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Abstract
In this work a Sturm-Liouville operator with piecewise continuous coefficient and
spectral parameter in the boundary conditions is considered. The eigenvalue
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1 Introduction
We consider the boundary value problem

–y′′ + q(x)y = λρ(x)y,  ≤ x≤ π , ()

U(y) := y′() +
(
α – λα

)
y() = , ()

V (y) := λ(βy′(π ) + βy(π )
)
– βy′(π ) – βy(π ) = , ()

where q(x) ∈ L(,π ) is a real valued function, λ is a complex parameter, αi, βj, i = , ,
j = ,  are positive real numbers and

ρ(x) =

⎧
⎨

⎩
,  ≤ x < a,

γ , a < x≤ π ,

where  < γ �= .
Physical applications of the eigenparameter dependent Sturm-Liouville problems, i.e.

the eigenparameter appears not only in the differential equation of the Sturm-Liouville
problem but also in the boundary conditions, are given in [–]. Spectral analyses of
these problems are examined as regards different aspects (eigenvalue problems, expansion
problems with respect to eigenvalues, etc.) in [–]. Similar problems for discontinuous
Sturm-Liouville problems are examined in [–].
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Inverse problems for differential operators with boundary conditions dependent on the
spectral parameter on a finite interval have been studied in [–]. In particular, such
problems with discontinuous coefficient are studied in [–].
We investigate a Sturm-Liouville operator with discontinuous coefficient and a spec-

tral parameter in boundary conditions. The theoretic formulation of the operator for the
problem is given in a suitable Hilbert space in Section . In Section , an asymptotic for-
mula for the eigenvalues is given. In Section , an expansion formula with respect to the
eigenfunctions is obtained and Section  contains uniqueness theorems for the solution
of the inverse problem with a Weyl function and spectral data.

2 Operator formulation
Let ϕ(x,λ) and ψ(x,λ) be the solutions of () satisfying the initial conditions

ϕ(,λ) = , ϕ′(,λ) = λα – α, ()

ψ(π ,λ) = β – λβ, ψ ′(π ,λ) = λβ – β. ()

For the solution of (), the following integral representation as μ±(x) = ±x
√

ρ(x) +a(∓
√

ρ(x)) is obtained similar to [] for all λ:

e(x,λ) =



(
 +


√

ρ(x)

)
eiλμ+(x) +




(
 –


√

ρ(x)

)
eiλμ–(x) +

∫ μ+(x)

–μ+(x)
K(x, t)eiλt dt,

where K(x, ·) ∈ L(–μ+(x),μ+(x)). The following properties hold for the kernel K(x, t)
which has the partial derivative Kx belonging to the space L(–μ+(x),μ+(x)) for every
x ∈ [,π ]:

d
dx

K
(
x,μ+(x)

)
=



√

ρ(x)

(
 +


√

ρ(x)

)
q(x), ()

d
dx

K
(
x,μ–(x) + 

)
–

d
dx

K
(
x,μ–(x) – 

)
=



√

ρ(x)

(
 –


√

ρ(x)

)
q(x). ()

We obtain the integral representation of the solution ϕ(x,λ):

ϕ(x,λ) = ϕ(x,λ) +
∫ μ+(x)


A(x, t) cosλt dt +

(
λα – α

)∫ μ+(x)


Ã(x, t)

sinλt
λ

dt, ()

where

A(x, t) = K(x, t) –K(x, –t), Ã(x, t) = K(x, t) +K(x, –t)

satisfying (), ().
Let us define


(λ) :=
〈
ϕ(x,λ),ψ(x,λ)

〉
= ϕ(x,λ)ψ ′(x,λ) – ϕ′(x,λ)ψ(x,λ), ()
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which is independent from x ∈ [,π ]. Substituting x =  and x = π into () we get


(λ) = –U(ψ) = V (ϕ).

