Global attractor for the generalized hyperelastic-rod equation

Yunrui Bi ${ }^{1,2,3}$, Xiaobo Lu ${ }^{1,2^{*}}$, Weili Zeng ${ }^{1,2}$ and Zhe Sun ${ }^{4}$

Correspondence:
xblu2013@126.com
${ }^{1}$ School of Automation, Southeast University, Nanjing, 210096, China
${ }^{2}$ Key Laboratory of Measurement and Control of CSE, Ministry of Education, Southeast University, Nanjing, 210096, China Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the dynamical behavior of the initial boundary value problem for a class of generalized hyperelastic-rod equations. Under certain conditions, the existence of a global solution in H^{3} is proved by using some prior estimates and the Galerkin method. Moreover, the existence of an absorbing set and a global attractor in H^{2} is obtained.

Keywords: generalized hyperelastic-rod equation; global solution; global attractor

1 Introduction

Camassa and Holm [1] first proposed a completely integrable dispersive shallow water equation as follows:

$$
\begin{equation*}
u_{t}-u_{x x t}+3 u u_{x}+k u_{x}=2 u_{x} u_{x x}+u u_{x x x} . \tag{1.1}
\end{equation*}
$$

The C-H equation (1.1) was obtained by using an asymptotic expansion directly in the Hamiltonian for the Euler equations in the shallow water regime and possessed a biHamiltonian structure and an infinite number of conservation laws in involution. Research on the C-H equation becomes a hot field due to its good properties [2-4] since it was proposed in 1993. Some equations also have similar characters to the $\mathrm{C}-\mathrm{H}$ equation, which are called C-H family equations. Because of the wide applications in applied sciences such as physics, the C-H family equations have attracted much attention in recent years.
In 1998, Dai [5] derived the following hyperelastic-rod wave equation for finite-length and finite-amplitude waves in 1998 when doing research on hyperelastic compressible material:

$$
\begin{equation*}
v_{\tau}+\sigma_{1} \nu v_{\xi}+\sigma_{2} v_{\xi \xi \tau}+\sigma_{3}\left(2 v_{\xi} v_{\xi \xi}+\nu v_{\xi \xi \xi}\right)=0, \tag{1.2}
\end{equation*}
$$

where $v(\xi, \tau)$ represents the radial stretch relative to a pre-stressed state. The three coefficients σ_{1}, σ_{2}, and σ_{3} are constants determined by the pre-stress and the material parameters, $\sigma_{1} \neq 0, \sigma_{2}<0, \sigma_{3} \leq 0$.
If $\tau=\frac{3 \sqrt{-\sigma_{2}}}{\sigma_{1}} t$ and $\xi=\sqrt{-\sigma_{2}} x$, then the following equation can be obtained by (1.2):

$$
\begin{equation*}
u_{t}-u_{x x t}+3 u u_{x}=\gamma\left(2 u_{x} u_{x x}+u u_{x x x}\right), \quad \gamma=\frac{3 \sigma_{3}}{\sigma_{1} \sigma_{2}} . \tag{1.3}
\end{equation*}
$$

The constant γ is called the pre-stressed coefficient of the material rod.

There have been many research results as regards the hyperelastic-rod equation (1.3) [6-12], such as traveling-wave solutions, blow-up of solutions, well-posedness of solutions, the existence of weak solutions, the global solutions of Cauchy problem, the periodic boundary value problem, etc.
In 2005, Coclite et al. [13, 14] studied the following extension of (1.3):

$$
\begin{equation*}
u_{t}-u_{x x t}+g(u) u_{x}=\gamma\left(2 u_{x} u_{x x}+u u_{x x x}\right), \quad g(0)=0 \tag{1.4}
\end{equation*}
$$

The existence of a global weak solution to (1.4) for any initial function u_{0} belonging to $H^{1}(R)$ was obtained. They showed stability of the solution when a regularizing term vanishes based on a vanishing viscosity argument and presented a 'weak equals strong' uniqueness result.
It is easy to observe that if $\gamma=0$ and $g(u)=2 k u+a$, (1.4) becomes the BBM equation (1.5) $[15,16]$,

$$
\begin{equation*}
u_{t}-u_{x x t}+a u_{x}+k\left(u^{2}\right)_{x}=0 . \tag{1.5}
\end{equation*}
$$

Here $\gamma=1$ and $g(u)=3 u+k,(1.4)$ is transformed into the C-H equation (1.1).
If $\gamma=1$ and $g(u)=(b+1) u,(1.4)$ can be changed to the D-P equation (1.6) [17-20],

$$
\begin{equation*}
u_{t}-u_{x x t}+(b+1) u u_{x}=2 u_{x} u_{x x}+u u_{x x x} . \tag{1.6}
\end{equation*}
$$

Actually, the KdV equation [21], the C-H equation, the hyperelastic-rod wave equation etc. are all considered as special cases of the generalized hyperelastic-rod equation. So many researchers focused on this class of equations [22-24]. Among them, Holden and Raynaud [22] studied the following generalized hyperelastic-rod equation:

$$
\begin{equation*}
u_{t}-u_{x x t}+f(u)_{x}-f(u)_{x x x}+\left(g(u)+\frac{1}{2} f^{\prime \prime}(u)\left(u_{x}\right)^{2}\right)_{x}=0 . \tag{1.7}
\end{equation*}
$$

They considered the Cauchy problem of (1.7) and proved the existence of global and conservative solutions. It was shown that the equation was well-posed for initial data in $H^{1}(R)$ if one included a Radon measure corresponding to the energy of the system with the initial data.

However, there are few works with respect to the global asymptotical behaviors of solutions and the existence of global attractors, which are important for the study of the dynamical properties of general nonlinear dissipative dynamical systems [25-27]. Motivated by the references cited above, the goal of the present paper is to investigate the initial boundary problem of the following equation:

$$
\left\{\begin{array}{l}
u_{t}-u_{x x t}+[G(u)]_{x}^{(4)}=2 u_{x} u_{x x}+u u_{x x x}, \quad t>0, x \in \Omega \tag{1.8}\\
u(0, x)=u_{0}(x), \quad x \in \Omega
\end{array}\right.
$$

where $\Omega=[0, L]$. We will study the dynamics behavior of (1.8) and discuss the existence of the global solution and the global attractor under the periodic boundary condition when $G(u)$ satisfies the particular conditions.

