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Abstract
In this paper we investigate an interface problem with singular perturbation on a
subinterval. We first establish a lemma of lower and upper solutions which is an
extension of the classical theory of lower and upper solutions. Based on the basic
lemma we obtain the existence of a solution to the proposed problem, and the
asymptotic behavior of solution as the singular perturbation parameter ε → 0+ as
well.
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1 Introduction
Interface problems, like coupled elliptic-hyperbolic or parabolic-hyperbolic problems
with discontinuous coefficients, arise in many fields, such as material sciences, fluid-solid
interactions. If an interface problem is confined in a one dimensional domain, one gets
a boundary value problem of ordinary differential equations with interface conditions.
For example, in [] de Falco and O’Riordan considered a one dimensional metal-oxide-
semiconductor structure which is modeled by a two-point interface boundary value prob-
lem with singular perturbation. Recently, interface problems have attracted much atten-
tion as regards both theoretical and numerical aspects; see for instance [–] and refer-
ences therein.
In [] Aguilar and Lisbona investigated C-smooth solution of the following interface

boundary value problem with singular perturbation:

{
–λε(μ(w)w′)′ +K(w)′ + b(x,w) = , x ∈ (, ),
w() = w() = ,

()

where λε is the piecewise constant function of the form

λε =

{
, x ∈ (, c),
ε, x ∈ (c, ),

c ∈ (, ),

and the functions μ ∈ C(R), b ∈ C([, ]×R), K ∈ C(R) satisfy

μ(w) ≥ μ > , bw(x,w)≥ ν > , K strictly monotone.
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This kind of problem arises from some simplified physical models such as the infiltra-
tion process in an inhomogeneous soil []. In [], by using inverse-monotone operator
theorems, the authors proved that the unique C-smooth solution converges almost ev-
erywhere to the solution of the corresponding reduced problem as ε → +.
In physical problems, several typical interface conditions, such as perfect contact, flux

jump, and thermal resistance, are often encountered. Hence, it is interesting and of signif-
icance to study the problem () with general interface conditions. In the present paper, as
a natural generalization, we consider the following boundary value problemwith interface
conditions:

⎧⎪⎨
⎪⎩

λεy′′ = g(x, y)y′ + f (x, y), x ∈ (, c)∪ (c, ),
y() = y() = ,
[y](c) = α, [y′](c) = β ,

()

where we denote by [y](c) ≡ y(c+)–y(c–) the jump of y at the point c. If we set y =
∫ w
 μ(t)dt

in (), the problem () becomes

{
λεy′′ = K ′(w–(y))

μ(w–(y)) y
′ + b(x,w–(y)), x ∈ (, ),

y() = y() = ,

which is a special form of () with α = β = .
In Section , we establish first a lemma of low and upper solutions for the problem (),

which is an extension of classical theory of lower and upper solutions. Lower and up-
per solutions theorems for C-smooth solutions of two-point second-order boundary
value problems with discontinuous coefficients have been established in [] where W ,-
solutions (C-smooth certainly) are considered. However, the theory of lower and upper
solutions for boundary value problems with general interface conditions has not been for-
mulated, to our knowledge.
In Section , based on the basic lemma established in Section  we analyze the asymp-

totic behavior of solution to the problem () in everywhere sense. The original problem
can be viewed as the coupling of the left problem and the right singular perturbation prob-
lem satisfying the jump interface conditions. The solution of the right problem exhibits
generally a boundary layer at either end, which depends on the sign of g(x, y) (see [, ]
for instance). Thereby two cases should be distinguished. We prove that under suitable
conditions the problem () has a solution whose asymptotic behavior is fully described as
ε → + on the whole interval [, ]. A simple linear example as an illustration is presented
at the end.
Throughout this paper, we assume
(H) The functions f (x, y) and g(x, y) are C-smooth, and f ′

y (x, y) ≥ ν >  on [, ]×R.

2 Lower and upper solutions lemma
For j = , , let Qj[, ] be a vector space of functions u(x) defined on [, ] satisfying

u(x)|[,c] ∈ Cj[, c], u(x)|[c,] ∈ Cj[c, ],

where u(x) is double-valued at x = c.
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Definition  A function �(x) ∈Q[, ] is called a lower solution of the problem () if

λε�
′′(x)≥ g

(
x,�(x)

)
�′(x) + f

(
x,�(x)

)
, for x ∈ (, c)∪ (c, ), ()

[�](c) = α,
[
�′](c) ≥ β , ()

�()≤ , �()≤ . ()

A function �(x) ∈Q[, ] is called an upper solution of the problem () if

λε�
′′(x)≤ g

(
x,�(x)

)
� ′(x) + f

(
x,�(x)

)
, for x ∈ (, c)∪ (c, ), ()

[�](c) = α,
[
� ′](c) ≤ β , ()

�() ≥ , �() ≥ .

