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Abstract
In this paper, we investigate the dynamical behavior of the initial boundary value
problem for a class of generalized hyperelastic-rod equations. Under certain
conditions, the existence of a global solution in H3 is proved by using some prior
estimates and the Galerkin method. Moreover, the existence of an absorbing set and
a global attractor in H2 is obtained.
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1 Introduction
Camassa and Holm [] first proposed a completely integrable dispersive shallow water
equation as follows:

ut – uxxt + uux + kux = uxuxx + uuxxx. (.)

The C-H equation (.) was obtained by using an asymptotic expansion directly in the
Hamiltonian for the Euler equations in the shallow water regime and possessed a bi-
Hamiltonian structure and an infinite number of conservation laws in involution. Research
on the C-H equation becomes a hot field due to its good properties [–] since it was pro-
posed in . Some equations also have similar characters to the C-H equation, which
are called C-H family equations. Because of the wide applications in applied sciences such
as physics, the C-H family equations have attracted much attention in recent years.
In , Dai [] derived the following hyperelastic-rod wave equation for finite-length

and finite-amplitudewaves in when doing research on hyperelastic compressiblema-
terial:

vτ + σvvξ + σvξξτ + σ(vξvξξ + vvξξξ ) = , (.)

where v(ξ , τ ) represents the radial stretch relative to a pre-stressed state. The three coef-
ficients σ, σ, and σ are constants determined by the pre-stress and the material param-
eters, σ �= , σ < , σ ≤ .
If τ = √–σ

σ
t and ξ = √–σx, then the following equation can be obtained by (.):

ut – uxxt + uux = γ (uxuxx + uuxxx), γ =
σ

σσ
. (.)

The constant γ is called the pre-stressed coefficient of the material rod.
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There have been many research results as regards the hyperelastic-rod equation (.)
[–], such as traveling-wave solutions, blow-up of solutions, well-posedness of solu-
tions, the existence of weak solutions, the global solutions of Cauchy problem, the periodic
boundary value problem, etc.
In , Coclite et al. [, ] studied the following extension of (.):

ut – uxxt + g(u)ux = γ (uxuxx + uuxxx), g() = . (.)

The existence of a global weak solution to (.) for any initial function u belonging
to H(R) was obtained. They showed stability of the solution when a regularizing term
vanishes based on a vanishing viscosity argument and presented a ‘weak equals strong’
uniqueness result.
It is easy to observe that if γ =  and g(u) = ku + a, (.) becomes the BBM equation

(.) [, ],

ut – uxxt + aux + k
(
u

)
x = . (.)

Here γ =  and g(u) = u + k, (.) is transformed into the C-H equation (.).
If γ =  and g(u) = (b + )u, (.) can be changed to the D-P equation (.) [–],

ut – uxxt + (b + )uux = uxuxx + uuxxx. (.)

Actually, the KdV equation [], the C-H equation, the hyperelastic-rod wave equation
etc. are all considered as special cases of the generalized hyperelastic-rod equation. So
many researchers focused on this class of equations [–]. Among them, Holden and
Raynaud [] studied the following generalized hyperelastic-rod equation:

ut – uxxt + f (u)x – f (u)xxx +
(
g(u) +



f ′′(u)(ux)

)

x
= . (.)

They considered the Cauchy problem of (.) and proved the existence of global and con-
servative solutions. It was shown that the equation was well-posed for initial data inH(R)
if one included a Radonmeasure corresponding to the energy of the systemwith the initial
data.
However, there are few works with respect to the global asymptotical behaviors of so-

lutions and the existence of global attractors, which are important for the study of the
dynamical properties of general nonlinear dissipative dynamical systems [–]. Moti-
vated by the references cited above, the goal of the present paper is to investigate the initial
boundary problem of the following equation:

{
ut – uxxt + [G(u)]()x = uxuxx + uuxxx, t > ,x ∈ �,
u(,x) = u(x), x ∈ �,

(.)

where � = [,L]. We will study the dynamics behavior of (.) and discuss the existence of
the global solution and the global attractor under the periodic boundary condition when
G(u) satisfies the particular conditions.
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The rest of this paper is organized as follows: Section  describes the main definitions
used in this paper. The existence of the global solution is discussed in Section . The ex-
istence of the absorbing set is detailed in Section . Section  shows the existence of the
global attractor.