The function 
(λ) is entire and has zeros at the eigenvalues of the problem ()-().
In the Hilbert space Hρ = L,ρ(,π )⊕C

 let an inner product be defined by

(f , g) :=
∫ π


f(x)g(x)ρ(x)dx +

fg
α

+
fg
δ

,

where

f =

⎛

⎜
⎝

f(x)
f
f

⎞

⎟
⎠ ∈Hρ , g =

⎛

⎜
⎝

g(x)
g
g

⎞

⎟
⎠ ∈Hρ , δ := ββ – ββ > .

We define the operator

L(f ) :=

⎛

⎜
⎝

–f ′′
 (x) + q(x)f(x)
f ′
 () + αf()

βf ′
 (π ) + βf(π )

⎞

⎟
⎠

with

D(L) =
{
f ∈ Hρ : f(x), f ′

 (x) ∈ AC[,π ], l(f) ∈ L[,π ],

f = αf(), f = βf ′
 (π ) + βf(π )

}
,

where

l(f) =


ρ(x)
{
–f ′′

 + q(x)f
}
.

The boundary value problem ()-() is equivalent to the equation LY = λY .When λ = λn

are the eigenvalues, the eigenfunctions of operator L are in the form of

�(x,λn) = �n :=

⎛

⎜
⎝

ϕ(x,λn)
αϕ(,λn)

βϕ
′(π ,λn) + βϕ(π ,λn)

⎞

⎟
⎠ , n = , .

For any eigenvalue λn the solutions (), () satisfy the relation

ψ(x,λn) = knϕ(x,λn) ()

and the normalized numbers of the boundary value problem ()-() are given below:

αn :=
∫ π


ϕ(x,λn)ρ(x)dx + αϕ

(,λn)

+

δ

(
βϕ

′(π ,λn) + βϕ(π ,λn)
). ()
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Lemma  The eigenvalues of the boundary value problem ()-() are simple, i.e.


̇(λ) = λnknαn. ()

Proof Since

–ϕ′′(x,λn) + q(x)ϕ(x,λn) = λ
nρ(x)ϕ(x,λn),

–ψ ′′(x,λ) + q(x)ψ(x,λ) = λρ(x)ψ(x,λ),

we get

d
dx

[
ϕ(x,λn)ψ ′(x,λ) – ϕ′(x,λn)ψ(x,λ)

]
=

(
λ
n – λ)ρ(x)ϕ(x,λn)ψ(x,λ).

With the help of (), () we get


(λn) –
(λ) =
(
λ
n – λ)

∫ π


ϕ(x,λn)ψ(x,λ)ρ(x)dx.

Adding

(
λ
n – λ)αϕ(,λn)ψ(,λ)

+
(λ

n – λ)
δ

(
βϕ

′(π ,λn) + βϕ(π ,λn)
)(

βψ
′(π ,λ) + βψ(π ,λ)

)

to both sides of the last equation and using the relations (), () we have


(λn) –
(λ) = (λn + λ)(λn – λ)knαn.

Taking λ → λn, we find (). �

3 Asymptotic formulas of the eigenvalues
The solution of () satisfying the initial conditions () when q(x) ≡  is in the following
form:

ϕ(x,λ) = c(x,λ) +
(
λα – α

) s(x,λ)
λ

, ()

where

c(x,λ) =

⎧
⎨

⎩

cosλx,  ≤ x < a,

 ( +

√
ρ(x)

) cosλμ+(x) + 
 ( –

√
ρ(x)

) cosλμ–(x), a < x≤ π ,

and

s(x,λ) =

⎧
⎨

⎩

sinλx
λ

,  ≤ x < a,

 ( +

√
ρ(x)

) sinλμ+(x)
λ

+ 
 ( –

√
ρ(x)

) sinλμ–(x)
λ

, a < x ≤ π .
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The eigenvalues λ
n (n = ,∓,∓, . . .) of the boundary value problem ()-() when q(x) ≡

 can be found by using the equation


(λ) =
(
λβ – β

)
ϕ(π ,λ) –

(
β – λβ

)
ϕ′
(π ,λ) = 

and can be represented in the following way:

λ
n = n +ψ(n), n = ,∓,∓, . . . ,

where supn |ψ(n)| < +∞.
Roots λ

n of the function 
(λ) are separated, i.e.,

inf
n�=k

∣∣λ
n – λ

k
∣∣ = τ > .

