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Abstract
We study the nonlinear generalized Schrödinger-Poisson system:
–�u + V(x)u + K (x)φg(u) = f (x,u), in R3, –�φ = 2K (x)G(u), in R3, where V(x) and K (x) are
non-negative functions. The function f (x,u) is superlinear. Under appropriate
assumptions on V(x), K (x), and g(u), we prove the existence and multiplicity of
nontrivial solutions by the variant fountain theorem established by Zou. Some recent
results due to different authors are extended.
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1 Introduction
Consider the existence and multiplicity of nontrivial solutions for the nonlinear general-
ized Schrödinger-Poisson system:

⎧
⎨

⎩

–�u +V (x)u +K(x)φg(u) = f (x,u), in R,

–�φ = K(x)G(u), in R,
(.)

where G(u) :=
∫ u
 g(t)dt. Setting g(u) = u, (.) represents the well-known Schrödinger-

Poisson system:

⎧
⎨

⎩

–�u +V (x)u +K(x)φu = f (x,u), in R,

–�φ = K(x)u, in R.
(.)

Such a system arises in an interesting physical context. If we look for solitary solutions of
the Schrödinger equation for a particle in an electrostatic field, we just need to solve (.).
We refer the interested readers to [, ] for more details of the physical aspects.
With the aid of variationalmethods, under various hypotheses onV (x),K(x), and f (x,u),

system (.) has been extensively investigated over the past several decades. See for exam-
ple, Benci andFortunato [], D’Aprile andMugnai [], Ambrosetti andRuiz [], Ambrosetti
[], and the references therein.
In recent years, there has been a lot of research on the existence of solutions for system

(.) with f (x,u) = |u|p–u and the potential V (x) being radially symmetric or nonradial.
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In [, ], the authors proved the existence of infinitely many pairs of high energy radial
solutions when  < p < , and also obtained some existence results for  < p ≤ . Sun []
studied the existence of infinitelymany solutionswhen p ∈ (, ). The authors of [] proved
the existence of positive solutions without compactness conditions if  < p < . Azzollini
and Pomponio [] proved the existence of a ground state solution to (.) for  < p < .
Furthermore, Sun et al. [] studied system (.) for f (x,u) being asymptotically linear

and obtained ground state solutions. In [], Huang et al. obtained the existence of at least
a pair of fixed sign solutions and a pair of sign-changing solutions to system (.) involving
a critical nonlinearity. Ding et al. [] studied (.) with a nonhomogeneous term, where
f (x,u) = f (u) is either asymptotically linear or asymptotically -linear with respect to u at
infinity. Very recently, Liu and Guo [] studied (.) with critical growth and obtained the
existence of ground state solutions via variational methods.
The problem of finding infinitelymany large energy solutions is a very classical problem.

There is an extensive literature concerning the existence of infinitely many large energy
solutions of (.). Chen and Tang [] obtained infinitely many large energy solutions by
the following variant ‘Ambrosetti-Rabinowitz’ type condition (AR for short)

∃μ >  such that ≤ μF(x,u) ≤ uf (x,u), for every x ∈ R, |u| ≥ ,

where F(x,u) :=
∫ u
 f (x, s)ds. After that, in [], the authors studied (.) without the (AR)

condition by the variant fountain theorem established by Zou [, Theorem .]. Later, Li
and Chen in [] also obtained infinitely many large energy solutions of (.) with K(x) = 
without the (AR) condition.
By using the method of a cut-off function and the variational arguments, the authors

[] studied the following Schrödinger-Poisson system:

⎧
⎪⎨

⎪⎩

–�u + εqφf (u) = η|u|p–u, in �,
–�φ = qF(u), in �,
u = φ = , on ∂�,

where � ⊂ R is a bounded domain with smooth boundary ∂�,  < p < , ε,η = ±,
f : R → R is a continuous function and F(t) :=

∫ t
 f (s)ds. They proved the existence and

multiplicity results assuming on f a subcritical growth condition and also they considered
the existence and nonexistence results in the critical case. Lately, Li and Zhang [] dis-
cussed (.) with V (x) and K(x) being constants and obtained the existence of a positive
radially symmetric solution without compactness conditions.
Motivated by the above facts, in the present paper our aim is to study the existence of

infinitely many solutions for system (.). To the best of our knowledge, the existence and
multiplicity of nontrivial solutions to system (.) has never been studied by variational
methods, where g is a more general function, f (x,u) �= |u|p–u is also general, andV (x) and
K(x) may be non-radial symmetrical and non-periodic. Before we state our main result,
we list some conditions as follows, which have a role to play.
(V) V (x) ∈ C(R,R) satisfies infx∈R V (x) ≥ a > , where a >  is a constant. Moreover,

for anyM > , meas{x ∈ R : V (x) ≤ M} < ∞, where meas(·) denotes the Lebesgue
measure in R.

