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Abstract
In this paper, we are concerned with the following Schrödinger problem:
–�u + V(x)u = f (u), u > 0, in R

N , where f :R → R is of class C1. The estimation and
profile of the critical value of the corresponding functional is proved, which entails
the relationship between the critical value on the balls and the least-energy value on
the whole space. Our results are also true for three cases of the potential function V(x).
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1 Introduction
The main subject of this paper is the following problem:

–�u +V (x)u = f (u), u > , in R
N , (.)

where � =
∑N

i= ∂
/∂xi is the Laplace operator. Compactness and noncompactness as-

sumptions posed on the potential function V (x) are also discussed.
The nonlinear Schrödinger equation (.) serves as a model for various problems in

physics. For the last  years, (.) has received considerable attention as its solutions seem
both mathematically intriguing and scientifically useful. We would like to mention earlier
results on the existence of entire solutions of Schrödinger type equations with or without
potentials, which was studied in [–] (see references therein).
A more general form of nonlinearity, i.e.

–�u +V (x)u = f (x,u), u ∈H(
R

N)
, (.)

is also studied bymany authors. Kryszewski-Szulkin [] considered the existence of a non-
trivial solution of (.) in a situation when f (x,u), V (x) are periodic in the x-variables,
f (x,u) is superlinear at u =  and |u| = ∞, and  lies in a spectral gap of –� + V . In ad-
dition, if f (x,u) is odd in u, they proved that (.) has infinitely many solutions. The re-
sult from Bartsch-Wang [] suggested that (.) should have one sign changing solution.
Bartsch-Liu-Weth [] further proved the existence of sign changing solutions of (.) in
H(R) with superlinear and subcritical nonlinearity f (x,u), and the number of nodal do-
mains can be controlled. If f (x,u) is odd, they obtained an unbounded sequence of sign
changing solutions uk (k ≥ ), and they have at most k +  nodal domains.
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For the power nonlinearity f (t) = tp ( < p < N+
N– ), since V (x) > , it is well known that

this problem has a positive solution which goes to zero at infinity. This solution is, be-
sides, radially symmetric around some point and unique up to translations; see [] and
[]. Moreover, the linearized equation around w is nondegenerate in the sense that the
equation

�u –V (x)u + pwp–u = , in R
N ,

has linear combinations of the functions ∂w/∂xi as its only solutions which go to zero
at infinity [, ]. These facts are crucial in the formulation of a Lyapunov-Schmidt type
procedure, which was first introduced by Floer-Weinstein [] for the one-dimensional
case, and then was extended by Oh [, ] to higher dimensions. Ni-Wei [] studied the
critical value of the energy functional

E(u) =



∫

�

(
ε|∇u| + u

)
–


p + 

∫

�

up+, u ∈H(�),

of the classical singular perturbation equation –ε�u + u = up (u > ) on �, where � is a
bounded smooth domain in R

N .
Throughout this paper the following hypotheses on f ∈ C and V (x) will be assumed.

(f) f () = , f (t) = o(|t|), as |t| → , uniformly in x.
(f) There exists a number p > , with p < N+

N– if N ≥ , such that lim|t|→∞ F(t)
|t|p < +∞,

where F(t) =
∫ t
 f (s)ds.

(f) There exists a number μ >  such that  < μF(t) ≤ tf (t), for all |t| > .
(f) For any x, f ′(t)t–t

f (t)–t is nonincreasing in t.
(V) V ∈ C(RN ,R) and infRN V (x) > .
(V) V (x) = V (|x|).

Theorem . Under assumptions (f) ∼ (f) and (V), there exists a least-energy ground
state solution of (.).

Theorem . Under assumptions (f) ∼ (f) and (V), there exists a least-energy ground
state of (.), which is radially uniqueness solution, with the corresponding least-energy
value c∗.

Remark . The assumptions (V) and (V) are adopted in [], which means that the
potential functions possess certain compactness conditions. (V) indicates that the x de-
pendence is radially symmetric. For this case, {u ∈H(RN )| ∫

RN V (x)u < ∞,u is radial} is
compactly embedded in Lp(RN ) (≤ p < ∗ = N/(N – )).