The rest of this paper is organized as follows: Section 2 describes the main definitions used in this paper. The existence of the global solution is discussed in Section 3. The existence of the absorbing set is detailed in Section 4. Section 5 shows the existence of the global attractor.

2 Preliminaries

In this work, (\cdot, \cdot) stands for the inner product in the usual sense and $\|\cdot\|$ represents the norm determined by the inner product, $\|u\|_{H^{m}(\Omega)}=\left\|D^{m} u\right\|_{L^{2}(\Omega)}$. Apparently, this norm is equal to the natural norm in $H^{m}(\Omega)$. The following signs are adopted in this paper to express the norms of different spaces: $\|u\|_{L^{2}(\Omega)} \stackrel{\Delta}{=}|u|,\|D u\|_{L^{2}(\Omega)} \triangleq\|u\|,\left\|D^{m} u\right\|_{L^{2}(\Omega)} \triangleq\left|D^{m} u\right|$.

The notion of bilinear operator is introduced, $B(u, v)=u \nabla v$, where ∇ is called a first order differential operator. Then we can get $b(u, v, \omega)=(B(u, v), \omega)=\int_{\Omega}(u \nabla v) \omega d x$.

The generalized hyperelastic-rod equation we studied is one-dimensional, and the operator ∇ acting on $u(x, t)$ is not identically vanishing, so $b(u, v, \omega)=0$ cannot be found. However, the following formulas can be derived by the periodic boundary condition and formula of integration by parts:

$$
\begin{aligned}
& (B(u, v), \omega)=-(B(u, \omega), v)-(B(\omega, u), v), \\
& (B(v, u), \omega)=-(B(\omega, v), u)-(B(v, \omega), u),
\end{aligned}
$$

furthermore, $(B(u, v), u)=-2(B(u, u), v),(B(u, v), u)=-2(B(v, u), u)$, so we get $(B(u, u), v)=$ $(B(v, u), u)$ and $(B(u, u), u)=0$.
Suppose $A=-\Delta$ is a second order differential operator, $v=u+A u$, then A is a selfadjoint operator, which possesses the eigenvalues like $\left(k_{1}^{2}+k_{2}^{2}\right)\left(\frac{2 \pi}{L}\right)^{2}$, where $k_{1}, k_{2} \in N_{0}$ and $k_{1}^{2}+k_{2}^{2} \neq 0 . \lambda_{1}$ represents the smallest eigenvalue of A.

Based on the above statements, the initial boundary value problem of (1.8) under the periodic boundary condition can be rewritten as follows:

$$
\begin{align*}
& \frac{d v}{d t}+[G(u)]_{x}^{(4)}+B(u, v)+2 B(v, u)-3 B(u, u)=0 \tag{2.1}\\
& u(x, 0)=u_{0} \tag{2.2}\\
& u(0, t)=u(L, t) \tag{2.3}
\end{align*}
$$

In this work, we assume that $H=\left\{u \mid u \in L^{2}(\Omega)\right.$ and $\left.u(0, t)=u(L, t)\right\}, \mathrm{V}=\left\{u \mid u^{\prime} \in\right.$ $L^{2}(\Omega)$ and $\left.u(0, t)=u(L, t)\right\}, G_{u}^{\prime}(u) \geq g_{0}>0$ and $\left|G_{u}^{(k)}(u)\right| \leq C|u|^{5-k}, k=1,2,3,4, C$ is a constant.

3 The existence of global solution

Theorem 1 If $u_{0} \in \mathrm{~V}, G_{u}^{\prime}(u) \geq g_{0}>0$, and $\left|G_{u}^{(k)}(u)\right| \leq C|u|^{5-k}, k=1,2,3,4$, then (2.1)-(2.3) possess the global solution $u=u\left(\cdot, u_{0}\right) \in C\left([0, \infty) ; H^{3}(R)\right) \cap C^{1}\left([0, \infty) ; H^{2}(R)\right)$.

Proof The Galerkin method is adopted to prove this theorem. Assume that $\left\{\phi_{i}\right\}_{j=1}^{\infty}$ is an orthogonal basis of H constituted by the eigenvectors of the operator $A, H_{m}=$ $\operatorname{span}\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{m}\right\}, P_{m}$ is the orthogonal projection from H to H_{m}. Through the Galerkin method, we can obtain the following ordinary differential equations by (2.1), (2.2):

$$
\begin{equation*}
\frac{d v_{m}}{d t}+\left[G\left(u_{m}\right)\right]_{x}^{(4)}+P_{m} B\left(u_{m}, v_{m}\right)+2 P_{m} B\left(v_{m}, u_{m}\right)-3 P_{m} B\left(u_{m}, u_{m}\right)=0 \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
u_{m}(0)=P_{m} u(0), \tag{3.2}
\end{equation*}
$$

where $v_{m}=u_{m}+A u_{m}$. Considering the expressions of $B\left(u_{m}, v_{m}\right), B\left(v_{m}, u_{m}\right), B\left(u_{m}, u_{m}\right)$, according to the qualitative theories of ordinary differential equations, (3.1)-(3.2) have a unique solution u_{m} in $\left(0, T_{m}\right)$. In order to prove the existence of a global solution, we need to do some prior estimates as regards u_{m}.
Taking the inner product of (3.1) with u_{m} in Ω, we have

$$
\begin{aligned}
& \left(\frac{d v_{m}}{d t}, u_{m}\right)+\left(\left[G\left(u_{m}\right)\right]_{x}^{(4)}, u_{m}\right)+P_{m}\left(B\left(u_{m}, v_{m}\right), u_{m}\right) \\
& \quad+2 P_{m}\left(B\left(v_{m}, u_{m}\right), u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), u_{m}\right)=0
\end{aligned}
$$

By using integration by parts and the periodic boundary conditions, we get

$$
\begin{aligned}
& \left(\frac{d v_{m}}{d t}, u_{m}\right)=\frac{1}{2} \frac{d}{d t}\left(\int_{\Omega}\left(u_{m}^{2}+u_{m x}^{2}\right) d x\right)=\frac{1}{2} \frac{d}{d t}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right), \\
& P_{m}\left(B\left(u_{m}, v_{m}\right), u_{m}\right)+2 P_{m}\left(B\left(v_{m}, u_{m}\right), u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), u_{m}\right)=0, \\
& \left(\left[G\left(u_{m}\right)\right]_{x}^{(4)}, u_{m}\right)=\int_{\Omega}\left[G\left(u_{m}\right)\right]_{x}^{(4)} u_{m} d x=-\int_{\Omega} G_{u_{m}}^{\prime}\left(u_{m}\right) u_{m x} u_{m x x x} d x .
\end{aligned}
$$