Lemma  The eigenvalues of the boundary value problem ()-() are in the form of

λn = λ
n +

dn
λ
n
+

ηn

n
, λn > , ()

where (dn) is a bounded sequence,

dn =


λ
n
̇(λ

n)

∫ π



(
 –


√

ρ(t)

)
q(t) sin(λ

nμ
–(π ))

√
ρ(t)

dt

–
α – α

λ
n
̇(λ

n)

∫ π



(
 +


√

ρ(t)

)
q(t) cos(λ

nμ
–(π ))

√
ρ(t)

dt

and {ηn} ∈ l.

Proof From (), it follows that

ϕ(π ,λ) = ϕ(π ,λ) +
∫ μ+(π )


A(π , t) cosλt dt

+
(
λα – α

)∫ μ+(π )


Ã(π , t)

sinλt
λ

dt. ()

The expressions of 
(λ) and 
(λ) let us calculate 
(λ) –
(λ):


(λ) –
(λ) = –λÃ
(
π ,μ+(π )

)(
α + a +

π – 
α

)
sinλμ+(π )

+
(

α + a +
π – 
α

)
A

(
π ,μ+(π )

)
cosλμ+(π ) + I(λ)λ,

where

I(λ) = αβ

∫ μ+(π )



∂

∂x
Ã(π , t) sinλt dt +O

(
e| Imλ|μ+(π )

λ

)
.
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Therefore, for sufficiently large n, on the contours

�n =
{
λ : |λ| = ∣∣λ

n
∣∣ +

τ



}
,

we have

∣∣
(λ) –
(λ)
∣∣ <

∣∣
(λ)
∣∣.

By the Rouche theorem, we obtain the result that the number of zeros of the function

{

(λ) –
(λ)

}
+
(λ) = 
(λ)

inside the contour�n coincides with the number of zeros of the function
(λ).Moreover,
applying the Rouche theorem to the circle γn(δ) = {λ : |λ–λ

n| ≤ δ} we find, for sufficiently
large n, that there exists one zero λn of the function 
(λ) in γn(δ). Owing to the arbitrari-
ness of δ >  we have

λn = λ
n + εn, εn = o(), n → ∞. ()

Substituting () into (), as n → ∞ taking into account the equality 
(λ
n) =  and

the relations sin εnμ
+(π ) ≈ εnμ

+(π ), cos εnμ
+(π ) ≈ , integrating by parts and using the

properties of the kernels A(x, t) and Ã(x, t) we have

εn ≈ dn
λ
n + εn

+
ηn

λ
n
,

where

ηn =
∫ μ+(π )


At(π , t) sinλ

nt dt + (α – α)
∫ μ+(π )


At(π , t) cosλ

nt dt.

Let us show that ηn ∈ l. It is obvious that ηn can be reduced to the integral

∫ μ+(π )

–μ+(π )
R(t)eiλt dt,

where R(t) ∈ L(–μ+(π ),μ+(π )). Now, take

ζ (λ) :=
∫ μ+(π )

–μ+(π )
R(t)eiλt dt.

It is clear from [] (p.) that {ζn} = ζ (λn) ∈ l. By virtue of this we have {ηn} ∈ l. The
lemma is proved. �

4 Expansion formula with respect to eigenfunctions
Denote

G(x, t;λ) := –



(λ)

⎧
⎨

⎩
ϕ(t,λ)ψ(x,λ), t ≤ x,

ψ(t,λ)ϕ(x,λ), t ≥ x
()
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and consider the function

y(x,λ) :=
∫ π


G(x, t;λ)f (t)ρ(t)dt –

f

(λ)

ψ(x,λ) +
f


(λ)
ϕ(x,λ). ()

Theorem The eigenfunctions�(x,λn) of the boundary value problem ()-() form a com-
plete system in L,ρ(,π )⊕C

.