Remark . By standard variational arguments, the assumptions (f)∼ (f) and (V) guar-
antee the results of Theorem ., which can be proved by the traditional Minmax Theory.
In fact, the critical value of the energy functional

I(u) =



∫

RN

(|∇u| +V (x)u
)
–

∫

RN
F(u), u ∈ H(

R
N)

(.)
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can be characterized as

c∗ = inf
u�= sup

t>
I(tu).

The associated critical point actually solves (.) and is called a least-energy solution. It
decays exponentially at infinity.

Remark . As far as we know, the most general result of uniqueness of (.) type is ob-
tained by Serrin-Tang [], whichwould guarantee radial uniqueness in (.) if additionally
one assumes (f). The proof of Theorem . is similar to the steps in []; we omit the de-
tails.

Now we define the energy functional of (.) on Bρ = {x ∈R
N ||x| ≤ ρ}:

Iρ(u) =



∫

Bρ

(|∇u| +V (x)u
)
–

∫

Bρ

F(u). (.)

The main result of this paper is the following.

Theorem. Under assumptions (f)∼ (f) and (V), the critical value cρ of the functional
Iρ satisfies

cρ = c∗ + γ  exp
(
–ρ

(
 + o()

))
, (.)

where c∗ is the least-energy value in Theorem . or Remark ., γ is defined as

γ =



∫

RN
f (w)V > , (.)

where w is the unique solution in Theorem ..

Remark . The assumptions (f) ∼ (f) and (V) can guarantee the existence of cρ on the
bounded domain Bρ . In fact, it can be proved by the Minmax Theory as in Remark ..

Remark . Assuming the conditions (V) or (V) on V (x), we can get a similar equality
as (.).

(V) There exists r >  such that, for anyM > ,

lim|y|→∞m
({
x ∈R

N : |x – y| ≤ r
} ∩ {

x ∈R
N : V (x) ≤ M

})
= ,

wherem denotes the Lebesgue measure on R
N .

(V) V ∈ C(RN ,R), infRN V (x) > , and V (x) → ∞ as |x| → ∞.

The assumptions (V) and (V) are certain compactness conditions, listed in []. (V) is
a more general condition, which gives a compact embedding. For (V), we have a compact
embedding from {u ∈H(RN )| ∫

RN V (x)u <∞} in Lp(RN ) for  ≤ p < ∗.

Remark . There are two cases of noncompactness conditions that are posed on the
potential functions V (x) [], and the assumption (V) is also adopted in []:

http://www.boundaryvalueproblems.com/content/2014/1/202
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(V) V ∈ C(RN ,R), infRN V (x) ≥ V > . V (x) is -periodic in each of x,x, . . . ,xN .
(V)  < infRN V (x) ≤ limx→∞ V (x) = sup

RN V (x) <∞.

Assumption (V) is periodic, i.e., the x-dependence is periodic. (V)means thatV (x) has
a bounded potential well in the sense that lim|x|→∞ V (x) exists and is equal to sup

RN V (x).

Remark . A particularly interesting case is whether one can come to the same con-
clusion as Theorem . under the noncompact assumptions (V) and (V).

Our theorems generalize the results in [] to three cases of compactness potential func-
tion entailing a type of nonlinear Schrödinger equation. The existence of the least-energy
ground state solution of (.) is essential. Our results show the relationship between the
critical value on the balls and the least-energy value on the whole space. The estimation
of the critical value can be used to locate the geometrical shape of the solution.

2 Preliminaries
In this section, we give some preliminary lemmas, which will be adopted in the proof of
the theorems.

Lemma . Assume w is a solution of (.), and wρ is a solution of

⎧
⎨

⎩

–�u +V (x)u = f (u), u > , in Bρ ,

u = , on ∂Bρ .
(.)

Then

wρ(ρ – ) = γ exp
(
–ρ

(
 + o()

))
,

w(ρ – ) = γ exp
(
–ρ

(
 + o()

))
,

where γ is defined in (.).