Moreover, in terms of $\int_{\Omega} u_{m x} u_{m x x x} d x=-\int_{\Omega} u_{m x x}^{2} d x \leq 0$ and $G_{u}^{\prime}(u) \geq g_{0}>0$, we have

$$
\begin{aligned}
& \left(\left[G\left(u_{m}\right)\right]_{x}^{(4)}, u_{m}\right) \geq-g_{0} \int_{\Omega} u_{m x} u_{m x x x} d x \\
& \frac{1}{2} \frac{d}{d t}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right)-g_{0} \int_{R} u_{m x} u_{m x x x} d x \leq 0
\end{aligned}
$$

Employing $\int_{\Omega} u_{m x} u_{m x x x} d x=-\int_{\Omega} u_{m x x}^{2} d x$ again, the following formula can be obtained:

$$
\frac{d}{d t}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right)+2 g_{0}\left|A u_{m}\right|^{2} \leq 0
$$

By the Poincaré inequality, $\left|A u_{m}\right|^{2}>\lambda_{1}\left\|u_{m}\right\|^{2}$, we have

$$
\frac{d}{d t}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right)+g_{0} \lambda_{1}\left\|u_{m}\right\|^{2}+g_{0}\left|A u_{m}\right|^{2} \leq 0
$$

Let $g_{1}=\min \left\{g_{0} \lambda_{1}, g_{0}\right\}$, then

$$
\begin{equation*}
\frac{d}{d t}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right)+g_{1}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right) \leq 0 \tag{3.3}
\end{equation*}
$$

Using the Poincaré inequality again, $\left\|u_{m}\right\|^{2}>\lambda_{1}\left|u_{m}\right|^{2}$ and $\left|A u_{m}\right|^{2}>\lambda_{1}\left\|u_{m}\right\|^{2}$, (3.3) can be changed to

$$
\frac{d}{d t}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right)+g_{1} \lambda_{1}\left(\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2}\right) \leq 0
$$

So we can obtain

$$
\left|u_{m}\right|^{2}+\left\|u_{m}\right\|^{2} \leq\left(\left|u_{m}(0)\right|^{2}+\left\|u_{m}(0)\right\|^{2}\right) \exp \left\{-g_{1} \lambda_{1} t\right\} \leq\left|u_{m}(0)\right|^{2}+\left\|u_{m}(0)\right\|^{2} \triangleq r_{1} .
$$

Integrating (3.3) over the interval $[t, t+r]$,

$$
\begin{equation*}
g_{1} \int_{t}^{t+r}\left(\left\|u_{m}(s)\right\|^{2}+\left|A u_{m}(s)\right|^{2}\right) d s \leq r_{1} \tag{3.4}
\end{equation*}
$$

Taking the inner product of (3.1) with $A u_{m}$ in Ω, we have

$$
\begin{aligned}
& \left(\frac{d v_{m}}{d t}, A u_{m}\right)+\left(\left[G\left(u_{m}\right)\right]_{x}^{(4)}, A u_{m}\right)+P_{m}\left(B\left(u_{m}, v_{m}\right), A u_{m}\right) \\
& \quad+2 P_{m}\left(B\left(v_{m}, u_{m}\right), A u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), A u_{m}\right)=0 .
\end{aligned}
$$

By using integration by parts and the periodic boundary conditions, we get

$$
\begin{aligned}
& \left(\frac{d v_{m}}{d t}, A u_{m}\right)=\frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right), \\
& \left(\left[G\left(u_{m}\right)\right]_{x}^{(4)}, A u_{m}\right)=\int_{\Omega}\left[G\left(u_{m}\right)\right]_{x}^{(4)} A u_{m} d x=\int_{\Omega} G_{u_{m}}^{\prime}\left(u_{m}\right) u_{m x} u_{m x x x x x} d x .
\end{aligned}
$$

Moreover, $\int_{\Omega} u_{m x} u_{m x x x x x} d x=\int_{\Omega} u_{m x x x}^{2} d x \geq 0$ and $G_{u}^{\prime}(u) \geq g_{0}>0$. So

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+g_{0} \int_{R} u_{m x} u_{m x x x x x} d x+P_{m}\left(B\left(u_{m}, v_{m}\right), A u_{m}\right) \\
& \quad+2 P_{m}\left(B\left(v_{m}, u_{m}\right), A u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), A u_{m}\right) \leq 0
\end{aligned}
$$

Employing $\int_{\Omega} u_{m x} u_{m x x x x x} d x=\int_{\Omega} u_{m x x x}^{2} d x$ again, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+g_{0}\left|\nabla A u_{m}\right|^{2}+P_{m}\left(B\left(u_{m}, v_{m}\right), A u_{m}\right) \\
& \quad+2 P_{m}\left(B\left(v_{m}, u_{m}\right), A u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), A u_{m}\right) \leq 0 . \tag{3.5}
\end{align*}
$$

By computing, we have

$$
\begin{aligned}
& P_{m}\left(B\left(u_{m}, v_{m}\right), A u_{m}\right)+2 P_{m}\left(B\left(v_{m}, u_{m}\right), A u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), A u_{m}\right) \\
& \quad=2 P_{m}\left(B\left(A u_{m}, u_{m}\right), A u_{m}\right)+P_{m}\left(B\left(u_{m}, A u_{m}\right), A u_{m}\right)
\end{aligned}
$$

According to the Agmon inequality when $n=1,\|\varphi\|_{L^{\infty}} \leq c\|\varphi\|_{L^{2}}^{\frac{1}{2}}\|\varphi\|_{H^{1}}^{\frac{1}{2}}$, where c is a constant which only depends on Ω. Furthermore, we can get

$$
\begin{aligned}
& P_{m}\left(B\left(A u_{m}, u_{m}\right), A u_{m}\right) \leq\left\|\nabla u_{m}\right\|_{L^{\infty}}\left|A u_{m}\right|^{2} \leq c_{1}\left\|u_{m}\right\|^{\frac{1}{2}}\left|A u_{m}\right|^{\frac{5}{2}}, \\
& P_{m}\left(B\left(u_{m}, A u_{m}\right), A u_{m}\right) \leq \frac{1}{2}\left\|\nabla u_{m}\right\|_{L^{\infty}}\left|A u_{m}\right|^{2} \leq \frac{c_{2}}{2}\left\|u_{m}\right\|^{\frac{1}{2}}\left|A u_{m}\right|^{\frac{5}{2}} .
\end{aligned}
$$