Lemma  Assume that � and � are lower and upper solutions of the problem () such
that � ≤ � . Then the problem () has at least one solution y ∈ C([, c) ∪ (c, ]) such that
for all x ∈ [, ]

�(x)≤ y(x)≤ �(x).

Proof Let us define the following modifications of the functions in the right hand side of
():

F
(
x, y, y′) =

⎧⎪⎨
⎪⎩
F(x,�(x), y′) + y–�(x)

+|y–�(x)| , if y <�(x),
F(x, y, y′), if �(x)≤ y≤ �(x),
F(x,�(x), y′) + y–�(x)

+|y–�(x)| , if y >�(x),

and

H
(
x, y, y′) =

⎧⎪⎨
⎪⎩
F(x, y, –N), if y′ < –N ,
F(x, y, y′), if –N ≤ y′ ≤ N ,
F(x, y,N), if y′ >N ,

where F(x, y, y′) = g(x, y)y′ + f (x, y) – λεy, and N >  is a large enough number.
Consider the modified problem

⎧⎪⎨
⎪⎩

λεy′′ – λεy =H(x, y, y′), x ∈ (, c)∪ (c, ),
y() = y() = ,
[y](c) = α, [y′](c) = β .

()

Using the method of variation of constants, we write the solution of () in the following
form:

y(x) = p(x) +

{∫ c
 λ–

ε G(x, s)H(·, ·, ·) ds + ∫ 
 λ–

ε 	(x, s)H(·, ·, ·)ds, x ∈ [, c],∫ 
c λ–

ε G(x, s)H(·, ·, ·) ds + ∫ 
 λ–

ε 	(x, s)H(·, ·, ·) ds, x ∈ [c, ],
()
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where H(·, ·, ·) =H(s, y(s), y′(s)) and

G(x, s) =


W–

{
w(x)wc(s), x≤ s,
w(s)wc(x), s≤ x,

G(x, s) =


W+

{
w(s)wc(x), x≤ s,
w(x)wc(s), s ≤ x,

	(x, s) =
ec– + e–c

e – e–

[
w(s)
W+ –

w(s)
W–

]
w(x),

	(x, s) =
ec + e–c

e – e–

[
w(s)
W+ –

w(s)
W–

]
w(x),

W– = –
(
ec + e–c

)
, W+ = 

(
e–c + ec–

)
,

while the functions

w(x) =

{
ex – e–x, x ∈ [, c],
, x ∈ [c, ],

w(x) =

{
, x ∈ [, c],
ex– – e–x, x ∈ [c, ],

wc(x) = ex–c + ec–x, x ∈ [, ]

solve the homogeneous equation y′′ – y = . The function

p(x) =

{
(ec–+e–c)α+(e–c–ec–)β

(e––e) (ex – e–x), x ∈ [, c],
(ec+e–c)α+(e–c–ec)β

(e––e) (ex– – e–x), x ∈ [c, ],

is the unique solution of the problem

⎧⎪⎨
⎪⎩
y′′ – y = , x ∈ (, c)∪ (c, ),
y() = y() = ,
[y](c) = α, [y′](c) = β .

The integral equation () defines an operator T on Q[, ], that is, a Banach space en-
dowed with the norm ‖y‖ = ‖y‖∞ + ‖y′‖∞. Since H(x, y, y′) : [, ] ×R

 → R is uniformly
bounded in y ∈Q[, ], the set T(Q[, ]) is a relatively compact subset ofQ[, ]. More-
over, T is continuous. Hence, it follows from the Schauder fixed-point theorem (see, for
instance, []) that the boundary value problem () has a solution. Note that any solution
of () which lies between �(x) and �(x) and satisfies |y′(x)| < N , x ∈ [, ], is a solution
of ().
Noting that F(x, y, y′) satisfies a Nagumo condition with respect to �(x) and �(x), it

follows that |y′(x)| <N , x ∈ [, ] (see Theorems . and . in []). In what follows, we
prove �(x)≤ y(x), x ∈ [, ]. Suppose, on the contrary, that the function u(x) = �(x) – y(x)
has a positive maximum at some x ∈ [, ]. From () we see x ∈ (, ). If x ∈ (, c)∪ (c, ),
then u(x) > , u′(x) = , and u′′(x) ≤ . On the other hand,