2 Preliminaries
In this work, (·, ·) stands for the inner product in the usual sense and ‖ · ‖ represents the
norm determined by the inner product, ‖u‖Hm(�) = ‖Dmu‖L(�). Apparently, this norm
is equal to the natural norm in Hm(�). The following signs are adopted in this paper to
express the norms of different spaces: ‖u‖L(�)

�= |u|, ‖Du‖L(�)
�= ‖u‖, ‖Dmu‖L(�)

�= |Dmu|.
The notion of bilinear operator is introduced, B(u, v) = u∇v, where ∇ is called a first

order differential operator. Then we can get b(u, v,ω) = (B(u, v),ω) =
∫
�
(u∇v)ωdx.

The generalized hyperelastic-rod equation we studied is one-dimensional, and the op-
erator ∇ acting on u(x, t) is not identically vanishing, so b(u, v,ω) =  cannot be found.
However, the following formulas can be derived by the periodic boundary condition and
formula of integration by parts:

(
B(u, v),ω

)
= –

(
B(u,ω), v

)
–

(
B(ω,u), v

)
,

(
B(v,u),ω

)
= –

(
B(ω, v),u

)
–

(
B(v,ω),u

)
,

furthermore, (B(u, v),u) = –(B(u,u), v), (B(u, v),u) = –(B(v,u),u), so we get (B(u,u), v) =
(B(v,u),u) and (B(u,u),u) = .
Suppose A = –� is a second order differential operator, v = u + Au, then A is a self-

adjoint operator, which possesses the eigenvalues like (k + k)(
π
L ), where k,k ∈ N

and k + k �= . λ represents the smallest eigenvalue of A.
Based on the above statements, the initial boundary value problem of (.) under the

periodic boundary condition can be rewritten as follows:

dv
dt

+
[
G(u)

]()
x + B(u, v) + B(v,u) – B(u,u) = , (.)

u(x, ) = u, (.)

u(, t) = u(L, t). (.)

In this work, we assume that H = {u | u ∈ L(�) and u(, t) = u(L, t)}, V = {u | u′ ∈
L(�) and u(, t) = u(L, t)}, G′

u(u) ≥ g >  and |G(k)
u (u)| ≤ C|u|–k , k = , , , , C is a con-

stant.

3 The existence of global solution
Theorem  If u ∈V, G′

u(u) ≥ g > , and |G(k)
u (u)| ≤ C|u|–k , k = , , , , then (.)-(.)

possess the global solution u = u(·,u) ∈ C([,∞);H(R))∩C([,∞);H(R)).

Proof The Galerkin method is adopted to prove this theorem. Assume that {φi}∞j= is
an orthogonal basis of H constituted by the eigenvectors of the operator A, Hm =
span{φ,φ, . . . ,φm}, Pm is the orthogonal projection fromH to Hm. Through the Galerkin
method, we can obtain the following ordinary differential equations by (.), (.):

dvm
dt

+
[
G(um)

]()
x + PmB(um, vm) + PmB(vm,um) – PmB(um,um) = , (.)

http://www.boundaryvalueproblems.com/content/2014/1/209
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um() = Pmu(), (.)

where vm = um +Aum. Considering the expressions of B(um, vm), B(vm,um), B(um,um), ac-
cording to the qualitative theories of ordinary differential equations, (.)-(.) have a
unique solution um in (,Tm). In order to prove the existence of a global solution, we need
to do some prior estimates as regards um.
Taking the inner product of (.) with um in �, we have

(
dvm
dt

,um
)
+

([
G(um)

]()
x ,um

)
+ Pm

(
B(um, vm),um

)

+ Pm
(
B(vm,um),um

)
– Pm

(
B(um,um),um

)
= .

