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Abstract

In this paper we investigate an interface problem with singular perturbation on a
subinterval. We first establish a lemma of lower and upper solutions which is an
extension of the classical theory of lower and upper solutions. Based on the basic
lemma we obtain the existence of a solution to the proposed problem, and the
asymptotic behavior of solution as the singular perturbation parameter ¢ — 0* as
well.
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1 Introduction
Interface problems, like coupled elliptic-hyperbolic or parabolic-hyperbolic problems
with discontinuous coefficients, arise in many fields, such as material sciences, fluid-solid
interactions. If an interface problem is confined in a one dimensional domain, one gets
a boundary value problem of ordinary differential equations with interface conditions.
For example, in [1] de Falco and O’Riordan considered a one dimensional metal-oxide-
semiconductor structure which is modeled by a two-point interface boundary value prob-
lem with singular perturbation. Recently, interface problems have attracted much atten-
tion as regards both theoretical and numerical aspects; see for instance [2-5] and refer-
ences therein.

In [6] Aguilar and Lisbona investigated C'-smooth solution of the following interface

boundary value problem with singular perturbation:

()W) + Kw) + b(x,w) =0, x€(0,1),
w(0) =w() =0,

where A, is the piecewise constant function of the form

ce(0,1),

1, x€(0,0),
Ae =
g, x¢€(cl),

and the functions i € C2(R), b € C%([0,1] x R), K € C%(R) satisfy

uw(w) = o >0, by(x,w)>v>0, K strictly monotone.
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This kind of problem arises from some simplified physical models such as the infiltra-
tion process in an inhomogeneous soil [7]. In [6], by using inverse-monotone operator
theorems, the authors proved that the unique C'-smooth solution converges almost ev-
erywhere to the solution of the corresponding reduced problem as ¢ — 0*.

In physical problems, several typical interface conditions, such as perfect contact, flux
jump, and thermal resistance, are often encountered. Hence, it is interesting and of signif-
icance to study the problem (1) with general interface conditions. In the present paper, as
a natural generalization, we consider the following boundary value problem with interface
conditions:

Ay =g, y)y +f(xy), xe€(0,c)U(c]),
¥(0) =y(1) =0, (2)
(o) =, [y1(c) = B,

where we denote by [y](c) = y(c*) —y(c™) the jump of y at the point c. If we set y = fow u(t)de
in (1), the problem (1) becomes

1 (—1
Ay = I;((Lv—l((yy))))y/ +bx,w(y), x€(0,1),

y(O) :J’(l) = 0:

which is a special form of (2) with & = 8 = 0.

In Section 2, we establish first a lemma of low and upper solutions for the problem (2),
which is an extension of classical theory of lower and upper solutions. Lower and up-
per solutions theorems for C'-smooth solutions of two-point second-order boundary
value problems with discontinuous coefficients have been established in [8] where W?!-
solutions (C'-smooth certainly) are considered. However, the theory of lower and upper
solutions for boundary value problems with general interface conditions has not been for-
mulated, to our knowledge.

In Section 3, based on the basic lemma established in Section 2 we analyze the asymp-
totic behavior of solution to the problem (2) in everywhere sense. The original problem
can be viewed as the coupling of the left problem and the right singular perturbation prob-
lem satisfying the jump interface conditions. The solution of the right problem exhibits
generally a boundary layer at either end, which depends on the sign of g(x,y) (see [9, 10]
for instance). Thereby two cases should be distinguished. We prove that under suitable
conditions the problem (2) has a solution whose asymptotic behavior is fully described as
& — 0" on the whole interval [0, 1]. A simple linear example as an illustration is presented
at the end.

Throughout this paper, we assume

(H1) The functions f(x,y) and g(x, y) are C!-smooth, andfy/(x,y) >v>0o0n[0,1] x R.

2 Lower and upper solutions lemma
Forj=1,2,let Q[0,1] be a vector space of functions u(x) defined on [0, 1] satisfying

M(x)|[0,c] € Cl [O) C]) u(x)|[c,1] € Cj[c> 1],

where u(x) is double-valued at x = c.
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Definition 1 A function ®(x) € Q*[0,1] is called a lower solution of the problem (2) if

L@ (x) > g(x, D(x)) D' (x) +f(x, CID(x)), forx € (0,c) U (¢, 1), (3)
[@](c) =, [CD/](C) > B, (4)
®(0) <0, ®(1) <0. (5)

A function ¥(x) € Q*[0,1] is called an upper solution of the problem (2) if

AW (%) < g(x, \I/(x))\ll’(x) +f(x, \I/(x)), for x € (0,c) U (c,1), (6)
[\I»’](C) =a, [lpl](c) < ,37 (7)
v(0) >0, v(1) > 0.