(K) K(x) ∈ L∞(R,R), and K(x) ≥  for any x ∈ R.

http://www.boundaryvalueproblems.com/content/2014/1/196
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(g) g ∈ C(R,R) and there exist constants c > , 
 < α <  such that

∣
∣g(u)

∣
∣ ≤ c

(|u| + |u|α–) for all u ∈ R.

(g) g(–u) = –g(u), ∀u ∈ R.
(g) G(u) ≥  for all u ∈ R, and there exists a constant ϑ ≥  such that

G̃(su) ≤ ϑG̃(u), ∀s ∈ [, ],

where G̃(u) :=G(u) – 
g(u)u.

(f) f ∈ C(R × R,R) and there exist constants c > ,  < ν < ∗ such that

∣
∣f (x,u)

∣
∣ ≤ c

(
 + |u|ν–) for all (x,u) ∈ R × R,

where ∗ =  is the critical exponent for the Sobolev embedding in dimension .
(f) lim|u|→

f (x,u)
u =  uniformly for x ∈ R.

(f) F(x, )≡ , F(x,u)≥  and lim|u|→∞ F(x,u)
u = +∞ uniformly for x ∈ R.

(f) For a.e. x ∈ R, there exists a constant ϑ ≥  such that

F̃(x, su)≤ ϑF̃(x,u), ∀(x,u) ∈ R × R, and s ∈ [, ],

where F̃(x,u) = 
 f (x,u)u – F(x,u).

(f) f (x, –u) = –f (x,u), ∀(x,u) ∈ R × R.
Our main result reads as follows.

Theorem . Assume that (V), (K), (g)-(g), and (f)-(f) hold; the problem (.) possesses
infinitely many nontrivial solutions {(uk ,φk)} satisfying




∫

R

(|∇uk| +V (x)uk
)
dx –




∫

R
|∇φk| dx

+
∫

R
K(x)φkG(uk)dx –

∫

R
F(x,uk)dx → +∞, as k → ∞.

Remark . It is well known that the (AR) condition is used to guarantee the bound-
edness of (P.S.) sequences of the corresponding functional. However, there are functions
satisfying the assumptions (f)-(f), but not satisfying the (AR) condition, for instance,
f (x, t) = a(x)t ln( + |t|), where  < infR a(x)≤ supR a(x) < ∞.

Remark . Li et al. [] used

(f′) F̃(x, s)≤ F̃(x, t), ∀(s, t) ∈ R+ × R+, s≤ t.

to solve the problem (.). We claim that our condition (f) is more general than (f′).
In fact, setting ϑ = , we find that F̃(x, t) is increasing in R+ with respect to t. Moreover,
the function f (x, t) = a(x)[t ln( + t) +  sin t] satisfies (f) but not satisfies (f′), where
 < infR a(x)≤ supR a(x) < ∞.

http://www.boundaryvalueproblems.com/content/2014/1/196
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Remark . It is easy to presentmany functions satisfying (g)-(g), for example, g(u) = u,
g(u) = u 

 , g(u) = u

 , and so on. Moreover, setting K(x) = , g(u) = u in (.), we can obtain

similar results to the problem (.) in []. But our proof is different from []. For this
reason, we use a small step.

Remark . Since we have the lack of the (AR) condition, in order to obtain the bounded-
ness of (P.S.) sequences (see the proof of Theorem .), we assume the range of α in (g) is

 < α < , i.e. α is subquadratic, but that of reference [] is superquadratic and there exist
some functions which satisfy the condition (f ) in [] that do not satisfy the conditions
(g) and (g), for example, g(u) = u.

The outline of the paper is as follows: in Section , we present some preliminary re-
sults, which are necessary for Section . In Section , we give the proof of Theorem ..
Throughout the paper we shall denote by Ci >  various positive constants.

2 Preliminaries
In this section we outline the variational framework for the problem (.) and give some
preliminary lemmas. Define the function space

E =
{

u ∈H(R) :
∫

R

(|∇u| +V (x)u
)
dx < +∞

}

.