Proof The proof of the two equalities is similar, we only prove the latter. Let w be the
unique positive solution of (.), then the function

w = w
(

x√
V (x)

)

V (x)
lnu

ln(u/f (u))

satisfies the equation

–�u + u = f (u), u > , in R
N . (.)

Next we consider the solution of the equation

⎧
⎨

⎩

u′′ – ( – τ
 )u = , in (R,ρ),

u(R) = , u(ρ) = ,
(.)

where ρ > R.

http://www.boundaryvalueproblems.com/content/2014/1/202
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Note s =
√
 – τ

 , h = esR – esρ–sR; then the solution of (.) is

u(x) =
–esρ

h
e–sx +


h
esx. (.)

We have s→ , as τ → . For ρ big enough,


h
(
esρ–s – esρ+s

) ≤ e–(–τ )ρ ,

so

–
esρ

h
e–s(ρ–) +


h
es(ρ–) ≤ e–(–τ )ρ ,

that is,

u(ρ – ) ≤ e–(–τ )ρ .

The u in (.) is the supersolution of (.) on [R,ρ). So on [R,ρ), w≤ u, we deduce that

w
(

x√
V (x)

)

V (x)
lnu

ln(u/f (u)) ≤ e–(–τ )ρ ,

so

lim
r→∞w(r)e(–τ )r = γ > ,

where γ is defined in (.); then w(ρ – ) ≤ γ e–(–τ )ρ .
For the lower boundary estimation, given R > , consider the equation

⎧
⎨

⎩

u′′ + N–
R u′ – u = , in (R,ρ),

u(R) = wρ(R), u(ρ) = .

Similarly to the computation of (.), we get, for ρ big enough, u(ρ – ) ≥ e–(–τ )ρ ,
and u is a subsolution of the above equation. So w ≥ u. Therefore, for ρ big enough,
w( x√

V (x) )V (x)
lnu

ln(u/f (u)) ≥ e–(–τ )ρ , so w(ρ – ) ≥ γ e–ρ(+o()). We conclude that w(ρ – ) =
γ e–ρ(+o()). �

Lemma . Let u be a solution of
⎧
⎨

⎩

u′′ – u = , in (ρ – ,∞),

u(ρ – ) = , u(+∞) = .
(.)

Let v be a solution of
⎧
⎨

⎩

v′′ – h(ρ)v = , in (ρ – ,ρ),

v(ρ – ) = , v(ρ) = ,
(.)

where h(ρ) is a function of ρ . Then v′(ρ – ) – u′(ρ – ) ≥ .

http://www.boundaryvalueproblems.com/content/2014/1/202
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Proof By computation u = eρ– · e–x is a solution of (.), and u′(ρ – ) = –. Similarly, it
can be checked that

v =
–e

√
h(ρ)·ρ

e–
√

h(ρ) – e
√

h(ρ)
· e–

√
h(ρ)·x +



e
√

h(ρ)·ρ(e–
√

h(ρ) – e
√

h(ρ))
· e

√
h(ρ)·x

is a solution of (.), and

v′ =
e
√

h(ρ)·ρ√h(ρ)

e–
√

h(ρ) – e
√

h(ρ)
· e–

√
h(ρ)·x +

√
h(ρ)

e
√

h(ρ)·ρ(e–
√

h(ρ) – e
√

h(ρ))
· e

√
h(ρ)·x.

So v′(ρ – ) ≥  = u′(ρ – ) + , i.e. v′(ρ – ) – u′(ρ – )≥ . �

3 The estimation of the critical value
This section is devoted to the proof of Theorem ..

Proof of Theorem . cρ is the critical value of the functional Iρ , c∗ is the least-energy value
of I(u).
First we find the upper bound of cρ . Let vρ be the solution of the equation

⎧
⎨

⎩

–�u +V (x)u = , in Bρ\Bρ–,

u(ρ – ) = w(ρ – ), u(ρ) = ,

where w is the solution of (.) in Theorem ., then

∫

Bρ\Bρ–

V (x)vρ =
∫

Bρ\Bρ–

�vρ · vρ = ∇vρ · vρ |∂Bρ– –
∫

Bρ\Bρ–

|∇vρ |,

so

∫

Bρ\Bρ–

|∇vρ | +
∫

Bρ\Bρ–

V (x)vρ = ∇vρ · vρ |∂Bρ– . (.)