λεu′′(x) = λε�
′′(x) – λεy′′(x)

≥ g
(
x,�(x)

)
�′(x) + f

(
x,�(x)

)
– g

(
x,�(x)

)
y′(x) – f

(
x,�(x)

)
–

y(x) –�(x)
 + |y(x) –�(x)| + λε

(
�(x) – y(x)

)
> , ()
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which contradicts u′′(x) ≤ . If x = c, then u′(c–) ≥  ≥ u′(c+). In view of (), it follows
that u′(c–) = u′(c+) = , which implies u′′(c–) ≤  and u′′(c+) ≤ . Letting x → c± in ()
yields a contradiction. This shows that �(x) ≤ y(x) for x ∈ [, ]. In a similar way, we can
prove that y(x)≤ �(x) for x ∈ [, ].
Therefore, the solution of () is also that of () and satisfies �(x) ≤ y(x) ≤ �(x) for  ≤

x ≤ . �

3 Asymptotic estimates
In this section, we investigate asymptotic behavior of solutions of () by constructing suit-
able pairs of lower and upper solutions. As in [], we distinguish two cases, and consider
the asymptotic behavior under the assumptions (H) and (H′), respectively.

(H) There exists a positive constant σ such that g(x, y)≤ –σ <  for (x, y) ∈ [, ]×R.
(H′) There exists a positive constant σ such that g(x, y) ≥ σ >  for (x, y) ∈ [, ]×R.

Case (I). Assume (H).
We also assume the following.

(H) The reduced problem

g(x, y)y′ + f (x, y) = , y() = 

has a solution ψ(x) ∈ C[c, ].

Generally, the right problem

{
εy′′ = g(x, y)y′ + f (x, y), x ∈ (c, ),
y(c) given, y() = 

()

has a boundary layer at x = c. However, taking the interface condition [y′](c) = β into con-
sideration, the solution of () must have no boundary layer at x = c. Thus we have

y
(
c+

)
= ψ(c) +O(ε).

Proposition  The left boundary value problem

{
y′′ = g(x, y)y′ + f (x, y), x ∈ (, c),
y() = , y(c) = ψ(c) + α

()

has a solution y = ϕ(x) ∈ C[, c].

Proof It is easy to verify that � = –C and � = C are a pair of lower and upper solutions
of (), where

C = max

{∣∣ψ(c) + α
∣∣, |f (x, )|

ν

}
. �

Theorem  Let the conditions (H), (H), and (H) hold.Moreover, we assume that

g ′
y
(
x,ϕ(x)

)
ϕ′(x)≥ , x ∈ (, c). ()

http://www.boundaryvalueproblems.com/content/2014/1/201
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Then for sufficiently small ε >  the boundary value problem () has a solution y(x, ε) sat-
isfying

y(x, ε) =

{
ϕ(x) +O(ε), x ∈ [, c],
ψ(x) +O(ε), x ∈ [c, ].

Proof From the assumptions (H) and (H) it follows that there is a positive constant M
such that for sufficiently small ε > 

∣∣ψ ′′(x)
∣∣ ≤ M, x ∈ [c, ],∣∣g ′

y
(
x,ψ(x) + v

)
ψ ′(x) + f ′

y (x,ψ + v)
∣∣ ≤ M, (x, v) ∈ [c, ]× [–Mε,Mε].

We construct the barrier functions as follows:

�(x) =

{
ϕ(x) – γε, x ∈ [, c],
ψ(x) – γεe–στ – δ(x)ε, x ∈ [c, ],

τ =
x – c

ε
,

�(x) =

{
ϕ(x) + γε, x ∈ [, c],
ψ(x) + γεe–στ + δ(x)ε, x ∈ [c, ],

τ =
x – c

ε
,

where γ, γ are positive constants such that

σγ = (σ + )γ + , σγ >
∣∣β + ϕ′(c) –ψ ′(c)

∣∣,
and

δ(x) =
 + γ

σ

[
e

M(c–x)
σ – 

]
,

which is a solution of the differential equation

σδ
′ +Mδ + (γ + )M = .

It follows from the construction of � and � that

�() <  <�(),

�() <  < �(),

[�](c) = [�](c) = α,[
�′](c) > β >

[
� ′](c).