So the following inequality can be gotten by (3.5):

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+g_{0}\left|\nabla A u_{m}\right|^{2} \leq c_{1}\left\|u_{m}\right\|^{\frac{1}{2}}\left|A u_{m}\right|^{\frac{5}{2}}+\frac{c_{2}}{2}\left\|u_{m}\right\|^{\frac{1}{2}}\left|A u_{m}\right|^{\frac{5}{2}}
$$

By the Poincaré inequality, $\left|\nabla A u_{m}\right|^{2}>\lambda_{1}\left|A u_{m}\right|^{2}$, together with $g_{1}=\min \left\{g_{0} \lambda_{1}, g_{0}\right\}$, we have

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+\frac{g_{1}}{2}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right) \leq c_{1}\left\|u_{m}\right\|^{\frac{1}{2}}\left|A u_{m}\right|^{\frac{5}{2}}+\frac{c_{2}}{2}\left\|u_{m}\right\|^{\frac{1}{2}}\left|A u_{m}\right|^{\frac{5}{2}} .
$$

By the Young inequality, the following inequality can be obtained:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+\frac{g_{1}}{2}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right) \\
& \quad \leq \frac{1}{2} g_{1} \lambda_{1}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+c_{3}\left\|u_{m}\right\|\left|A u_{m}\right|\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right) \tag{3.6}
\end{align*}
$$

where

$$
c_{3}=\frac{\left[\min \left\{c_{1}, \frac{c_{2}}{2}\right\}\right]^{2}}{2 g_{1} \lambda_{1}}
$$

and, by using the Poincaré inequality, we have

$$
\frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right) \leq 2 c_{3}\left\|u_{m}\right\|\left|A u_{m}\right|\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)
$$

Using the Young inequality again, we can further get

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right) \leq c_{3}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)^{2} \tag{3.7}
\end{equation*}
$$

Denoting $y=\left\|u_{m}(s)\right\|^{2}+\left|A u_{m}(s)\right|^{2}, g=c_{3}\left(\left\|u_{m}(s)\right\|^{2}+\left|A u_{m}(s)\right|^{2}\right)$. According to (3.4),

$$
\int_{t}^{t+r} y d s \leq \frac{r_{1}}{g_{1}}, \quad \int_{t}^{t+r} g d s \leq \frac{c_{3} r_{1}}{g_{1}} .
$$

Based on the uniform Grownwall inequality, we have

$$
\begin{equation*}
\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2} \leq \frac{r_{1}}{r g_{1}} \exp \left\{\frac{c_{3} r_{1}}{g_{1}}\right\} \stackrel{\Delta}{=} r_{2}, \quad t>t_{0}+r \tag{3.8}
\end{equation*}
$$

where r, r_{1}, and c_{3} are nonnegative constants.
Integrating (3.6) over the interval $[t, t+r]$ to obtain

$$
\begin{align*}
& \frac{1}{2} g_{1} \int_{t}^{t+r}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right) d s \\
& \quad \leq \int_{t}^{t+r}\left(\frac{1}{2} g_{1} \lambda_{1}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)+\frac{c_{3}}{2}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)^{2}\right) d s+\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right) \\
& \quad \leq \frac{1}{2}\left(g_{1} \lambda_{1} r_{2}+c_{3} r_{2}^{2}\right) r+r_{2} \stackrel{\Delta}{=} r_{3} . \tag{3.9}
\end{align*}
$$

Taking the inner product of (3.1) with $A^{2} u_{m}$ in Ω, together with integration by parts, the periodic boundary conditions, and $G_{u}^{\prime}(u) \geq g_{0}>0$, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right)+g_{0}\left|A^{2} u_{m}\right|^{2}+P_{m}\left(B\left(u_{m}, v_{m}\right), A^{2} u_{m}\right) \\
& \quad+2 P_{m}\left(B\left(v_{m}, u_{m}\right), A^{2} u_{m}\right)-3 P_{m}\left(B\left(u_{m}, u_{m}\right), A^{2} u_{m}\right) \leq 0 .
\end{aligned}
$$

Through the Young inequality, the Hölder inequality and the Poincaré inequality, we deduce that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right)+\frac{g_{1}}{2}\left(\left|\nabla A u_{m}\right|^{2}+\left|A^{2} u_{m}\right|^{2}\right) \\
& \quad \leq \frac{1}{2} g_{1} \lambda_{1}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right)+c_{4}\left\|u_{m}\right\|\left|A u_{m}\right|\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right)
\end{aligned}
$$

According to the Poincaré inequality and the Young inequality again, we have

$$
\begin{aligned}
\frac{d}{d t}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right) & \leq 2 c_{4}\left\|u_{m}\right\|\left|A u_{m}\right|\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right) \\
& \leq c_{4}\left(\left\|u_{m}\right\|^{2}+\left|A u_{m}\right|^{2}\right)\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right)
\end{aligned}
$$

From (3.4) and (3.9), we get

$$
\begin{aligned}
& c_{4} \int_{t}^{t+r}\left(\left\|u_{m}(s)\right\|^{2}+\left|A u_{m}(s)\right|^{2}\right) d s \leq \frac{r_{1} c_{4}}{g_{1}} \\
& \int_{t}^{t+r}\left(\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2}\right) d s \leq \frac{2 r_{3}}{g_{1}}
\end{aligned}
$$

Based on the uniform Grownwall inequality, we have

$$
\begin{equation*}
\left|A u_{m}\right|^{2}+\left|\nabla A u_{m}\right|^{2} \leq \frac{2 r_{3}}{r g_{1}} \exp \left\{\frac{r_{1} c_{4}}{g_{1}}\right\} \triangleq r_{4}, \quad t>t_{0} . \tag{3.10}
\end{equation*}
$$

Overall, $\left|u_{m}\right|^{2} \leq r_{1},\left\|u_{m}\right\|^{2} \leq r_{2},\left|A u_{m}\right|^{2} \leq r_{3},\left|\nabla A u_{m}\right|^{2} \leq r_{4}$, that is, $\left|v_{m}\right|^{2} \leq r_{1}+r_{3},\left\|v_{m}\right\|^{2} \leq$ $r_{2}+r_{4}$.
According to the qualitative theories of ordinary differential equations, (3.1)-(3.2) have a global solution u_{m}.