Proof With the help of () and (), we can write

ψ(x,λn) =

̇(λn)
λnαn

ϕ(x,λn). ()

Using () and () we get

Resλ=λn y(x,λ) = –


λnαn
ϕ(x,λn)

∫ π


ϕ(t,λn)f (t)ρ(t)dt

–


λnαn
ϕ(x,λn)

(
f –

f
kn

)
. ()

Now let f (x) ∈ L,ρ(,π )⊕C
 and assume

(
�(x,λn), f (x)

)
=

∫ π


ϕ(x,λn)f(x)ρ(x)dx + ϕ(,λn)f

+
(βϕ

′(π ,λn) + βϕ(π ,λn))f
δ

= . ()

Then from (), we have Resλ=λn y(x,λ) = . Consequently, for fixed x ∈ [,π ] the func-
tion y(x,λ) is entire with respect to λ. Let us denote

Gδ :=
{
λ :

∣∣λ – λ
n
∣∣ ≥ δ,n = ,∓,∓, . . .

}
,

where δ is sufficiently small positive number. It is clear that the relation below holds:

∣∣
(λ)
∣∣ ≥ C|λ|e| Imλ|μ+(π ), λ ∈Gδ ,C = cons. ()

From () it follows that for fixed δ >  and sufficiently large λ∗ >  we have

∣∣y(x,λ)
∣∣ ≤ C

|λ| , λ ∈Gδ , |λ| ≥ λ∗,C = cons.

Using maximum principle for module of analytic functions and Liouville theorem, we
get y(x,λ) ≡ . From this we obtain f (x) ≡  a.e. on [,π ]. Thus we conclude the com-
pleteness of the eigenfunctions �(x,λn) in L,ρ(,π )⊕C

. �

Theorem  If f (x) ∈D(L), then the expansion formula

f (x) =
∞∑

n=

anϕ(x,λn) ()

http://www.boundaryvalueproblems.com/content/2014/1/194
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is valid, where

an =


αn

∫ π


ϕ(t,λn)f (t)ρ(t)dt,

and the series converges uniformly with respect to x ∈ [,π ]. For f (x) ∈ L,ρ(,π ), the series
converges in L,ρ(,π ),moreover, the Parseval equality holds:

∫ π



∣∣f (x)
∣∣ρ(x)dx =

∞∑

n=

αn|an|.

Proof Since ϕ(x,λ) andψ(x,λ) are the solutions of the boundary value problem ()-(), we
have

y(x,λ) = –
ψ(x,λ)

(λ)

{∫ π



[–ϕ′′(t,λ) + q(t)ϕ(t,λ)]f (t)
λ dt

}

–
ϕ(x,λ)

(λ)

{∫ x

π

[–ψ ′′(t,λ) + q(t)ψ(t,λ)]f (t)
λ dt

}

–
f


(λ)
ψ(x,λ) +

f

(λ)

ϕ(x,λ). ()

Integrating by parts and taking into account the boundary conditions (), () we obtain

y(x,λ) = –

λ f (x) –


λ

[
Z(x,λ) + Z(x,λ)

]

–
f


(λ)
ψ(x,λ) +

f

(λ)

ϕ(x,λ), ()

where

Z(x,λ) =



(λ)
ψ(x,λ)

∫ x


ϕ′(t,λ)f ′(t)dt +



(λ)

ϕ(x,λ)
∫ π

x
ψ ′(t,λ)f ′(t)dt,

Z(x,λ) =



(λ)
[(

λα – α
)
ψ(x,λ)f ()

]
–



(λ)

[(
λβ – β

)
ϕ(x,λ)f (π )

]

+



(λ)
ψ(x,λ)

∫ x


ϕ(t,λ)q(t)f (t)dt +



(λ)

ϕ(x,λ)
∫ π

x
ψ(t,λ)q(t)f (t)dt.