By using integration by parts and the periodic boundary conditions, we get

(
dvm
dt

,um
)
=


d
dt

(∫

�

(
um + umx

)
dx

)
=


d
dt

(|um| + ‖um‖),

Pm
(
B(um, vm),um

)
+ Pm

(
B(vm,um),um

)
– Pm

(
B(um,um),um

)
= ,

([
G(um)

]()
x ,um

)
=

∫

�

[
G(um)

]()
x um dx = –

∫

�

G′
um (um)umxumxxx dx.

Moreover, in terms of
∫
�
umxumxxx dx = –

∫
�
umxx dx≤  and G′

u(u) ≥ g > , we have

([
G(um)

]()
x ,um

) ≥ –g
∫

�

umxumxxx dx,



d
dt

(|um| + ‖um‖) – g
∫

R
umxumxxx dx ≤ .

Employing
∫
�
umxumxxx dx = –

∫
�
umxx dx again, the following formula can be obtained:

d
dt

(|um| + ‖um‖) + g|Aum| ≤ .

By the Poincaré inequality, |Aum| > λ‖um‖, we have

d
dt

(|um| + ‖um‖) + gλ‖um‖ + g|Aum| ≤ .

Let g = min{gλ, g}, then

d
dt

(|um| + ‖um‖) + g
(‖um‖ + |Aum|) ≤ . (.)

Using the Poincaré inequality again, ‖um‖ > λ|um| and |Aum| > λ‖um‖, (.) can be
changed to

d
dt

(|um| + ‖um‖) + gλ
(|um| + ‖um‖) ≤ .

So we can obtain

|um| + ‖um‖ ≤ (∣∣um()
∣∣ +

∥∥um()
∥∥)

exp{–gλt} ≤ ∣∣um()
∣∣ +

∥∥um()
∥∥ �= r.

http://www.boundaryvalueproblems.com/content/2014/1/209
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Integrating (.) over the interval [t, t + r],

g
∫ t+r

t

(∥∥um(s)
∥∥ +

∣∣Aum(s)
∣∣)ds ≤ r. (.)

Taking the inner product of (.) with Aum in �, we have

(
dvm
dt

,Aum
)
+

([
G(um)

]()
x ,Aum

)
+ Pm

(
B(um, vm),Aum

)

+ Pm
(
B(vm,um),Aum

)
– Pm

(
B(um,um),Aum

)
= .

By using integration by parts and the periodic boundary conditions, we get

(
dvm
dt

,Aum
)
=


d
dt

(‖um‖ + |Aum|),
([
G(um)

]()
x ,Aum

)
=

∫

�

[
G(um)

]()
x Aum dx =

∫

�

G′
um (um)umxumxxxxx dx.

Moreover,
∫
�
umxumxxxxx dx =

∫
�
umxxx dx ≥  and G′

u(u) ≥ g > . So



d
dt

(‖um‖ + |Aum|) + g
∫

R
umxumxxxxx dx + Pm

(
B(um, vm),Aum

)

+ Pm
(
B(vm,um),Aum

)
– Pm

(
B(um,um),Aum

) ≤ .

Employing
∫
�
umxumxxxxx dx =

∫
�
umxxx dx again, we obtain



d
dt

(‖um‖ + |Aum|) + g|∇Aum| + Pm
(
B(um, vm),Aum

)

+ Pm
(
B(vm,um),Aum

)
– Pm

(
B(um,um),Aum

) ≤ . (.)

By computing, we have

Pm
(
B(um, vm),Aum

)
+ Pm

(
B(vm,um),Aum

)
– Pm

(
B(um,um),Aum

)

= Pm
(
B(Aum,um),Aum

)
+ Pm

(
B(um,Aum),Aum

)
.

According to the Agmon inequality when n = , ‖ϕ‖L∞ ≤ c‖ϕ‖ 

L‖ϕ‖ 


H , where c is a con-

stant which only depends on �. Furthermore, we can get

Pm
(
B(Aum,um),Aum

) ≤ ‖∇um‖L∞|Aum| ≤ c‖um‖ 
 |Aum|  ,

Pm
(
B(um,Aum),Aum

) ≤ 

‖∇um‖L∞|Aum| ≤ c


‖um‖ 

 |Aum|  .