Lemma 1 Assume that ® and V are lower and upper solutions of the problem (2) such
that ® < V. Then the problem (2) has at least one solution y € C*([0,c) U (c,1]) such that
forall x € [0,1]

D (x) < y(x) < ¥(x).

Proof Let us define the following modifications of the functions in the right hand side of
(2):

F(x, @(x),y) + 220 if y < D(x),

_ T+[y=2()]
F(x,99) = F@®xY), . if ¢(x) <y < W(x),
Flx, W(x),y) + g ify> W),

and

I_-"(x,y, -N), ify’ <-N,
H(x95)={F@®xyy), if -N<y <N,
I_-"(x,y,N), ify’ >N,

where F(x,y,y) = g(x,9)y + f(x,5) — Ay, and N > 0 is a large enough number.
Consider the modified problem

hey' = dey=H(xyy), x€(0,0)U(c1),
¥(0) =y(1) =0, ®
yl(c) = a, 1) = B.

Using the method of variation of constants, we write the solution of (8) in the following

form:

foc )\glGl(x, S)H('r o )dS + f()l )\s_l(al(x’ S)H(’) ] ')dS, X € [O; C]:

a6 s)H(, -, ) ds + [ 41 Oa(x,8)H (-, -, ) ds,  x € [e]1], ®)

y(x) = p(x) +
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where H(-,-,-) = H(s,¥(s),y(s)) and

Girs) - L {wax)wc(s), S {m(s)wc(x), x<s
W= | wils)welx), s<x, W+ | wal)we(s), s=<wx,
c—1 1—c

®1(x,3)=e _+;1 [Wvgf)—wf)}wl(x),
e +e [ wy(s) wils)

Or(5) = —— [ W ]wxx),

W~ =-2( +e7°), wt = Z(el’c + ec’l),

while the functions

i) = e —e”*, xel0,c], W) = 0, x € [0,c],
e 0, x€[c1], 2 e l_el™, xelcl],

we(x) = e +e“*, x€]0,1]

solve the homogeneous equation y” — y = 0. The function

2(e~1-e)
= (gl — ), xe o],

(ef+e C)a+(e™

(€ Lrel O+l c—eh)p (" —e™), x€[0,c],
px) =
2(e71-¢)

is the unique solution of the problem

y'—y=0, x€(0,¢)U(c1),
¥(0) =y(1) =0,
i) = a, 1) = B.

The integral equation (9) defines an operator T on Q'[0,1], that is, a Banach space en-
dowed with the norm [|y|| = |[¥lloc + [ lloo- Since H(x,7,5) : [0,1] x R? — R is uniformly
bounded in y € Q'[0,1], the set T(Q*[0, 1]) is a relatively compact subset of Q'[0,1]. More-
over, T is continuous. Hence, it follows from the Schauder fixed-point theorem (see, for
instance, [11]) that the boundary value problem (8) has a solution. Note that any solution
of (8) which lies between ®(x) and W(x) and satisfies |y'(x)| < N, x € [0,1], is a solution
of (2).

Noting that F(x,y,y’) satisfies a Nagumo condition with respect to ®(x) and ¥(x), it
follows that [y’ (x)| < N, x € [0,1] (see Theorems 7.33 and 7.34 in [12]). In what follows, we
prove ®(x) < y(x), x € [0,1]. Suppose, on the contrary, that the function u(x) = ®(x) — y(x)
has a positive maximum at some xq € [0,1]. From (5) we see xy € (0,1). If xy € (0,¢) U (c, 1),
then u(xg) > 0, ¢/(x0) = 0, and " (xg) < 0. On the other hand,

Aot (x0) = Ao D" (%0) — Aey" (0)

> g(x0, D(x0)) D' (x0) +f (%0, P(x0)) — g (%0, P(x0))y (x0) — f (%0, P(x0))

B ¥(xo) — P(x0)
1+ |y(x0) — P(x0)]

>0, (10)

+ ke (P(x0) — ¥(x0))
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which contradicts u”(xg) < 0. If xg = ¢, then #/(c”) > 0 > «/(c*). In view of (4), it follows
that #/(c”) = #/(c*) = 0, which implies #”(c”) < 0 and u”(c*) < 0. Letting xy — ¢* in (10)
yields a contradiction. This shows that ®(x) < y(x) for x € [0,1]. In a similar way, we can
prove that y(x) < W(x) for x € [0,1].

Therefore, the solution of (8) is also that of (2) and satisfies ®(x) < y(x) < W(x) for 0 <
x <1 (I

3 Asymptotic estimates

In this section, we investigate asymptotic behavior of solutions of (2) by constructing suit-
able pairs of lower and upper solutions. As in [6], we distinguish two cases, and consider
the asymptotic behavior under the assumptions (H2) and (H2'), respectively.