From the above discussion, we have

$$
\begin{aligned}
& \left|P_{m} B\left(u_{m}, v_{m}\right)\right| \leq\left|u_{m}\right|\left\|v_{m}\right\| \leq\left(r_{1}\left(r_{2}+r_{4}\right)\right)^{\frac{1}{2}} \stackrel{\Delta}{=} r_{5} \\
& \left|P_{m} B\left(v_{m}, u_{m}\right)\right| \leq\left|v_{m}\right|\left\|u_{m}\right\| \leq\left(r_{2}\left(r_{1}+r_{3}\right)\right)^{\frac{1}{2}} \stackrel{\Delta}{=} r_{6} \\
& \left|P_{m} B\left(u_{m}, u_{m}\right)\right| \leq\left|u_{m}\right|\left\|u_{m}\right\| \leq\left(r_{1} r_{2}\right)^{\frac{1}{2}} \triangleq r_{7}
\end{aligned}
$$

Then (3.1) can be rewritten as

$$
\frac{d v_{m}}{d t}=3 P_{m} B\left(u_{m}, u_{m}\right)-P_{m} B\left(u_{m}, v_{m}\right)-2 P_{m}\left(v_{m}, u_{m}\right)-\left[G\left(u_{m}\right)\right]_{x}^{(4)} .
$$

Because of $\left|G_{u}^{(k)}(u)\right| \leq C|u|^{5-k}, k=1,2,3,4$,

$$
\begin{align*}
\left|\frac{d v_{m}}{d t}\right| & \leq 3\left|P_{m} B\left(u_{m}, u_{m}\right)\right|+\left|P_{m} B\left(u_{m}, v_{m}\right)\right|+2\left|P_{m} B\left(v_{m}, u_{m}\right)\right|+\left|P_{m} B\left(\left[G\left(u_{m}\right)_{x}^{\prime \prime \prime}\right]_{u^{\prime}}^{\prime}, u_{m}\right)\right| \\
& \leq 3 r_{7}+r_{5}+2 r_{6}+h\left(C, r_{1}, r_{2}, r_{3}, r_{4}\right)\left\|u_{m}\right\| \leq 3 r_{7}+r_{5}+2 r_{6}+h r_{2}^{\frac{1}{2}} \triangleq k, \tag{3.11}
\end{align*}
$$

where h is a constant which depends on $C, r_{1}, r_{2}, r_{3}, r_{4}$.

According to the Aubin compactness theorem, we conclude that there is a convergent subsequence $u_{m^{\prime}}$, so that $u_{m^{\prime}} \rightarrow u$, or equivalently $v_{m^{\prime}} \rightarrow v$. Suppose that $u_{m^{\prime}}$ and $v_{m^{\prime}}$ are replaced by u_{m} and v_{m}, then we need to prove that u, v satisfy (2.1).
Selecting $\omega \in D(A)$ randomly, $|\omega|$ is bounded as we see from the above discussion. By the ordinary differential equation (3.1), we have

$$
\begin{aligned}
& \left(v_{m}(t), \omega\right)+\int_{t_{0}}^{t}\left(G\left(u_{m}(s)\right), A^{2} \omega\right) d s+\int_{t_{0}}^{t}\left(B\left(u_{m}(s), v_{m}(s)\right), P_{m} \omega\right) d s \\
& \quad+2 \int_{t_{0}}^{t}\left(B\left(v_{m}(s), u_{m}(s)\right), P_{m} \omega\right) d s-3 \int_{t_{0}}^{t}\left(B\left(u_{m}(s), u_{m}(s)\right), P_{m} \omega\right) d s=\left(v_{m}\left(t_{0}\right), \omega\right) .
\end{aligned}
$$

Obviously, $\lim _{m \rightarrow+\infty}\left|P_{m} \omega-\omega\right|=0, \lim _{m \rightarrow+\infty}\left|P_{m} A^{2} \omega-A^{2} \omega\right|=0$, according to the convergence,

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} \int_{t_{0}}^{t}\left(G\left(u_{m}(s)\right), A^{2} \omega\right) d s=\int_{t_{0}}^{t}\left(G(u(s)), A^{2} \omega\right) d s, \\
& \left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s), v_{m}(s)\right), P_{m} \omega\right) d s-\int_{t_{0}}^{t}(B(u(s), v(s)), \omega) d s\right| \\
& \quad \leq\left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s), v_{m}(s)\right), P_{m} \omega-\omega\right) d s\right|+\left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s)-u(s), v_{m}(s)\right), \omega\right) d s\right| \\
& \quad+\left|\int_{t_{0}}^{t}\left(B\left(u(s), v_{m}(s)-v(s)\right), \omega\right) d s\right|,
\end{aligned}
$$

where

$$
I_{m}^{(1)}=\left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s), v_{m}(s)\right), P_{m} \omega-\omega\right) d s\right| \leq \int_{t_{0}}^{t}\left|B\left(u_{m}(s), v_{m}(s)\right)\right|\left|P_{m} \omega-\omega\right| d s .
$$

Considering the boundness of $\left|B\left(u_{m}(s), v_{m}(s)\right)\right|$, so $I_{m}^{(1)} \rightarrow 0$,