So the following inequality can be gotten by (.):



d
dt

(‖um‖ + |Aum|) + g|∇Aum| ≤ c‖um‖ 
 |Aum|  + c


‖um‖ 

 |Aum|  .

http://www.boundaryvalueproblems.com/content/2014/1/209
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By the Poincaré inequality, |∇Aum| > λ|Aum|, together with g = min{gλ, g}, we have



d
dt

(‖um‖ + |Aum|)+ g


(|Aum| + |∇Aum|) ≤ c‖um‖ 
 |Aum|  + c


‖um‖ 

 |Aum|  .

By the Young inequality, the following inequality can be obtained:



d
dt

(‖um‖ + |Aum|) + g


(|Aum| + |∇Aum|)

≤ 

gλ

(‖um‖ + |Aum|) + c‖um‖|Aum|(‖um‖ + |Aum|), (.)

where

c =
[min{c, c }]

gλ
,

and, by using the Poincaré inequality, we have

d
dt

(‖um‖ + |Aum|) ≤ c‖um‖|Aum|(‖um‖ + |Aum|).

Using the Young inequality again, we can further get

d
dt

(‖um‖ + |Aum|) ≤ c
(‖um‖ + |Aum|). (.)

Denoting y = ‖um(s)‖ + |Aum(s)|, g = c(‖um(s)‖ + |Aum(s)|). According to (.),

∫ t+r

t
y ds ≤ r

g
,

∫ t+r

t
g ds≤ cr

g
.

Based on the uniform Grownwall inequality, we have

‖um‖ + |Aum| ≤ r
rg

exp

{
cr
g

}
�= r, t > t + r, (.)

where r, r, and c are nonnegative constants.
Integrating (.) over the interval [t, t + r] to obtain



g

∫ t+r

t

(|Aum| + |∇Aum|)ds

≤
∫ t+r

t

(


gλ

(‖um‖ + |Aum|) + c


(‖um‖ + |Aum|)
)
ds +

(‖um‖ + |Aum|)

≤ 

(
gλr + cr

)
r + r

�= r. (.)

Taking the inner product of (.) with Aum in �, together with integration by parts, the
periodic boundary conditions, and G′

u(u) ≥ g > , we have



d
dt

(|Aum| + |∇Aum|) + g
∣
∣Aum

∣
∣ + Pm

(
B(um, vm),Aum

)

+ Pm
(
B(vm,um),Aum

)
– Pm

(
B(um,um),Aum

) ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/209
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Through the Young inequality, the Hölder inequality and the Poincaré inequality, we de-
duce that



d
dt

(|Aum| + |∇Aum|) + g


(|∇Aum| + ∣
∣Aum

∣
∣)

≤ 

gλ

(|Aum| + |∇Aum|) + c‖um‖|Aum|(|Aum| + |∇Aum|).

According to the Poincaré inequality and the Young inequality again, we have

d
dt

(|Aum| + |∇Aum|) ≤ c‖um‖|Aum|(|Aum| + |∇Aum|)

≤ c
(‖um‖ + |Aum|)(|Aum| + |∇Aum|).

From (.) and (.), we get

c
∫ t+r

t

(∥∥um(s)
∥∥ +

∣∣Aum(s)
∣∣)ds ≤ rc

g
,

∫ t+r

t

(|Aum| + |∇Aum|)ds≤ r
g

.

Based on the uniform Grownwall inequality, we have

|Aum| + |∇Aum| ≤ r
rg

exp

{
rc
g

}
�= r, t > t. (.)

Overall, |um| ≤ r, ‖um‖ ≤ r, |Aum| ≤ r, |∇Aum| ≤ r, that is, |vm| ≤ r + r, ‖vm‖ ≤
r + r.
According to the qualitative theories of ordinary differential equations, (.)-(.) have

a global solution um.
From the above discussion, we have

∣∣PmB(um, vm)
∣∣ ≤ |um|‖vm‖ ≤ (

r(r + r)
) 
 �= r,

∣
∣PmB(vm,um)

∣
∣ ≤ |vm|‖um‖ ≤ (

r(r + r)
) 
 �= r,

∣∣PmB(um,um)
∣∣ ≤ |um|‖um‖ ≤ (rr)




�= r.