Define

wρ(r) =

⎧
⎨

⎩

w(r),  ≤ r ≤ ρ – ,

vρ(r), ρ –  ≤ r ≤ ρ.

We have

cρ = Iρ(wρ) = max
t≥

Iρ(twρ) ≤ max
t≥

Iρ(twρ) = Iρ(tρwρ), (.)

and

tρ → , as ρ → ∞. (.)

http://www.boundaryvalueproblems.com/content/2014/1/202
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Moreover, by the definition of wρ ,

Iρ(tρwρ) =



∫

Bρ

tρ
(|∇wρ | +V (x)w

ρ

)
–

∫

Bρ

F(tρwρ)

=



∫

Bρ–

tρ
(|∇wρ | +V (x)w

ρ

)
–

∫

Bρ–

F(tρwρ)

+
(



∫

Bρ\Bρ–

tρ
(|∇wρ | +V (x)w

ρ

)
–

∫

Bρ\Bρ–

F(tρwρ)
)

≤ 


∫

Bρ–

tρ
(|∇w| +V (x)w) –

∫

Bρ–

F(tρw)

+



∫

Bρ\Bρ–

tρ
(|∇vρ | +V (x)vρ

)

≤ c∗ + tρ · ∇vρ · vρ |∂Bρ–

≤ c∗ + tρ · v′
ρ(r) · vρ(r)|r=ρ–, (.)

where (.) is used in the second inequality.
Similar to the computation in Lemma ., we have

v′
ρ(ρ – ) ≤ γ exp

(
–ρ

(
 + o()

))
, (.)

vρ(ρ – ) ≤ γ exp
(
–ρ

(
 + o()

))
. (.)

Combine (.), (.), (.), (.), and (.), then

cρ ≤ c∗ + γ  exp
(
–ρ

(
 + o()

))
.

Next we find the lower bound of cρ . Let vρ be the solution of

⎧
⎨

⎩

–�u +V (r)u = , in R
N\Bρ–,

u(ρ – ) = wρ(ρ – ), u(+∞) = ,

then

∫

RN \Bρ–

Vvρ =
∫

RN \Bρ–

�vρ · vρ = ∇vρ · vρ |∂Bρ– –
∫

RN \Bρ–

|∇vρ |, (.)

so

∫

RN \Bρ–

|∇vρ | +Vvρ = ∇vρ · vρ |∂Bρ– .

Define

ŵρ(r) =

⎧
⎨

⎩

wρ(r),  ≤ r ≤ ρ – ,

vρ(r), ρ –  ≤ r ≤ ∞.

http://www.boundaryvalueproblems.com/content/2014/1/202
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For t ≥ ,

Iρ(wρ) =



∫

Bρ

(|∇wρ | +Vw
ρ

)
–

∫

Bρ

F(wρ)

=
(



∫

Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ–

F(wρ)
)

+
(



∫

Bρ\Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ\Bρ–

F(wρ)
)

. (.)

For the second part in (.), by Iρ(wρ) = maxt> Iρ(twρ), for t > ,




∫

Bρ\Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ\Bρ–

F(wρ)

≥ t



∫

Bρ\Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ\Bρ–

F(twρ)

≥ 


∫

Bρ\Bρ–

(

t|∇wρ | + max
ρ–≤r≤ρ

{

V –
F(twρ)
(twρ)

}

tw
ρ

)

.