If we consider the following contour integral where �n is a counter-clockwise oriented
contour:

In(x) =


π i

∮

�n

λy(x,λ)dλ,

and then taking into consideration () we get

In(x) =
∞∑

n=

Resλ=λn

[
λy(x,λ)

]

=
∞∑

n=

anϕ(x,λn) +
∞∑

n=

λnf

̇(λn)

ψ(x,λn) –
∞∑

n=

λnf

̇(λn)

ϕ(x,λn), ()
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where

an =

αn

∫ π


ϕ(t,λn)f (t)ρ(t)dt.

On the other hand, with the help of () we get

In(x) = f (x) –


π i

∮

�n

[
Z(x,λ) + Z(x,λ)

]
dλ +

∞∑

n=

λnf

̇(λn)

ψ(x,λn)

–
∞∑

n=

λnf

̇(λn)

ϕ(x,λn). ()

Comparing () and () we obtain

∞∑

n=

anϕ(x,λn) = f (x) + εn(x),

where

εn(x) = –


π i

∮

�n

[
Z(x,λ) + Z(x,λ)

]
dλ.

The relations below hold for sufficiently large λ∗ > 

max
x∈[,π ]

∣∣Z(x,λ)
∣∣ ≤ C

|λ| , λ ∈ Gδ , |λ| ≤ λ∗, ()

max
x∈[,π ]

∣∣Z(x,λ)
∣∣ ≤ C

|λ| , λ ∈Gδ , |λ| ≤ λ∗. ()

The validity of

lim
n→∞ max

x∈[,π ]
∣∣εn(x)

∣∣ = 

can easily be seen from () and (). The last equation gives us the expansion formula

f (x) =
∞∑

n=

anϕ(x,λn).

Since the system of �(x,λn) is complete and orthogonal in L,ρ(,π )⊕C
, the Parseval

equality

∫ π



∣
∣f (x)

∣
∣ρ(x)dx =

∞∑

n=

αn|an|

holds. �

http://www.boundaryvalueproblems.com/content/2014/1/194
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5 Uniqueness theorems
We consider the statement of the inverse problem of the reconstruction of the boundary
value problem ()-() from the Weyl function.
Let the functions c(x,λ) and s(x,λ) denote the solutions of () satisfying the conditions

c(,λ) = , c′(,λ) = , s(,λ) =  and s′(,λ) = , respectively, and ϕ(x,λ) and ψ(x,λ) be
the solutions of () under the initial conditions (), ().
Further, let the function �(x,λ) be the solution of () satisfying U(�) =  and V (�) = .

We set

M(λ) :=
ψ(,λ)

(λ)

.

The functions �(x,λ) and M(λ) are called the Weyl solution and the Weyl function for
the boundary value problem ()-(), respectively. The Weyl function is a meromorphic
function having simple poles at points λn, eigenvalues of the boundary value problem of
()-(). The Wronskian

W (x) :=
〈
ϕ(x,λ),�(x,λ)

〉

does not depend on x. Taking x = , we get

W () = ϕ(,λ)�′(,λ) – ϕ′(,λ)�(,λ) = .

Hence,

W (x) =
〈
ϕ(x,λ),�(x,λ)

〉
= . ()

In view of () and (), we get for λ �= λn

�(x,λ) =
ψ(x,λ)

(λ)

. ()

Using () we obtain

M(λ) = –

(λ)

(λ)

,

where 
(λ) = –ψ(,λ) is the characteristic function of the boundary value problem L:

ly = λy, ≤ x ≤ π ,

y() = , V (y) = .