Then (.) can be rewritten as

dvm
dt

= PmB(um,um) – PmB(um, vm) – Pm(vm,um) –
[
G(um)

]()
x .

Because of |G(k)
u (u)| ≤ C|u|–k , k = , , , ,

∣
∣∣
∣
dvm
dt

∣
∣∣
∣ ≤ 

∣∣PmB(um,um)
∣∣ +

∣∣PmB(um, vm)
∣∣ + 

∣∣PmB(vm,um)
∣∣ +

∣∣PmB
([
G(um)′′′x

]′
u,um

)∣∣

≤ r + r + r + h(C, r, r, r, r)‖um‖ ≤ r + r + r + hr




�= k, (.)

where h is a constant which depends on C, r, r, r, r.

http://www.boundaryvalueproblems.com/content/2014/1/209
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According to the Aubin compactness theorem, we conclude that there is a convergent
subsequence um′ , so that um′ → u, or equivalently vm′ → v. Suppose that um′ and vm′ are
replaced by um and vm, then we need to prove that u, v satisfy (.).
Selecting ω ∈ D(A) randomly, |ω| is bounded as we see from the above discussion. By

the ordinary differential equation (.), we have

(
vm(t),ω

)
+

∫ t

t

(
G

(
um(s)

)
,Aω

)
ds +

∫ t

t

(
B
(
um(s), vm(s)

)
,Pmω

)
ds

+ 
∫ t

t

(
B
(
vm(s),um(s)

)
,Pmω

)
ds – 

∫ t

t

(
B
(
um(s),um(s)

)
,Pmω

)
ds =

(
vm(t),ω

)
.

Obviously, limm→+∞ |Pmω–ω| = , limm→+∞ |PmAω–Aω| = , according to the conver-
gence,

lim
m→+∞

∫ t

t

(
G

(
um(s)

)
,Aω

)
ds =

∫ t

t

(
G

(
u(s)

)
,Aω

)
ds,

∣∣
∣∣

∫ t

t

(
B
(
um(s), vm(s)

)
,Pmω

)
ds –

∫ t

t

(
B
(
u(s), v(s)

)
,ω

)
ds

∣∣
∣∣

≤
∣
∣∣
∣

∫ t

t

(
B
(
um(s), vm(s)

)
,Pmω –ω

)
ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ t

t

(
B
(
um(s) – u(s), vm(s)

)
,ω

)
ds

∣
∣∣
∣

+
∣∣
∣∣

∫ t

t

(
B
(
u(s), vm(s) – v(s)

)
,ω

)
ds

∣∣
∣∣,

where

I()m =
∣
∣∣
∣

∫ t

t

(
B
(
um(s), vm(s)

)
,Pmω –ω

)
ds

∣
∣∣
∣ ≤

∫ t

t

∣∣B
(
um(s), vm(s)

)∣∣|Pmω –ω|ds.

Considering the boundness of |B(um(s), vm(s))|, so I()m → ,

I()m =
∣
∣∣
∣

∫ t

t

(
B
(
um(s) – u(s), vm(s)

)
,ω

)
ds

∣
∣∣
∣ ≤

∫ t

t

∣∣B
(
um(s) – u(s), vm(s)

)∣∣|ω|ds

≤
∫ t

t

∣
∣um(s) – u(s)

∣
∣
∥
∥vm(s)

∥
∥|ω|ds → ,

I()m =
∣
∣∣∣

∫ t

t

(
B
(
u(s), vm(s) – v(s)

)
,ω

)
ds

∣
∣∣∣ ≤

∫ t

t

∣∣B
(
u(s), vm(s) – v(s)

)∣∣|ω|ds

≤
∫ t

t

∣∣u(s)
∣∣∥∥vm(s) – v(s)

∥∥|ω|ds → ,

∣∣
∣∣

∫ t

t

(
B
(
vm(s),um(s)

)
,Pmω

)
ds –

∫ t

t

(
B
(
v(s),u(s)

)
,ω

)
ds

∣∣
∣∣

≤
∣
∣∣
∣

∫ t

t

(
B
(
vm(s),um(s)