$$
\begin{aligned}
& I_{m}^{(2)}=\left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s)-u(s), v_{m}(s)\right), \omega\right) d s\right| \leq \int_{t_{0}}^{t}\left|B\left(u_{m}(s)-u(s), v_{m}(s)\right)\right||\omega| d s \\
& \leq \int_{t_{0}}^{t}\left|u_{m}(s)-u(s)\right|\left\|v_{m}(s)\right\||\omega| d s \rightarrow 0, \\
& I_{m}^{(3)}=\left|\int_{t_{0}}^{t}\left(B\left(u(s), v_{m}(s)-v(s)\right), \omega\right) d s\right| \leq \int_{t_{0}}^{t}\left|B\left(u(s), v_{m}(s)-v(s)\right)\right||\omega| d s \\
& \leq \int_{t_{0}}^{t}|u(s)|\left\|v_{m}(s)-v(s)\right\||\omega| d s \rightarrow 0, \\
&\left|\int_{t_{0}}^{t}\left(B\left(v_{m}(s), u_{m}(s)\right), P_{m} \omega\right) d s-\int_{t_{0}}^{t}(B(v(s), u(s)), \omega) d s\right| \\
& \leq\left|\int_{t_{0}}^{t}\left(B\left(v_{m}(s), u_{m}(s)\right), P_{m} \omega-\omega\right) d s\right|+\left|\int_{t_{0}}^{t}\left(B\left(v_{m}(s)-v(s), u_{m}(s)\right), \omega\right) d s\right| \\
&+\left|\int_{t_{0}}^{t}\left(B\left(v(s), u_{m}(s)-u(s)\right), \omega\right) d s\right| \\
&= I_{m}^{(4)}+I_{m}^{(5)}+I_{m}^{(6)},
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{m}^{(4)}=\left|\int_{t_{0}}^{t}\left(B\left(v_{m}(s), u_{m}(s)\right), P_{m} \omega-\omega\right) d s\right| \leq \int_{t_{0}}^{t}\left|B\left(v_{m}(s), u_{m}(s)\right)\right|\left|P_{m} \omega-\omega\right| d s \rightarrow 0, \\
& I_{m}^{(5)}=\left|\int_{t_{0}}^{t}\left(B\left(v_{m}(s)-v(s), u_{m}(s)\right), \omega\right) d s\right| \leq \int_{t_{0}}^{t}\left|B\left(v_{m}(s)-v(s), u_{m}(s)\right)\right||\omega| d s \\
& \leq \int_{t_{0}}^{t}\left|v_{m}(s)-v(s)\right|| | u_{m}(s) \||\omega| d s \rightarrow 0, \\
& I_{m}^{(6)}=\left|\int_{t_{0}}^{t}\left(B\left(v(s), u_{m}(s)-u(s)\right), \omega\right) d s\right| \leq \int_{t_{0}}^{t}\left|B\left(v(s), u_{m}(s)-u(s)\right)\right||\omega| d s \\
& \leq \int_{t_{0}}^{t}|v(s)|\left\|u_{m}(s)-u(s)\right\||\omega| d s \rightarrow 0, \\
& \mid \int_{t_{0}}^{t}\left(B\left(u_{m}(s), u_{m}(s)\right), P_{m}(\omega) d s-\int_{t_{0}}^{t}(B(u(s), u(s)), \omega) d s \mid\right. \\
& \leq\left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s), u_{m}(s)\right), P_{m} \omega-\omega\right) d s\right|+\left|\int_{t_{0}}^{t}\left(B\left(u_{m}(s)-u(s), u_{m}(s)\right), \omega\right) d s\right| \\
&+\left|\int_{t_{0}}^{t}\left(B\left(u(s), u_{m}(s)-u(s)\right), \omega\right) d s\right| \\
&=I_{m}^{(7)}+I_{m}^{(8)}+I_{m}^{(9)} \rightarrow 0 .
\end{aligned}
$$

From the above discussion, we can deduce that u, v satisfy the following equation:

$$
\begin{aligned}
& (v(t), \omega)+\int_{t_{0}}^{t}\left(G(u(s)), A^{2} \omega\right) d s+\int_{t_{0}}^{t}(B(u(s), v(s)), \omega) d s \\
& \quad+2 \int_{t_{0}}^{t}(B(v(s), u(s)), \omega) d s-3 \int_{t_{0}}^{t}(B(u(s), u(s)), \omega) d s=\left(v\left(t_{0}\right), \omega\right) .
\end{aligned}
$$

Above all, u is the solution of (2.1)-(2.3), that is, their global solution exists

4 The existence of the absorbing set

Theorem 2 If $u_{0} \in \mathrm{~V}$, the semi-group of the solution to (2.1)-(2.3), i.e. $S(t): H^{2}(\Omega) \rightarrow$ $H^{2}(\Omega), u(t)=S(t) u_{0}$, has an absorbing set.

Proof Taking the inner product of (2.1) with u in Ω we obtain

$$
\left(\frac{d v}{d t}, u\right)+\left(A^{2} G(u), u\right)+2(B(v, u), u)+(B(u, v), u)-3(B(u, u), u)=0 .
$$

Because of $G_{u}^{\prime}(u) \geq g_{0}, g_{0}>0$, we have

$$
\frac{1}{2} \frac{d}{d t}\left(|u|^{2}+\|u\|^{2}\right)+g_{0}|A u|^{2} \leq 0 .
$$

By the Poincaré inequality, $|A u|^{2}>\lambda_{1}\|u\|^{2}$, we get

$$
\frac{d}{d t}\left(|u|^{2}+\|u\|^{2}\right)+g_{0} \lambda_{1}\|u\|^{2}+g_{0}|A u|^{2} \leq 0 .
$$

Let $g_{1}=\min \left\{g_{0} \lambda_{1}, g_{0}\right\}$, then

$$
\begin{equation*}
\frac{d}{d t}\left(|u|^{2}+\|u\|^{2}\right)+g_{1}\left(\|u\|^{2}+|A u|^{2}\right) \leq 0 \tag{4.1}
\end{equation*}
$$

Using the Poincaré inequality, $\|u\|^{2}>\lambda_{1}|u|^{2}$ and $|A u|^{2}>\lambda_{1}\|u\|^{2}$, (4.1) is changed to

$$
\frac{d}{d t}\left(|u|^{2}+\|u\|^{2}\right)+g_{1} \lambda_{1}\left(|u|^{2}+\|u\|^{2}\right) \leq 0 .
$$

By the Grownwall inequality, we obtain

$$
\begin{equation*}
|u|^{2}+\|u\|^{2} \leq\left(|u(0)|^{2}+\|u(0)\|^{2}\right) \exp \left\{-g_{1} \lambda_{1} t\right\} . \tag{4.2}
\end{equation*}
$$

It is easy to see that $|u(x, t)|$ and $\|u(x, t)\|$ are uniformly bounded from (4.2). In other words, the semi-group $S(t)$ is uniformly bounded in $L^{2}(\Omega)$ and $H^{1}(\Omega)$.

Integrating (4.1) over the interval $[t, t+r]$, we have

$$
\begin{aligned}
& \lim _{s \rightarrow+\infty} \int_{t}^{t+r}\left(\|u(x, s)\|^{2}+|A u(x, s)|^{2}\right) d s \leq \frac{1}{g_{1}}\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right) \\
& \int_{t}^{t+s}\left(\|u(x, s)\|^{2}+|A u(x, s)|^{2}\right) d s \leq \frac{1}{g_{1}}\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right) \leq \frac{\rho_{0}}{g_{1}}
\end{aligned}
$$

If $B(0, \rho)$ is an open ball in $L^{2}(\Omega)$ and $H^{1}(\Omega)$ whose radius is ρ, it is easy to calculate that $S(t) u_{0} \in B(0, \rho)$ when $t \geq t_{0}, t_{0}=\max \left(-\frac{1}{g_{1} \lambda_{1}} \ln \frac{\rho}{\rho_{0}}, 0\right)$.