So

Iρ(twρ) =
t



∫

Bρ

(|∇wρ | +Vw
ρ

)
–

∫

Bρ

F(twρ)

≥ t



∫

Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ–

F(twρ)

+



∫

Bρ\Bρ–

(

t|∇wρ | + max
ρ–≤r≤ρ

{

V –
F(twρ)
(twρ)

}

tw
ρ

)

=
t



∫

Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ–

F(twρ)

+
t



∫

RN \Bρ–

(|∇vρ | +Vvρ
)
–
t



∫

RN \Bρ–

(|∇vρ | +Vvρ
)

+



∫

Bρ\Bρ–

t|∇wρ | + 


∫

Bρ\Bρ–

max
ρ–≤r≤ρ

{

V –
F(twρ)
(twρ)

}

tw
ρ

≥ t



∫

Bρ–

(|∇wρ | +Vw
ρ

)
–

∫

Bρ–

F(twρ) +
t



∫

RN \Bρ–

(|∇vρ | +Vvρ
)

–
∫

RN \Bρ–

F(tvρ) –
t



∫

RN \Bρ–

(|∇vρ | +Vvρ
)

+



∫

Bρ\Bρ–

t|∇wρ | + 


∫

Bρ\Bρ–

max
ρ–≤r≤ρ

{

V –
F(twρ)
(twρ)

}

tw
ρ

= I(tŵρ) –
t



∫

RN \Bρ–

(|∇vρ | +Vvρ
)
+



∫

Bρ\Bρ–

t|∇wρ |

+



∫

Bρ\Bρ–

max
ρ–≤r≤ρ

{

V –
F(twρ)
(twρ)

}

tw
ρ ,
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where I is defined in (.). Take (.) in the last equality of the above, then

Iρ(twρ) ≥ I(tŵρ) –
t


∇vρ · vρ |∂Bρ– +




∫

Bρ\Bρ–

t|∇wρ |

+



∫

Bρ\Bρ–

max
ρ–≤r≤ρ

{

V –
F(twρ)
(twρ)

}

tw
ρ . (.)

Choose tρ such that I(tρŵρ) ≥ c∗, and letwρ → w inH, then as ρ → ∞, tρ → .Moreover,
maxρ–≤r≤ρ{V – F(tρwρ )

(tρwρ )
} → maxρ–≤r≤ρ V , as ρ → ∞.

Next we consider v̂ρ , which gives the solution of

⎧
⎨

⎩

–�u + max{V – F(tρwρ )
(tρwρ )

}u = , in Bρ\Bρ–,

u(ρ – ) = wρ(ρ – ), u(ρ) = .

Here v̂ρ works as the comparison function. Similarly to the computation of (.) and
(.),

∫

Bρ\Bρ–

max
ρ–≤r≤ρ

{

V –
F(tρwρ)
(tρwρ)

}

v̂ρ

=
∫

Bρ\Bρ–

�v̂ρ · v̂ρ

= ∇ v̂ρ · v̂ρ |∂Bρ– –
∫

Bρ\Bρ–

|∇ v̂ρ |,

that is,
∫

Bρ\Bρ–

(

|∇ v̂ρ | + max
ρ–≤r≤ρ

{

V –
F(tρwρ)
(tρwρ)

}

v̂ρ

)

= ∇ v̂ρ · v̂ρ |∂Bρ– . (.)

Take (.) in (.); by the definition of vρ and v̂ρ , then

Iρ(twρ) ≥ I(tρŵρ) –
tρ


∇vρ · vρ |∂Bρ– +
tρ


∫

Bρ\Bρ–

|∇ v̂ρ |

+
tρ


∫

Bρ\Bρ–

max
ρ–≤r≤ρ

{

V –
F(tρwρ)
(tρwρ)

}

v̂ρ

= I(tρŵρ) –
tρ


∇vρ · vρ |∂Bρ– +
tρ


∇ v̂ρ · v̂ρ |∂Bρ–

≥ c∗ +
tρ

wρ(ρ – )

(
v̂′
ρ(ρ – ) – v′

ρ(ρ – )
)
. (.)

By Lemma ., v̂′
ρ(ρ – ) – v′

ρ(ρ – ) ≥ wρ(ρ – ). And by Lemma . and (.),

cρ = Iρ(wρ) = max
t>

Iρ(twρ) ≥ c∗ + γ  exp
(
–ρ

(
 + o()

))
.

So we conclude

cρ = c∗ + γ  exp
(
–ρ

(
 + o()

))
. �
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