)
,Pmω –ω

)
ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ t

t

(
B
(
vm(s) – v(s),um(s)

)
,ω

)
ds

∣
∣∣
∣

+
∣∣
∣∣

∫ t

t

(
B
(
v(s),um(s) – u(s)

)
,ω

)
ds

∣∣
∣∣

= I()m + I()m + I()m ,

http://www.boundaryvalueproblems.com/content/2014/1/209
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where

I()m =
∣∣
∣∣

∫ t

t

(
B
(
vm(s),um(s)

)
,Pmω –ω

)
ds

∣∣
∣∣ ≤

∫ t

t

∣
∣B

(
vm(s),um(s)

)∣∣|Pmω –ω|ds → ,

I()m =
∣
∣∣
∣

∫ t

t

(
B
(
vm(s) – v(s),um(s)

)
,ω

)
ds

∣
∣∣
∣ ≤

∫ t

t

∣∣B
(
vm(s) – v(s),um(s)

)∣∣|ω|ds

≤
∫ t

t

∣
∣vm(s) – v(s)

∣
∣
∥
∥um(s)

∥
∥|ω|ds→ ,

I()m =
∣
∣∣∣

∫ t

t

(
B
(
v(s),um(s) – u(s)

)
,ω

)
ds

∣
∣∣∣ ≤

∫ t

t

∣∣B
(
v(s),um(s) – u(s)

)∣∣|ω|ds

≤
∫ t

t

∣∣v(s)
∣∣∥∥um(s) – u(s)

∥∥|ω|ds → ,

∣∣
∣∣

∫ t

t

(
B
(
um(s),um(s)

)
,Pmω

)
ds –

∫ t

t

(
B
(
u(s),u(s)

)
,ω

)
ds

∣∣
∣∣

≤
∣
∣∣
∣

∫ t

t

(
B
(
um(s),um(s)

)
,Pmω –ω

)
ds

∣
∣∣
∣ +

∣
∣∣
∣

∫ t

t

(
B
(
um(s) – u(s),um(s)

)
,ω

)
ds

∣
∣∣
∣

+
∣∣
∣∣

∫ t

t

(
B
(
u(s),um(s) – u(s)

)
,ω

)
ds

∣∣
∣∣

= I()m + I()m + I()m → .

From the above discussion, we can deduce that u, v satisfy the following equation:

(
v(t),ω

)
+

∫ t

t

(
G

(
u(s)

)
,Aω

)
ds +

∫ t

t

(
B
(
u(s), v(s)

)
,ω

)
ds

+ 
∫ t

t

(
B
(
v(s),u(s)

)
,ω

)
ds – 

∫ t

t

(
B
(
u(s),u(s)

)
,ω

)
ds =

(
v(t),ω

)
.

Above all, u is the solution of (.)-(.), that is, their global solution exists. �

4 The existence of the absorbing set
Theorem  If u ∈ V, the semi-group of the solution to (.)-(.), i.e. S(t) : H(�) →
H(�), u(t) = S(t)u, has an absorbing set.

Proof Taking the inner product of (.) with u in � we obtain

(
dv
dt

,u
)
+

(
AG(u),u

)
+ 

(
B(v,u),u

)
+

(
B(u, v),u

)
– 

(
B(u,u),u

)
= .

Because of G′
u(u) ≥ g, g > , we have



d
dt

(|u| + ‖u‖) + g|Au| ≤ .

By the Poincaré inequality, |Au| > λ‖u‖, we get

d
dt

(|u| + ‖u‖) + gλ‖u‖ + g|Au| ≤ .
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Let g = min{gλ, g}, then

d
dt

(|u| + ‖u‖) + g
(‖u‖ + |Au|) ≤ . (.)

Using the Poincaré inequality, ‖u‖ > λ|u| and |Au| > λ‖u‖, (.) is changed to

d
dt

(|u| + ‖u‖) + gλ
(|u| + ‖u‖) ≤ .

By the Grownwall inequality, we obtain

|u| + ‖u‖ ≤ (∣∣u()
∣
∣ +

∥
∥u()

∥
∥)

exp{–gλt}. (.)