It is clear that

�(x,λ) = s(x,λ) +M(λ)ϕ(x,λ). ()

Theorem The boundary value problem of ()-() is identically denoted by theWeyl func-
tion M(λ).

http://www.boundaryvalueproblems.com/content/2014/1/194
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Proof Let us denote the matrix P(x,λ) = [Pjk(x,λ)]j,k=, as

P(x,λ)

(
ϕ̃(x,λ) �̃(x,λ)
ϕ̃′(x,λ) �̃′(x,λ)

)

=

(
ϕ(x,λ) �(x,λ)
ϕ′(x,λ) �′(x,λ)

)

. ()

Then we have

ϕ(x,λ) = P(x,λ)ϕ̃(x,λ) + P(x,λ)ϕ̃′(x,λ),

�(x,λ) = P(x,λ)�̃(x,λ) + P(x,λ)�̃′(x,λ)
()

or

P(x,λ) = ϕ(x,λ)�̃′(x,λ) – ϕ̃′(x,λ)�(x,λ),

P(x,λ) = ϕ̃(x,λ)�(x,λ) – ϕ(x,λ)�̃(x,λ).
()

Taking () into consideration in () we get

P(x,λ) =  +



(λ)
ψ(x,λ)

[
ϕ′(x,λ) – ϕ̃′(x,λ)

]
+



(λ)

ϕ(x,λ)
[
ψ̃ ′(x,λ) –ψ ′(x,λ)

]
,

P(x,λ) =



(λ)
[
ϕ̃(x,λ)ψ(x,λ) – ϕ(x,λ)ψ̃(x,λ)

]
.

()

From the estimates as |λ| → ∞
∣
∣∣
∣
ϕ′(x,λ) – ϕ̃′(x,λ)


(λ)

∣
∣∣
∣ =O

(


|λ| e
| Imλ|μ+(x)

)
,

∣∣
∣∣
ψ̃ ′(x,λ) –ψ ′(x,λ)


(λ)

∣∣
∣∣ =O

(


|λ| e
| Imλ|(μ+(π )–μ+(x))

)
,

we have from ()

lim|λ|→∞ max
x∈[,π ]

∣∣P(x,λ) – 
∣∣ = lim|λ|→∞ max

x∈[,π ]
∣∣P(x,λ)

∣∣ =  ()

for λ ∈Gδ .
Now, if we take into consideration () and (), we have

P(x,λ) = ϕ(x,λ)s̃′(x,λ) – ϕ̃′(x,λ)s(x,λ) + ϕ̃′(x,λ)ϕ(x,λ)
[
M̃(λ) –M(λ)

]
,

P(x,λ) = ϕ̃(x,λ)s(x,λ) – ϕ(x,λ)s̃(x,λ) + ϕ(x,λ)ϕ̃(x,λ)
[
M(λ) – M̃(λ)

]
.

Therefore ifM(λ) = M̃(λ), one has

P(x,λ) = ϕ(x,λ)s̃′(x,λ) – s(x,λ)ϕ̃′(x,λ),

P(x,λ) = ϕ(x,λ)s̃(x,λ) – s(x,λ)ϕ̃(x,λ).

Thus, for every fixed x functions P(x,λ) and P(x,λ) are entire functions for λ. It can
easily be seen from () that P(x,λ) =  and P(x,λ) = . Consequently, we get ϕ(x,λ) ≡
ϕ̃(x,λ) and �(x,λ)≡ �̃(x,λ) for every x and λ. Hence, we arrive at q(x) ≡ q̃(x). �
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The validity of the equation below can be seen analogously to []:

M(λ) =M() +
∞∑

n=

λ

αnλ
n(λ – λ

n)
. ()

Theorem  The spectral data identically define the boundary value problem ()-().

Proof From (), it is clear that the functionM(λ) can be constructed by λn. Since λ̃n = λn

for every n ∈ N, we can say that M(λ) = M̃(λ). Then from Theorem , it is obvious that
L = L̃. �
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