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Abstract
In this paper, we give a complementary proof on the paper ‘Existence and uniqueness
of anti-periodic solutions for prescribed mean curvature Rayleigh equations’.
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1 Introduction
In [], the authors were concerned with the existence and uniqueness of anti-periodic
solutions of the following prescribed mean curvature Rayleigh equation:

(
x′

√
 + x′

)′
+ f

(
t,x′(t)

)
+ g

(
t,x(t)

)
= e(t), (.)

where e ∈ C(R,R) isT-periodic, and f , g ∈ C(R×R,R) areT-periodic in the first argument,
T is a constant.
The paper mentioned above obtained the main result by using Mawhin’s continuation

theorem in the coincidence degree theory. Unfortunately, the proof of main result The-
orem . (see []) has a serious problem: Fμ(x) = μL(Q(t,x,x)) where Q depends on
ψ(x) and ψ(x) = x√

–x
which is only defined for |x| <  and cannot be continuously ex-

tended; therefore, Fμ should not be defined on � = {x ∈ X : ‖x‖ <M} since |x(t)| >  can
occur, where ‖x‖ = max{‖x‖∞,‖x‖∞} andM =  + max{D,D}.
In this paper, we shall give a complementary proof to correct the errors.

2 Complementary proof
Rewrite (.) in the equivalent form as follows:

⎧⎨
⎩
x′
(t) = ψ(x(t)) = x(t)√

–x(t)
,

x′
(t) = –f (t,ψ(x(t))) – g(t,x(t)) + e(t),

(.)

© 2014 Li and Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited.

http://www.boundaryvalueproblems.com/content/2014/1/204
mailto:lijin7912@gmail.com


Li and Wang Boundary Value Problems 2014, 2014:204 Page 2 of 4
http://www.boundaryvalueproblems.com/content/2014/1/204

where ψ(x) = x√
–x

. In [], the authors embed (.) into a family of equations with one
parameter λ ∈ (, ],

⎧⎨
⎩
x′
(t) = λ

x(t)√
–x(t)

= λψ(x(t)),

x′
(t) = –λf (t,ψ(x(t))) – λg(t,x(t)) + λe(t).

(.)

They have proved that there exists a constant D >  such that

∣∣x′

∣∣
 ≤ D, and |x|∞ ≤ D, (.)

and there exists η ∈ [,T] such that x(η) = .
In fact, to use the continuation theorem, it suffices to prove that there exists a positive

constant  < ε �  such that, for any possible solution (x(t),x(t)) of (.), the following
condition holds:

∣∣x(t)∣∣ <  – ε. (.)

In what follows, we shall give a complementary proof for the main result in [] by giving
a proof of (.).
In [], the authors assume that

(H) (g(t,x) – g(t,x))(x – x) < , for all t,x,x ∈ R and x 	= x;
(H) there exists l >  such that

∣∣g(t,x) – g(t,x)
∣∣ ≤ l|x – x| for all t,x,x ∈ R;

(H) there exists β , γ such that

γ ≤ lim inf|x|→∞
f (t,x)
x

≤ lim sup
|x|→∞

f (t,x)
x

≤ β , uniformly in t ∈ R;

(H) for all t,x ∈ R,

f
(
t +

T

,–x

)
= –f (t,x), g

(
t +

T

,–x

)
= –g(t,x), e

(
t +

T


)
= –e(t).

Under the conditions mentioned above, we prove that (.) holds.
Since |x|∞ <D and g , e are continuous, we find that there existsM >  such that

–M < –g
(
t,x(t)

)
+ e(t) <M, ∀t ∈ R. (.)

By (H), there exists a positive constantM >  such that

f (t,x)≥ γ x –M, ∀x >  and ∀t ∈ R. (.)

Next, we shall prove that

x(t)≤ M +M√
(M +M) + γ 

, ∀t ∈ R.
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Assume by contradiction that there exist t∗ > t∗ > η such that

x
(
t∗

)
=

M +M√
(M +M) + γ 

, x
(
t∗

)
>

M +M√
(M +M) + γ 

,

and

x(t) >
M +M√

(M +M) + γ 
, for t ∈ (

t∗ , t
∗

)
.

Noticing that λ ∈ (, ], we have, ∀t ∈ (t∗ , t∗),

x′
(t) = λ

(
–f

(
t,ψ

(
x(t)

))
– g

(
t,x(t)

)
+ e(t)

)
< ,

which is a contradiction.
By (H), there exists a positive constantM >  such that

f (t,x)≤ βx +M, ∀x <  and ∀t ∈ R.

By using a similar argument, we can prove that

x(t)≥ –
M +M√

(M +M) + β
, for t ∈ R.

Therefore, we get from the continuity of x(t), for any solution (x(t),x(t)) of (.),

–
M +M√

(M +M) + β
≤ x(t) ≤ M +M√

(M +M) + γ 
, ∀t ∈ R.

Consequently, (.) holds.
Putting

� =
{
x = (x,x) ∈ C, 

T
(
R,R) = X : ‖x‖ <M,

∣∣x(t)∣∣ <  – ε

}
,

we can use Mawhin’s continuation theorem on �.
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