(H2) There exists a positive constant o such that g(x,y) < —og < 0 for (x,y) € [0,1] x R.
(H2') There exists a positive constant o7 such that g(x,y) > 01 > 0 for (x,5) € [0,1] x R.

Case (I). Assume (H2).
We also assume the following.

(H3) The reduced problem

gxy)y +f(xy) =0,  y1)=0

has a solution ¥ (x) € C?[c,1].

Generally, the right problem

ey =gx,y)y +f(xy), xe(cl),

y(c) given,  y(1)=0 11)

has a boundary layer at x = c. However, taking the interface condition [y'](c) = 8 into con-
sideration, the solution of (11) must have no boundary layer at x = ¢. Thus we have

() =¥ () + Oe).

Proposition 1 The left boundary value problem

¥0)=0, ) =vy()+a (12)

{y” =g, )y +f(x,9), x€(0,0),
has a solution y = ¢(x) € C*[0,c].

Proof 1t is easy to verify that & = —Cy and W = C; are a pair of lower and upper solutions
of (12), where

)

Co= max{’w(c) +a [f(a:},O)l }

Theorem 1 Let the conditions (H1), (H2), and (H3) hold. Moreover, we assume that

g(xe@)e'(x) =0, x€(0,c). (13)
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Then for sufficiently small € > 0 the boundary value problem (2) has a solution y(x, ) sat-
isfying

(x,¢) = p(x) +O(e), x€[0,c],
7 Yx)+O(e), x¢€lc1].

Proof From the assumptions (H1) and (H3) it follows that there is a positive constant M
such that for sufficiently small ¢ > 0

W' ()| <M, x€lcll],

g (% U () + V)Y () + £, ¥ + V)| <M, (x,v) € [¢,1] x [-Me, Me].

We construct the barrier functions as follows:

{‘ﬂ(x)—)/l& x € [0,c], x—c

qD(x) = To=—">

Y(x) — ypee7 0% — §1(x)e, x€c1], £

W(x) = {qo(x) + 16, x€[0,c], o "6,
Y (x) + 126e79070 + §1(x)e, x € [c1], €

where y1, y» are positive constants such that

ooyi=(00+ 1)y +2, ooy > |B+¢ ()= ¥ (o)

’

and

SR )

§(x)

[&0]

which is a solution of the differential equation
008" + M8 + (y + 2)M = 0.
It follows from the construction of ® and W that

®(0) < 0 < ¥(0),
d(1) <0< W(1),
[®](0) = [W](c) = «,
[@](c) > B>[¥'](c).

In what follows, we check the inequality (3). Using (H1) and (13) we have for x € (0, ¢),

D" (x) — g (x, D(x)) D' (x) - f (%, P(x))
=¢" g% 0(x) — y18)¢' —f (% 9(x) - ye)
> [, (% 0(x) —O1n1e)¢’ +v]ne
>0,
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and for x € (¢, 1),

e®"(x) — g(x, P(x)) D' (%) — f (%, P(x))
= ey —yo5e 0% - §"e* — g(x, P(¥)) (V' + y100e 0™ = §'e) — f (x, P(x))
>ey” — 8" —0pd'e + [gj',(x, N +fy’(x, ..)] (y2e‘00ro + 81)8
> (M—-8"¢)e —[008" + M& + (y2 + 2)M]e
>0,
provided that ¢ is small enough, where (x,-) = (x, ¥ (x) — 2y26e7707 — 0,r8:¢), (x,--) =
(x, ¥ (x) — O3y26e7700 — OG351¢) and 0 < 61,6,,603 < 1.
For sufficiently small ¢ > 0 the inequality (6) can be verified in a similar way. Thus we

have proved that ®(x) and W(x) are lower and upper solutions of (2), respectively. The

conclusion immediately follows from Lemma 1. O

Case (II). Assume (H2').

In this case, the solution to the right problem (11) exhibits a boundary layer at x = 1.
Hence, we need first to establish a solution of the left problem. Considering the interface
conditions we impose the following nonlinear boundary condition:

g(eye) +a)(y' () +B) +f(cy(c) +a) =0
at x = ¢ for the left problem. We have the following proposition.

Proposition 2 Assume that

g;(x’y)ﬁ +fy/(x’)/) >v>0, (xry) € (0; C) x R. (14)

Then the left boundary value problem

Yy =g,y +f(xy), xe€(0,0),
¥(0) =0, q((c),y'(c)) = 0,

has a solution y = ¢(x) € C*[0,c], where q(u,v) = —g(c,u + a)(v + B) — f(c, u + ).