We will make a uniform estimate of (2.1)-(2.3) in $H^{2}(\Omega)$.
Taking the inner product of (2.1) with $A u$ in Ω, and denoting $F(u, A u)=(B(u, v), A u)+$ $2(B(v, u), A u)-3(B(u, u), A u)$, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(\|u\|^{2}+|A u|^{2}\right)+g_{0}|\nabla A u|^{2}+F(u, A u) \leq 0 . \tag{4.3}
\end{equation*}
$$

By computing, $F(u, A u)=2(B(A u, u), A u)+(B(u, A u), A u)$, through the Agmon inequality, we get

$$
\begin{aligned}
& |(B(A u, u), A u)| \leq\|\nabla u\|_{L^{\infty}(\Omega)}\|A u\|_{L^{2}(\Omega)}^{2} \leq c_{5}\|u\|^{\frac{1}{2}}|A u|^{\frac{5}{2}} \\
& |(B(u, A u), A u)| \leq \frac{1}{2}\|\nabla u\|_{L^{\infty}(\Omega)}\|A u\|_{L^{2}(\Omega)}^{2} \leq \frac{c_{6}}{2}\|u\|^{\frac{1}{2}}|A u|^{\frac{5}{2}} .
\end{aligned}
$$

So we have

$$
\begin{aligned}
|F(u, A u)| & \leq 2|(B(A u, u), A u)|+|(B(u, A u), A u)| \leq c_{7}\|u\|^{\frac{1}{2}}|A u|^{\frac{1}{2}}\left(\|u\|^{2}+|A u|^{2}\right) \\
& \leq \frac{1}{2} g_{1} \lambda_{1}\left(\|u\|^{2}+|A u|^{2}\right)+c_{8}\|u\||A u|\left(\|u\|^{2}+|A u|^{2}\right)
\end{aligned}
$$

where

$$
c_{7}=\max \left\{2 c_{5}, \frac{c_{6}}{2}\right\}, \quad c_{8}=\frac{c_{7}^{2}}{2 g_{1} \lambda_{1}} .
$$

By the Poincaré inequality, $|\nabla A u|^{2}>\lambda_{1}|A u|^{2}, g_{1}=\min \left\{g_{0} \lambda_{1}, g_{0}\right\}$, and (4.3) it can be deduced that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\|u\|^{2}+|A u|^{2}\right)+\frac{g_{1}}{2}\left(|A u|^{2}+|\nabla A u|^{2}\right) \\
& \quad \leq \frac{1}{2} g_{1} \lambda_{1}\left(\|u\|^{2}+|A u|^{2}\right)+c_{8}\|u\||A u|\left(\|u\|^{2}+|A u|^{2}\right) . \tag{4.4}
\end{align*}
$$

Employing the Poincaré inequality again, we obtain

$$
\frac{d}{d t}\left(\|u\|^{2}+|A u|^{2}\right) \leq 2 c_{8}\|u\||A u|\left(\|u\|^{2}+|A u|^{2}\right) .
$$

Using the Young inequality, the following inequality can be gotten:

$$
\frac{d}{d t}\left(\|u\|^{2}+|A u|^{2}\right) \leq c_{8}\left(\|u\|^{2}+|A u|^{2}\right)^{2}
$$

By denoting $y=\|u\|^{2}+|A u|^{2}, g=c_{8}\left(\|u\|^{2}+|A u|^{2}\right)$,

$$
\int_{t}^{t+r} y(s) d s \leq \frac{1}{g_{1}}\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right)=\alpha_{1}, \quad \int_{t}^{t+r} g(s) d s \leq \frac{c_{8}}{g_{1}}\left(\left|u_{0}\right|^{2}+\left\|u_{0}\right\|^{2}\right)=c_{8} \alpha_{1} .
$$

According to the uniform Grownwall inequality, we get

$$
\|u\|^{2}+|A u|^{2} \leq \frac{\alpha_{1}}{r} \exp \left\{c_{8} \alpha_{1}\right\}, \quad t>t_{0}+r,
$$

where r, α_{1}, c_{8} are nonnegative constants. Let $\rho_{1}=\frac{\alpha_{1}}{r} \exp \left\{c_{8} \alpha_{1}\right\}$, and then $|A u|^{2} \leq \rho_{1}$. In other words, $B\left(0, \rho_{1}\right)$ is the attracting set of $S(t)$ in $H^{2}(\Omega)$. This completes the proof of Theorem 2.

5 The existence of global attractor

Theorem 3 If $u_{0} \in \mathrm{~V}$, the semi-group of the solution $S(t)$ to (2.1)-(2.3) has a global attractor in $H^{2}(\Omega)$.

Proof Based on the proof of Theorem 2, we only need to prove that $S(t)$ is a completely continuous operator, thus the existence of global attractor can be proved.
Taking the inner product of (2.1) with $t^{2} \Delta A u$ in Ω, furthermore, according to integration by parts and the Green formula, we have

$$
\begin{align*}
& \left(\frac{d v}{d t}, t^{2} \Delta A u\right)+\left(A^{2} G(u), t^{2} \Delta A u\right)+\left(B(u, v), t^{2} \Delta A u\right) \\
& \quad+2\left(B(v, u), t^{2} \Delta A u\right)-3\left(B(u, u), t^{2} \Delta A u\right)=0 \tag{5.1}\\
& \left(\frac{d v}{d t}, t^{2} \Delta A u\right)=-\frac{1}{2} \frac{d}{d t}\left(|t A u|^{2}+|t \nabla A u|^{2}\right)+\left(\left|t^{\frac{1}{2}} A u\right|^{2}+\left|t^{\frac{1}{2}} \nabla A u\right|^{2}\right) .
\end{align*}
$$

