∈�–(–∞,rn) �(u)
rn

≤
∫ 
 max|u|≤ξn J(x,u)dx – 

λ̄
�ξn


S̄ ξ


n

≤ S̄
[∫ 

 max|u|≤ξn F(x,u)dx
ξ 
n

+
μ̄

λ̄

∫ 
 max|u|≤ξn H(x,u)dx

ξ 
n

–

λ̄

�ξn

ξ 
n

]

.

It follows from (A)′ that limn→+∞
�ξn
ξn

= . Then we have

δ < lim inf
n→+∞ ϕ(rn) ≤ S̄

(

Ā +
μ̄

λ̄
H

)

< +∞.

From μ̄ ∈ (,μG,λ̄), we obtain

δ ≤ S̄
(

Ā +
μ̄

λ̄
H

)

< S̄Ā +
 – S̄λ̄Ā

λ̄
,

which implies that

λ̄ <

δ
.

Let λ̄ be fixed. We claim that the functional Iλ̄,μ̄ does not have a local minimum at zero.
Since


λ̄
<

B̄
∫ a
 |d′′| dx + ∫ 

b |e′′| dx ,

there exist a sequence {ηn} of positive numbers and τ >  such that limn→+∞ ηn =  and


λ̄
< τ <


∫ b
a F(x,ηn)dx

η
n[

∫ a
 |d′′| dx + ∫ 

b |e′′| dx] ,

for each n ∈ N large enough. For all n ∈ N, let vn be defined by (.) with the above ηn.
Note that λ̄τ > . Then, since g(u) ≤  for all u ∈R and e() > , we obtain

Iλ̄,μ̄(vn) ≤
η
n


[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

– λ̄

∫ b

a
F(x,ηn)dx +

∫ vn()


g(x)dx

<
η
n


[∫ a



∣
∣d′′∣∣ dx +

∫ 

b

∣
∣e′′∣∣ dx

]

( – λ̄τ ) < ,

http://www.boundaryvalueproblems.com/content/2014/1/191
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for every n ∈N large enough. Thus, since

lim
n→+∞ Iλ̄,μ̄(vn) = Iλ̄,μ̄() = ,

we see that zero is not a local minimum of Iλ̄,μ̄. This, together with the fact that zero is
the only global minimum of �, we deduce that the energy functional Iλ̄,μ̄ does not have a
local minimum at the unique global minimum of �. Therefore, by Theorem .(c), there
exists a sequence {un} of critical points of Iλ̄,μ̄, which converges weakly to zero. In view
of the fact that the embedding E ↪→ C([, ]) is compact, we know that the critical points
converge strongly to zero, and the proof is complete. �

Remark . Applications similar to Corollaries . and . can also be made to Theo-
rem .. Now we give an example illustrating Theorem .. Consider the problem

⎧
⎪⎨

⎪⎩

u() = λf (x,u),  < x < ,
u() = u′() = ,
u′′() = , u′′′() = g(u()),

(.)

where f (x,u) = |u|. Obviously, Ā = B̄ = 
 . Let a =


 and b = 

 , and choose

d(x) = –
x


√
S̄

(

x –



)

, x ∈
[

,



]

and

e(x) = –
x


√
S̄

(


x – 

)

, x ∈
[


, 

]

.

By calculating, we have
∫ 


 |d′′| dx + ∫ 



|e′′| dx = 

S̄ (

 + 

× ). Thus, λ̄ = 
S̄ (


 + 

× )
and λ̄ = 

S̄ . Furthermore, the conditions (A) and (A)′ are satisfied. Let g(u) = –u. Then
(A)′ holds. Therefore, by Theorem ., we find that problem (.) has a sequence of weak
solutions which strongly converges to zero in E for all λ ∈ (λ̄, λ̄).
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