In what follows, we check the inequality (). Using (H) and () we have for x ∈ (, c),

�′′(x) – g
(
x,�(x)

)
�′(x) – f

(
x,�(x)

)
= ϕ′′ – g

(
x,ϕ(x) – γε

)
ϕ′ – f

(
x,ϕ(x) – γε

)
≥ [

g ′
y
(
x,ϕ(x) – θγε

)
ϕ′ + ν

]
γε

> ,

http://www.boundaryvalueproblems.com/content/2014/1/201


Xie Boundary Value Problems 2014, 2014:201 Page 7 of 11
http://www.boundaryvalueproblems.com/content/2014/1/201

and for x ∈ (c, ),

ε�′′(x) – g
(
x,�(x)

)
�′(x) – f

(
x,�(x)

)
= εψ ′′ – γσ


 e

–στ – δ′′ε – g
(
x,�(x)

)(
ψ ′ + γσe–στ – δ′ε

)
– f

(
x,�(x)

)
≥ εψ ′′ – δ′′ε – σδ

′ε +
[
g ′
y(x, ·)ψ ′ + f ′

y (x, ··)
](

γe–στ + δ
)
ε

≥ (
M – δ′′ε

)
ε –

[
σδ

′ +Mδ + (γ + )M
]
ε

> ,

provided that ε is small enough, where (x, ·) = (x,ψ(x) – θγεe–στ – θδε), (x, ··) =
(x,ψ(x) – θγεe–στ – θδε) and  < θ, θ, θ < .
For sufficiently small ε >  the inequality () can be verified in a similar way. Thus we

have proved that �(x) and �(x) are lower and upper solutions of (), respectively. The
conclusion immediately follows from Lemma . �

Case (II). Assume (H′).
In this case, the solution to the right problem () exhibits a boundary layer at x = .

Hence, we need first to establish a solution of the left problem. Considering the interface
conditions we impose the following nonlinear boundary condition:

g
(
c, y(c) + α

)(
y′(c) + β

)
+ f

(
c, y(c) + α

)
= 

at x = c for the left problem. We have the following proposition.

Proposition  Assume that

g ′
y(x, y)β + f ′

y (x, y) ≥ ν > , (x, y) ∈ (, c)×R. ()

Then the left boundary value problem

{
y′′ = g(x, y)y′ + f (x, y), x ∈ (, c),
y() = , q(y(c), y′(c)) = ,

()

has a solution y = ϕ(x) ∈ C[, c], where q(u, v) = –g(c,u + α)(v + β) – f (c,u + α).

Proof The conclusion follows from Theorem . in [], by verifying that � = –C and
� = C are a pair of lower and upper solutions of (), where

C = max

{ |f (x, )|
ν

,
|f (c,α) + g(c,α)β|

ν

}
. �

(H′) Assume that the right reduced problem

{
 = g(x, y)y′ + f (x, y), x ∈ (c, ),
y(c) = ϕ(c) + α,

()

has a solution y =ψ(x) ∈ C[c, ].

http://www.boundaryvalueproblems.com/content/2014/1/201
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In general, ψ() �= , and thereby we need to construct a corrected boundary layer term.
To this end, substituting

y = ψ(x) + v(τ ), τ =
x – 

ε

into the right boundary value problem

{
εy′′ = g(x, y)y′ + f (x, y), x ∈ (c, ),
y(c) = ϕ(c) + α, y() = 

and letting ε → , we obtain

{
dv
dτ

= g(,ψ() + v(τ )) dvdτ
,

v() = –ψ(), v( c–
ε
) = .

()

Considering the continuity of g(x, y) we introduce

σ = max
{
g
(
x,ψ(x) + v

)
: –

∣∣ψ()
∣∣ ≤ v ≤ ∣∣ψ()

∣∣}.
The following proposition concerns the asymptotic behavior of the boundary layer term,
whose proof is substantially similar to that of Lemma . in [].

Proposition  The boundary value problem () has a solution v = v(τ ) with the exponen-
tial estimates

–ψ()eστ ≤ v(τ ) ≤ –ψ()eστ ,
∣∣∣∣ dvdτ

∣∣∣∣ ≤ σ
∣∣ψ()

∣∣eστ ,

where

σ =

{
σ, if ψ() > ,
σ, if ψ() < ,

σ =

{
σ, if ψ() > ,
σ, if ψ() < .