Proof The conclusion follows from Theorem 3.2 in [13], by verifying that ® = ~C, and
W = C, are a pair of lower and upper solutions of (15), where

Co - max{ If (x, O)I, If(c,a) +_g(c,oz)ﬂ| } .
v v
(H3’) Assume that the right reduced problem
0=g(xp)y +f(xy), xcl(cl), 16)
y(c) =p(c) + a,

has a solution y = ¥ (x) € C?[c,1].
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In general, ¥(1) # 0, and thereby we need to construct a corrected boundary layer term.
To this end, substituting

Y=U@v(r), =2

into the right boundary value problem

ey =g y)y +f(xy), xe(cl),
) =9 +a,  y1)=0

and letting ¢ — 0, we obtain

ij— = gL YW+ o), )

W)=y, W) =o.
Considering the continuity of g(x, y) we introduce
0y =max{g(x ¥ () +v): =[¥@)| <v <[y D]}

The following proposition concerns the asymptotic behavior of the boundary layer term,

whose proof is substantially similar to that of Lemma 3.1 in [14].

Proposition 3 The boundary value problem (17) has a solution v = v(t) with the exponen-

tial estimates

_ _ _ d _
T v 20 |5 <afFler,

where

Theorem 2 Let the conditions (H1), (H2'), (H3'), and (14) hold. Moreover, we assume that

g(*ow)P'®) =0, xe(0,0). (18)

Then for sufficiently small ¢ > 0 the boundary value problem (2) has a solution y(x, ) such
that for x € [0, c]

y(x,€) = p(x) + Ofe), 19)
and for x € [c,1]

—0e - P12 T <y(x,6) - Y(x) < -y (1)e” & +os, (20)

where o and & are defined in Proposition 3, and o > 0 is a constant independent of €.

Page 8 of 11
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Proof 1t follows from the assumptions (H1) and (H3’) that there exists a positive constant
M such that for sufficiently small & > 0

V'@ <M |g@)V @] <M,

g @ @I <M, Q)| <M,

where (x,7) € [¢, 1] x [0 — Me,® + Me], and ® = max{|y(x)| + [¥(1)],c <x <1}.
Select the bounding functions as follows:

d(x) = Px) - (V12 + V)8, x € [0,c],
Y(x) — Y (1)e” —v(r)e - 8(x)e, x€[c1],

(x) = ) + (V12 + Ve, x € [0,c],
Y(x) =y (1)eZ” +9(r)e + 8(x)e, x€[c1],

where ¥, ¥, are positive constants which can be chosen such that (4) and (7) hold. The

function

- L
6(.?6) = ﬁ

(1), L>A +M
is a solution of the equation

013/ -Ms=1,
and the function

MMoy — 27)e%1”

V=
o1
solves
da*v av —
d—z - old—v LM =0,  T(0) =M,
T T

and

= >0, fort<O.
o1

dv  M(Mo} - 2017 —2)e”"
dr

Here we check the inequality (3) only for x € (¢, 1), since the equality on x € (0,c¢) can
be verified by following similar lines as in the proof of Theorem 1. From the definition of
®(x) we have for x € (c,1)

e®"(x) —g(x, dD(x)) @' (x) —f(x, dD(x))

— = v(D)o?e2t  d*v — Yy(Doet dv -,

— _ 2_rN/=" T _ TN _

=gy -6 ¢ A o glx, @) v A e de)—flx @)
—n =n d*v v Yy(1)o -

— _ 2 _ _ =[5 — o7

=gy -8 ¢ s +g( ,CD)dT - [g g(x, @)]e +g(x, d)e
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+ [gw ) —g(x ¥ - W)Y + [g(x ¥ - ¥ (1)e27) - glx, @)Y
+ [ 9) = f (% = (D) ] + [f (% ¥ - ¥ (1)e™") —f(x, D)]

— o, 4 av o L
>-Meg—-8 &°——+01— —2Me®'" — MWV +68)e +v(V+8)e+018 ¢
dt? dt

> _Me—0 €% — Mve + (013/ - Mé)e
>(L-M-M-68"¢)e
>0,
on condition that ¢ is sufficiently small. Thus ®(x) is a lower solution of (2).

It can be shown similarly that W(x) is an upper solution of (2). From Lemma 1 it follows
that there is a solution with the estimates (19) and (20). O

Finally, as an illustration, let us consider a linear interface boundary value problem,

Ay =y +2y, x€(0,0.5)U(0.5,1),
¥(0) =y(1) =0, (21)
[¥1(0.5) =0, [y1(0.5) = 1.

From Theorem 2 it follows that (21) has a solution with the following asymptotic estimate:

e¥_ er

- +O(e), x €1[0,0.5],
de—¢” 2
y(x’ 8) = x—f —X -3 xX—
e 2’62(11 )y ese a e + O(e), x€[0.5,1],
de—e 2 4e—e 2

which agrees with the exact solution accurate to order €.
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