Then E is a Hilbert space equipped with the inner product and norm

〈u, v〉 =
∫

R

(∇u · ∇v +V (x)uv
)
dx, ‖u‖ = 〈u,u〉/.

Since V (x) is bounded from below, the E is continuously embedded into Lq(R) for all
q ∈ [, ∗]. Therefore, there exists a positive constant ηq >  such that

‖u‖Lq ≤ ηq‖u‖, ∀u ∈ E, (.)

where

‖u‖Lq :=
(∫

R
|u|q dx

) 
q
, for any q ∈ [,∞)

is the norm of the usual Lebesgue space Lq(R). Moreover, by (V), the embedding E ↪→
Lq(R) is also compact for any q ∈ [, ∗) [, Lemma .]. Let D,(R) be the completion
of C∞

 (R) with respect to the norm

‖u‖D, =
(∫

R
|∇u| dx

) 

.

It is well known that the embedding D,(R) ↪→ L(R) is continuous (see []).
It is clear that system (.) is the Euler-Lagrange equations of the functional J : E ×

D,(R) → R defined by

J(u,φ) =


‖u‖ – 



∫

R
|∇φ| dx +

∫

R
K(x)φG(u)dx –

∫

R
F(x,u)dx.

http://www.boundaryvalueproblems.com/content/2014/1/196
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Obviously, the action functional J belongs to C(E×D,(R),R) and its critical points are
the solutions of (.); see for instance []. For any u ∈ E, by the Lax-Milgram theorem, we
can obtain the result that the second equation in (.) has a unique solution φu. Substitut-
ing φu to the first equation of the problem (.), then the problem can be transformed to
a one variable equation. In fact, we firstly get the following lemma.

Lemma . For any u ∈ E, we have
() φu ≥ ;
() ‖φu‖D, ≤ C(‖u‖ + ‖u‖α);
()

∫

R K(x)G(u)φu dx ≤ C(‖u‖ + ‖u‖α).

Proof By the condition (g), we find that there exists C >  such that

G(u) ≤ C
(|u| + |u|α)

, ∀u ∈ E. (.)

Then, by the Minkowski inequality and (.), we have

∥
∥G(u)

∥
∥
L



≤
(∫

R

[
C

(|u| + |u|α)] 
 dx

) 


≤ C
(‖u‖

L


+ ‖u‖α

L
α


)

≤ C
(‖u‖ + ‖u‖α

)
. (.)

For any u ∈ E, the linear functional Tu :D,(R) → R is defined as

Tu(v) =
∫

R
K(x)G(u)vdx.

By the Sobolev embedding theorem, K(x) ∈ L∞(R), K(x)≥ , and (.), we have

∫

R
K(x)G(u)vdx≤

(∫

R

(
K(x)G(u)

) 
 dx

) 

(∫

R
|v| dx

) 


≤ C
∥
∥G(u)

∥
∥
L/‖v‖L

≤ C
(‖u‖ + ‖u‖α

)‖v‖D, . (.)

So, Tu is continuous on D,(R). Hence, the Lax-Milgram theorem implies that, for every
u ∈ E, there exists a unique φu ∈D,(R) such that

∫

R
K(x)G(u)vdx =

∫

R
∇φu · ∇vdx, for any v ∈D,(R).

Using integration by parts, we get
∫

R
∇φu · ∇vdx = –

∫

R
v�φu dx, for any v ∈D,(R),

therefore,

–�φu = K(x)G(u) (.)

http://www.boundaryvalueproblems.com/content/2014/1/196
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in a weak sense. We can write an integral expression for φu in the form

φu = 
∫

R

K(y)G(u(y))
|x – y| dy,

for any u ∈ C∞
 (R) (see [], Theorem  or Lemma . of []). It follows from K(x) ≥ ,

(g), and (g) that φu ≥ , and φ–u = φu for any u ∈ E. By (.), (.), and K(x) ∈ L∞(R),
for any u ∈ E we get

‖φu‖D, ≤ C
(‖u‖ + ‖u‖α

)
and

∫

R
K(x)G(u)φu dx ≤ C

(‖u‖ + ‖u‖α)
.

The proof is complete. �

We consider the functional I : E → R defined by I(u) = J(u,φu). By (.), the reduced
functional takes the form

I(u) =


‖u‖ + 



∫

R
K(x)φuG(u)dx –

∫

R
F(x,u)dx. (.)