It is easy to see that |u(x, t)| and ‖u(x, t)‖ are uniformly bounded from (.). In otherwords,
the semi-group S(t) is uniformly bounded in L(�) and H(�).
Integrating (.) over the interval [t, t + r], we have

lim
s→+∞

∫ t+r

t

(∥∥u(x, s)
∥
∥ +

∣
∣Au(x, s)

∣
∣)ds ≤ 

g

(|u| + ‖u‖
)
,

∫ t+s

t

(∥∥u(x, s)
∥∥ +

∣∣Au(x, s)
∣∣)ds≤ 

g

(|u| + ‖u‖
) ≤ ρ

g
.

If B(,ρ) is an open ball in L(�) and H(�) whose radius is ρ , it is easy to calculate that
S(t)u ∈ B(,ρ) when t ≥ t, t = max(– 

gλ
ln ρ

ρ
, ).

We will make a uniform estimate of (.)-(.) in H(�).
Taking the inner product of (.) with Au in �, and denoting F(u,Au) = (B(u, v),Au) +

(B(v,u),Au) – (B(u,u),Au), we have



d
dt

(‖u‖ + |Au|) + g|∇Au| + F(u,Au) ≤ . (.)

By computing, F(u,Au) = (B(Au,u),Au) + (B(u,Au),Au), through the Agmon inequality,
we get

∣∣(B(Au,u),Au
)∣∣ ≤ ‖∇u‖L∞(�)‖Au‖L(�) ≤ c‖u‖ 

 |Au|  ,
∣
∣(B(u,Au),Au

)∣∣ ≤ 

‖∇u‖L∞(�)‖Au‖L(�) ≤

c


‖u‖ 
 |Au|  .

So we have

∣
∣F(u,Au)

∣
∣ ≤ 

∣
∣(B(Au,u),Au

)∣∣ +
∣
∣(B(u,Au),Au

)∣∣ ≤ c‖u‖ 
 |Au|  (‖u‖ + |Au|)

≤ 

gλ

(‖u‖ + |Au|) + c‖u‖|Au|(‖u‖ + |Au|),

where

c = max

{
c,

c


}
, c =

c
gλ

.
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By the Poincaré inequality, |∇Au| > λ|Au|, g = min{gλ, g}, and (.) it can be deduced
that



d
dt

(‖u‖ + |Au|) + g


(|Au| + |∇Au|)

≤ 

gλ

(‖u‖ + |Au|) + c‖u‖|Au|(‖u‖ + |Au|). (.)

Employing the Poincaré inequality again, we obtain

d
dt

(‖u‖ + |Au|) ≤ c‖u‖|Au|(‖u‖ + |Au|).

Using the Young inequality, the following inequality can be gotten:

d
dt

(‖u‖ + |Au|) ≤ c
(‖u‖ + |Au|).

By denoting y = ‖u‖ + |Au|, g = c(‖u‖ + |Au|),
∫ t+r

t
y(s)ds≤ 

g

(|u| + ‖u‖
)
= α,

∫ t+r

t
g(s)ds≤ c

g

(|u| + ‖u‖
)
= cα.

According to the uniform Grownwall inequality, we get

‖u‖ + |Au| ≤ α

r
exp{cα}, t > t + r,

where r, α, c are nonnegative constants. Let ρ = α
r exp{cα}, and then |Au| ≤ ρ. In

other words, B(,ρ) is the attracting set of S(t) in H(�). This completes the proof of
Theorem . �

5 The existence of global attractor
Theorem If u ∈ V, the semi-group of the solution S(t) to (.)-(.) has a global attractor
in H(�).

Proof Based on the proof of Theorem , we only need to prove that S(t) is a completely
continuous operator, thus the existence of global attractor can be proved.
Taking the inner product of (.) with t�Au in�, furthermore, according to integration

by parts and the Green formula, we have

(
dv
dt

, t�Au
)
+

(
AG(u), t�Au

)
+

(
B(u, v), t�Au

)

+ 
(
B(v,u), t�Au

)
– 

(
B(u,u), t�Au

)
= , (.)