Theorem  Let the conditions (H), (H′), (H′), and () hold.Moreover, we assume that

g ′
y
(
x,ϕ(x)

)
ϕ′(x)≥ , x ∈ (, c). ()

Then for sufficiently small ε >  the boundary value problem () has a solution y(x, ε) such
that for x ∈ [, c]

y(x, ε) = ϕ(x) +O(ε), ()

and for x ∈ [c, ]

–�ε –ψ()eσ x–c
ε ≤ y(x, ε) –ψ(x)≤ –ψ()eσ x–c

ε + �ε, ()

where σ and σ are defined in Proposition , and � >  is a constant independent of ε.

http://www.boundaryvalueproblems.com/content/2014/1/201
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Proof It follows from the assumptions (H) and (H′) that there exists a positive constant
M such that for sufficiently small ε > 

∣∣ψ ′′(x)
∣∣ ≤ M,

∣∣g ′
y(x, y)ψ

′(x)
∣∣ ≤ M,∣∣g ′

y(x, y)ψ
′(x)ψ()

∣∣ ≤ M,
∣∣f ′
y (x, y)ψ()

∣∣ ≤ M,

where (x, y) ∈ [c, ]× [ϑ –Mε,ϑ +Mε], and ϑ = max{|ψ(x)| + |ψ()|, c≤ x≤ }.
Select the bounding functions as follows:

�(x) =

{
ϕ(x) – (γ x + γ )ε, x ∈ [, c],
ψ(x) –ψ()eστ – v(τ )ε – δ(x)ε, x ∈ [c, ],

�(x) =

{
ϕ(x) + (γ x + γ )ε, x ∈ [, c],
ψ(x) –ψ()eστ + v(τ )ε + δ(x)ε, x ∈ [c, ],

where γ , γ  are positive constants which can be chosen such that () and () hold. The
function

δ(x) =
L
M

(
e
M
σ

x – 
)
, L >M +M

is a solution of the equation

σδ
′ –Mδ = L,

and the function

v =
M(Mσ – τ )eστ

σ

solves

dv
dτ  – σ

dv
dτ

+ Meστ = , v() =M,

and

dv
dτ

=
M(Mσ 

 – στ – )eστ

σ
> , for τ < .

Here we check the inequality () only for x ∈ (c, ), since the equality on x ∈ (, c) can
be verified by following similar lines as in the proof of Theorem . From the definition of
�(x) we have for x ∈ (c, )

ε�′′(x) – g
(
x,�(x)

)
�′(x) – f

(
x,�(x)

)
= εψ

′′ – δ
′′
ε –

ψ()σ eστ

ε
–
dv
dτ  – g(x,�)

(
ψ

′ –
ψ()σ eστ

ε
–
dv
dτ

– δ
′
ε

)
– f (x,�)

= εψ
′′ – δ

′′
ε –

dv
dτ  + g(x,�)

dv
dτ

–
ψ()σ

ε

[
σ – g(x,�)

]
eστ + g(x,�)δ′

ε

http://www.boundaryvalueproblems.com/content/2014/1/201
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+
[
g(x,ψ) – g

(
x,ψ –ψ()eστ

)]
ψ

′ +
[
g
(
x,ψ –ψ()eστ

)
– g(x,�)

]
ψ

′

+
[
f (x,ψ) – f

(
x,ψ –ψ()eστ

)]
+

[
f
(
x,ψ –ψ()eστ

)
– f (x,�)

]
≥ –Mε – δ

′′
ε –

dv
dτ  + σ

dv
dτ

– Meστ –M(v + δ)ε + ν(v + δ)ε + σδ
′
ε

≥ –Mε – δ
′′
ε –Mvε +

(
σδ

′ –Mδ
)
ε

≥ (
L –M –M – δ′′ε

)
ε

> ,

on condition that ε is sufficiently small. Thus �(x) is a lower solution of ().
It can be shown similarly that �(x) is an upper solution of (). From Lemma  it follows

that there is a solution with the estimates () and (). �

Finally, as an illustration, let us consider a linear interface boundary value problem,

⎧⎪⎨
⎪⎩

λεy′′ = y′ + y, x ∈ (, .)∪ (., ),
y() = y() = ,
[y](.) = , [y′](.) = .

()

FromTheorem  it follows that () has a solution with the following asymptotic estimate:

y(x, ε) =

⎧⎪⎨
⎪⎩

e–x–ex

e–e–


+O(ε), x ∈ [, .],

ex–

 –e(–x)

e–e–



+ e–e–



e–e–


e x–

ε +O(ε), x ∈ [., ],

which agrees with the exact solution accurate to order ε.
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