By (f) and (f), for any ε > , there exists c(ε) >  such that, for all x ∈ R, u ∈ R,

∣
∣f (x,u)

∣
∣ ≤ ε|u| + νc(ε)|u|ν–

and

∣
∣F(x,u)

∣
∣ ≤ ε|u| + c(ε)|u|ν . (.)

Therefore, by (f), we obtain

 ≤
∫

R
F(x,u)dx≤ ε‖u‖L + c(ε)‖u‖ν

Lν ≤ C‖u‖ +C‖u‖ν . (.)

Then, by Lemma ., I is well defined and is a C functional with derivative given by

〈
I ′(u), v

〉
=

∫

R

(∇u · ∇v +V (x)uv +K(x)φug(u)v – f (x,u)v
)
dx. (.)

Now, we can apply Theorem . of [] to our functional I and obtain the following.

Lemma . The following statements are equivalent:
() (u,φ) ∈ E ×D,(R) is a solution of (.);
() u is a critical point of I and φ = φu.

Since we do not assume the (AR) condition, the verification of the (P.S.) condition be-
comes complicated, so we use the following variant fountain theorem introduced in []
without the (P.S.) condition to handle the problem (.).

Theorem . Let E be a Banach space with ‖ · ‖ and E =
⊕

j∈N Xj with dimXj <∞ for any
j ∈ N . Set Yk =

⊕k
j=Xj, Zk =

⊕∞
j=k+Xj and Bk = {u ∈ Yk : ‖u‖ ≤ rk}.

http://www.boundaryvalueproblems.com/content/2014/1/196
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Consider the following C functional ψλ : E → R defined by

ψλ(u) = A(u) – λB(u), λ ∈ [, ],

where A,B : E → R are two functionals. Suppose that
(F) ψλ maps bounded sets to bounded sets uniformly for λ ∈ [, ]. Furthermore,

ψλ(–u) = ψλ(u) for all (λ,u) ∈ [, ]× E.

(F) B(u) ≥  for all u ∈ E, and A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞.
(F) There exist rk > ρk >  such that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

ψλ(u) > βk(λ) := max
u∈Yk ,‖u‖=rk

ψλ(u), ∀λ ∈ [, ].

Then

αk(λ)≤ ςk(λ) := inf
γ∈�k

max
u∈Bk

ψλ

(
γ (u)

)
, ∀λ ∈ [, ],

where �k := {γ ∈ C(Bk ,E) : γ is odd γ |∂Bk = id}. Moreover, for a.e. λ ∈ [, ], there exists a
sequence {ukm(λ)}∞m= such that

sup
m

∥
∥ukm(λ)

∥
∥ < ∞, ψ ′

λ

(
ukm(λ)

) →  and ψλ

(
ukm(λ)

) → ςk(λ) asm → ∞.

3 Proof of Theorem 1.1
In order to apply Theorem . to prove our main result, we define the functional ψλ on
our working space E by

ψλ(u) =


‖u‖ + 



∫

R
K(x)φuG(u)dx – λ

∫

R
F(x,u)dx := A(u) – λB(u), (.)

for all u ∈ E and λ ∈ [, ]. Then B(u) ≥  for all u ∈ E, A(u) → ∞ as ‖u‖ → ∞.
We choose a completely orthonormal basis {ej : j ∈ N} of E and let Xj = span{ej} for all

j ∈ N . Then Zk , Yk can be defined as those in Section . Note that ψ = I , where I is the
functional defined in (.). We further need the following lemmas.

Lemma . Let (V), (K), (g), and (f) be satisfied, then there exist a positive integer k and
a sequence ρk → +∞ as k → ∞ such that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

ψλ(u) > , ∀k ≥ k, (.)

where Zk =
⊕∞

j=k+Xj = span{ek+, ek+, . . .} for all k ∈ N .

Proof Set

l(k) = sup
u∈Zk ,‖u‖=

‖u‖L and lν(k) = sup
u∈Zk ,‖u‖=

‖u‖Lν , ∀k ∈N . (.)

http://www.boundaryvalueproblems.com/content/2014/1/196
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Since E is compactly embedded into L(R) and Lν(R), we have (see [, Lemma .])

l(k)→  and lν(k) →  as k → ∞. (.)