(
dv
dt

, t�Au
)
= –



d
dt

(|tAu| + |t∇Au|) + (∣∣t

Au

∣∣ +
∣∣t


 ∇Au

∣∣).

By the assumption of G′
u(u) ≥ g, g > , we can get

(
AG(u), t�Au

) ≤ –g|t�Au|,
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(
B(u, v), t�Au

)
+ 

(
B(v,u), t�Au

)
– 

(
B(u,u), t�Au

)

=
(
B(u,Au), t�Au

)
+ 

(
B(Au,u), t�Au

)
= –




∫

�

tuxuxxx dx

and through the Agmon inequality and the Poincaré inequality, we obtain

∣
∣(B(u, v), t�Au

)
+ 

(
B(v,u), t�Au

)
– 

(
B(u,u), t�Au

)∣∣

=
∣∣
∣∣



∫

�

tuxuxxx dx
∣∣
∣∣ ≤ 



∣∣
∣∣

∫

�

tuxuxxx dx +
∫

�

tuxuxx dx
∣∣
∣∣

≤ 

c‖u‖ 

 |Au|  (|tAu| + |t∇Au|).

By (.), we can get the following inequality:

d
dt

(|tAu| + |t∇Au|) + g|t�Au|

≤ c‖u‖ 
 |Au|  (|tAu| + |t∇Au|) + 

(∣∣t

Au

∣∣ +
∣∣t


 ∇Au

∣∣).

Based on the Poincaré inequality: |t�Au| > λ|t∇Au|, |t∇Au| > λ|tAu|, g = min{gλ,
g}, and the Young inequality, we have

d
dt

(|tAu| + |t∇Au|) + gλ
(|tAu| + |t∇Au|)

≤ c‖u‖ 
 |Au|  (|tAu| + |t∇Au|) + 

(∣∣t

Au

∣∣ +
∣∣t


 ∇Au

∣∣)

≤ gλ
(|tAu| + |t∇Au|) + c‖u‖|Au|(|tAu| + |t∇Au|)

+ c
(|Au| + |∇Au|), (.)

where

c =
c
gλ

, c =


gλ
.

By (.), the following inequality can be obtained:

d
dt

(‖u‖ + |Au|) + g
(|Au| + |∇Au|) ≤ gλ

(‖u‖ + |Au|) + c
(‖u‖ + |Au|),

t ≥ t.

Integrating the above inequality over the interval [t, t + r], we get

∫ t+r

t

(∣∣Au(x, s)
∣∣ +

∣∣∇Au(x, s)
∣∣)ds≤

(
λρ +

cρ


g

)
r +

ρ

g
.

Equation (.) can be rewritten as follows:

d
dt

(|tAu| + |t∇Au|) ≤ c‖u‖|Au|(|tAu| + |t∇Au|) + c
(|Au| + |∇Au|).
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Bi et al. Boundary Value Problems 2014, 2014:209 Page 13 of 14
http://www.boundaryvalueproblems.com/content/2014/1/209

By denoting (λρ +
cρ
g

)r + ρ
g
= α(λ,ρ, g), we have

∫ t+r

t
c

∥
∥u(x, s)

∥
∥
∣
∣Au(x, s)

∣
∣ds ≤ c



∫ t+r

t

(∥∥u(x, s)
∥
∥ +

∣
∣Au(x, s)

∣
∣)ds

≤ cρ

g
�= α(ρ, g),

∫ t+r

t

(∣∣sAu(x, s)
∣
∣ +

∣
∣s∇Au(x, s)

∣
∣) ≤ (t + r)α

�= α(λ,ρ, g).

By the uniform Gronwall inequality, we have

|tAu| + |t∇Au| ≤
(

α

r
+ cα

)
exp(α).

Let ( α
r + cα) exp(α) = E(λ,ρ, g, t), then we can obtain |∇Au| < E(λ,ρ,g,t)

t .
Therefore, we can conclude that S(t) is equicontinuous. From the Ascoli-Arzela theo-

rem, S(t) is a completely continuous operator. Thus, we have proved that S(t) has a global
attractor in H(�). �
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