By (V), (K), (f), (.), (.), and the fact that
∫

R K(x)φuG(u)dx ≥ , we have

ψλ(u) ≥ 

‖u‖ – λ

∫

R
F(x,u)dx

≥ 

‖u‖ – 

(
ε‖u‖L + c(ε)‖u‖ν

Lν

)

≥ 

‖u‖ – εl(k)‖u‖ – c(ε)lνν (k)‖u‖ν . (.)

It follows from (.) that there exists a positive integer k such that εl(k) ≤ 
 , ∀k ≥ k.

Then we have

ψλ(u) ≥
(


–



)

‖u‖ – c(ε)lνν (k)‖u‖ν

=


‖u‖ – c(ε)lνν (k)‖u‖ν . (.)

For each k ≥ k, choose

ρk :=
(
c(ε)lνν (k)

) 
–ν . (.)

Then

ρk → +∞ as k → ∞ (.)

since  < ν < ∗. By (.) and (.), direct computation shows

αk(λ) := inf
u∈Zk ,‖u‖=ρk

ψλ(u) ≥ ρ
k


> , ∀k ≥ k. (.)

The proof is complete. �

Lemma . Under the assumptions of (V), (K) and (f)-(f), then for the positive integer k
and the sequence {ρk} obtained in Lemma ., there exists rk > ρk for each k ≥ k such that

βk(λ) := max
u∈Yk ,‖u‖=rk

ψλ(u) <  for λ ∈ [, ],∀k ≥ k,

where Yk =
⊕k

j=Xj = span{e, . . . , ek} for all k ∈N .

Proof It follows from (f) that, for any M > , there exists δ = δ(M) >  such that, for all
x ∈ R, |u| > δ,

F(x,u)≥ M|u|. (.)

http://www.boundaryvalueproblems.com/content/2014/1/196
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From (f) and (f), there exists C = C(M) >  such that, for all x ∈ R and  < |u| ≤ δ,

|f (x,u)u|
|u| ≤ C.

Then, by the mean value theorem, for all x ∈ R,  < |u| ≤ δ, we obtain

∣
∣F(x,u)

∣
∣ ≤ C


|u|. (.)

Set C̃ =Mδ + C
 , combining (.) with (.), we get

F(x,u)≥ M|u| – C̃|u|, ∀(x,u) ∈ R × R. (.)

For u ∈ Yk , by Lemma . and (.), we have

ψλ(u) ≤ 

‖u‖ + C


(‖u‖ + ‖u‖α)

–
∫

R
F(x,u)dx

≤ 

‖u‖ + C


(‖u‖ + ‖u‖α)

–M‖u‖L + C̃‖u‖L

≤ 

‖u‖ + C


(‖u‖ + ‖u‖α)

–MC‖u‖ +CC̃‖u‖, (.)

where in the last inequality we use the equivalence of all norms on the finite dimensional
subspace Yk . Let us chooseM large enough such that C

 –MC < . Then, whenM is fixed,
C̃ is also fixed. Since 

 < α < , we can choose ‖u‖ = rk > ρk >  such that

βk(λ) := max
u∈Yk ,‖u‖=rk

ψλ(u) <  for λ ∈ [, ],∀k ≥ k.

The proof is complete. �

Proof of Theorem . It follows from Lemma . and (.) that ψλ maps bounded sets
to bounded sets uniformly for λ ∈ [, ]. By (g) and (f), ψλ(–u) = ψλ(u) for all (λ,u) ∈
[, ] × E. Thus, it follows from Lemmas . and . that the conditions of Theorem .
are satisfied. Hence, for a.e. λ ∈ [, ], there exists a sequence {ukm(λ)}∞m= ⊂ E such that

sup
m

∥
∥ukm(λ)

∥
∥ <∞, ψ ′

λ

(
ukm(λ)

) →  and

ψλ

(
ukm(λ)

) → ςk(λ)≥ αk(λ)≥ α̃k asm → ∞,
(.)

where

ςk(λ) := inf
γ∈�k

max
u∈Bk

ψλ

(
γ (u)

)
, ∀λ ∈ [, ], α̃k = ρ

k /→ ∞, as k → ∞

with Bk = {u ∈ Yk : ‖u‖ ≤ rk} and �k := {γ ∈ C(Bk ,E) : γ is odd,γ |∂Bk = id}.
Furthermore, it follows from the proof of Lemma . that

ςk(λ) ∈ [α̃k , ς̃k] for all λ ∈ [, ], (.)

where ς̃k := maxu∈Bk ψ(u).

http://www.boundaryvalueproblems.com/content/2014/1/196
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In view of (.), we can choose λn →  with λn ∈ [, ] and obtain the corresponding
sequences {ukm(λn)} (denoted by {um}) satisfying

sup
m

‖um‖ < ∞, ψ ′
λn (um) →  asm → ∞. (.)

Claim . The sequence {um} has a strong convergent subsequence.
Set �(u) =

∫

R F(x,u)dx. It follows from (.) and the Sobolev embedding theorem that
� is well defined and �′ : E → E∗ is compact, where 〈�′(u), v〉 = ∫

R f (x,u)vdx for u, v ∈ E.
By (.), without loss of generality, we may assume

um ⇀ u asm→ ∞, (.)

for u ∈ E. By virtue of the Riesz representation theorem, �′ : E → E∗ can be viewed as
�′ : E → E. We obtain from (.) and (.) that

um = ψ ′
λn (um) + λn�

′(um), ∀m ∈ N. (.)

By (.), (.), and the compactness of�′ : E → E, the right-hand side of (.) converges
strongly in E. Hence um → u in E. We may suppose um → uk(λn) (denoted by {un}) as
m → ∞; then we obtain from (.) and (.)

ψ ′
λn (un) = , ψλn (un) ∈ [α̃k , ς̃k]. (.)

Claim . The sequence {un} is bounded.
If not, without loss of generality, we suppose that ‖un‖ → ∞. Let wn = un

‖un‖ , then, up to
a sequence, in view of the compact embedding of E into Lq(R),  ≤ q < ∗, we have

wn ⇀ w weakly in E,

wn → w strongly in Lq
(
R),  ≤ q < ∗, (.)

wn(x)→ w(x) a.e. x ∈ R.

Case . w =  in E. As in [], we choose {tn} ⊂ [, ] such that

ψλn (tnun) := max
t∈[,]

ψλn (tun).

For any D > , we set w̃n =
√
Dwn. By (.) and (f), we have

 ≤
∫

R
F(x, w̃n)dx ≤

∫

R

(
ε|w̃n| + c(ε)|w̃n|ν

)
dx →  as n→ ∞.

Then, choosing n sufficiently large such that

ψλn (tnun)≥ ψλn (w̃n) = D +



∫

R
K(x)φw̃nG(w̃n)dx – λn

∫

R
F(x, w̃n)dx ≥ D.
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Thus, limn→∞ ψλn (tnun) = ∞. In view of the choice of tn, we know that 〈ψ ′
λn (tnun), tnun〉 =

. Then, by (g) and (f), we have

∞ ← ψλn (tnun) = ψλn (tnun) –



〈
ψ ′

λn (tnun), tnun
〉

=



‖tnun‖ + 


∫

R
K(x)φtnun

[

G(tnun) –


g(tnun)tnun

]

dx

+ λn

∫

R

[


f (x, tnun)tnun – F(x, tnun)

]

dx

≤ 


‖un‖ + 

ϑ

∫

R
K(x)φun

[

G(un) –


g(un)un

]

dx

+ λnϑ

∫

R

[


f (x,un)un – F(x,un)

]

dx

≤ 


‖un‖ + 

ϑ

∫

R
K(x)φun

[

G(un) –


g(un)un

]

dx

+ λnϑ

∫

R

[


f (x,un)un – F(x,un)

]

dx

= ψλn (un) –



ϑ
〈
ψ ′

λn (un),un
〉 ∈ [α̃k , ς̃k],

where ϑ = max{ϑ,ϑ}. This is a contradiction according to (.).
Case . w �=  in E. On the subspace � := {x ∈ R : w(x) �= }, combining Lemma .,

(.), (.) with (f), by Fatou’s lemma, we have


‖un‖ +

∫

R K(x)G(un)φun dx
‖un‖ –

ψλn (un)
‖un‖

= λn

∫

R

F(x,un)
‖un‖ dx

≥ λn

∫

�

|wn| F(x,un)|un| dx → +∞

as n→ ∞, a contradiction to (.) again. Then {un} is bounded in E.
In view of Claim  and (.), using similar arguments to the proof of Claim , we can

also show that the sequence {un} has a strong convergent subsequence with the limit uk

being just a critical point of I = ψ. Obviously, I(u(k)) ∈ [α̃k , ς̃k]. Since α̃k → +∞ as k → ∞,
we know that {u(k)}∞k= is an unbound sequence of critical points of functional I . Thus, the
proof of Theorem . is complete. �
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