By the assumption of $G_{u}^{\prime}(u) \geq g_{0}, g_{0}>0$, we can get

$$
\left(A^{2} G(u), t^{2} \Delta A u\right) \leq-g_{0}|t \Delta A u|^{2},
$$

$$
\begin{aligned}
& \left(B(u, v), t^{2} \Delta A u\right)+2\left(B(v, u), t^{2} \Delta A u\right)-3\left(B(u, u), t^{2} \Delta A u\right) \\
& \quad=\left(B(u, A u), t^{2} \Delta A u\right)+2\left(B(A u, u), t^{2} \Delta A u\right)=-\frac{5}{2} \int_{\Omega} t^{2} u_{x} u_{x x x}^{2} d x
\end{aligned}
$$

and through the Agmon inequality and the Poincaré inequality, we obtain

$$
\begin{aligned}
& \left|\left(B(u, v), t^{2} \Delta A u\right)+2\left(B(v, u), t^{2} \Delta A u\right)-3\left(B(u, u), t^{2} \Delta A u\right)\right| \\
& \quad=\left|\frac{5}{2} \int_{\Omega} t^{2} u_{x} u_{x x x}^{2} d x\right| \leq \frac{5}{2}\left|\int_{\Omega} t^{2} u_{x} u_{x x x}^{2} d x+\int_{\Omega} t^{2} u_{x} u_{x x}^{2} d x\right| \\
& \quad \leq \frac{5}{2} c_{9}\|u\|^{\frac{1}{2}}|A u|^{\frac{1}{2}}\left(|t A u|^{2}+|t \nabla A u|^{2}\right) .
\end{aligned}
$$

By (5.1), we can get the following inequality:

$$
\begin{aligned}
& \frac{d}{d t}\left(|t A u|^{2}+|t \nabla A u|^{2}\right)+2 g_{0}|t \Delta A u|^{2} \\
& \quad \leq 5 c_{9}\|u\|^{\frac{1}{2}}|A u|^{\frac{1}{2}}\left(|t A u|^{2}+|t \nabla A u|^{2}\right)+2\left(\left|t^{\frac{1}{2}} A u\right|^{2}+\left|t^{\frac{1}{2}} \nabla A u\right|^{2}\right) .
\end{aligned}
$$

Based on the Poincaré inequality: $|t \Delta A u|^{2}>\lambda_{1}|t \nabla A u|^{2},|t \nabla A u|^{2}>\lambda_{1}|t A u|^{2}, g_{1}=\min \left\{g_{0} \lambda_{1}\right.$, $\left.g_{0}\right\}$, and the Young inequality, we have

$$
\begin{align*}
\frac{d}{d t} & \left(|t A u|^{2}+|t \nabla A u|^{2}\right)+g_{1} \lambda_{1}\left(|t A u|^{2}+|t \nabla A u|^{2}\right) \\
& \leq 5 c_{9}\|u\|^{\frac{1}{2}}|A u|^{\frac{1}{2}}\left(|t A u|^{2}+|t \nabla A u|^{2}\right)+2\left(\left|t^{\frac{1}{2}} A u\right|^{2}+\left|t^{\frac{1}{2}} \nabla A u\right|^{2}\right) \\
& \leq g_{1} \lambda_{1}\left(|t A u|^{2}+|t \nabla A u|^{2}\right)+c_{10}\|u\||A u|\left(|t A u|^{2}+|t \nabla A u|^{2}\right) \\
& +c_{11}\left(|A u|^{2}+|\nabla A u|^{2}\right), \tag{5.2}
\end{align*}
$$

where

$$
c_{10}=\frac{25 c_{9}^{2}}{4 g_{1} \lambda_{1}}, \quad c_{11}=\frac{8}{g_{1} \lambda_{1}} .
$$

By (4.4), the following inequality can be obtained:

$$
\begin{aligned}
& \frac{d}{d t}\left(\|u\|^{2}+|A u|^{2}\right)+g_{1}\left(|A u|^{2}+|\nabla A u|^{2}\right) \leq g_{1} \lambda_{1}\left(\|u\|^{2}+|A u|^{2}\right)+c_{8}\left(\|u\|^{2}+|A u|^{2}\right)^{2} \\
& \quad t \geq t_{0}
\end{aligned}
$$

Integrating the above inequality over the interval $[t, t+r]$, we get

$$
\int_{t}^{t+r}\left(|A u(x, s)|^{2}+|\nabla A u(x, s)|^{2}\right) d s \leq\left(\lambda_{1} \rho_{1}+\frac{c_{8} \rho_{1}^{2}}{g_{1}}\right) r+\frac{\rho_{1}}{g_{1}}
$$

Equation (5.2) can be rewritten as follows:

$$
\frac{d}{d t}\left(|t A u|^{2}+|t \nabla A u|^{2}\right) \leq c_{10}\|u\||A u|\left(|t A u|^{2}+|t \nabla A u|^{2}\right)+c_{11}\left(|A u|^{2}+|\nabla A u|^{2}\right)
$$

By denoting $\left(\lambda_{1} \rho_{1}+\frac{c_{8} \rho_{1}^{2}}{g_{1}}\right) r+\frac{\rho_{1}}{g_{1}}=\alpha_{2}\left(\lambda_{1}, \rho_{1}, g_{1}\right)$, we have

$$
\begin{aligned}
& \int_{t}^{t+r} c_{10}\|u(x, s)\||A u(x, s)| d s \leq \frac{c_{10}}{2} \int_{t}^{t+r}\left(\|u(x, s)\|^{2}+|A u(x, s)|^{2}\right) d s \\
& \leq \frac{c_{10} \rho_{0}}{2 g_{1}} \triangleq \alpha_{3}\left(\rho_{0}, g_{1}\right), \\
& \int_{t}^{t+r}\left(|s A u(x, s)|^{2}+|s \nabla A u(x, s)|^{2}\right) \leq(t+r)^{2} \alpha_{2} \triangleq \alpha_{4}\left(\lambda_{1}, \rho_{1}, g_{1}\right) .
\end{aligned}
$$

By the uniform Gronwall inequality, we have

$$
|t A u|^{2}+|t \nabla A u|^{2} \leq\left(\frac{\alpha_{4}}{r}+c_{11} \alpha_{2}\right) \exp \left(\alpha_{3}\right) .
$$

Let $\left(\frac{\alpha_{4}}{r}+c_{11} \alpha_{2}\right) \exp \left(\alpha_{3}\right)=E\left(\lambda_{1}, \rho_{1}, g_{1}, t\right)$, then we can obtain $|\nabla A u|<\frac{E\left(\lambda_{1}, \rho_{1}, g_{1}, t\right)}{t}$.
Therefore, we can conclude that $S(t)$ is equicontinuous. From the Ascoli-Arzela theorem, $S(t)$ is a completely continuous operator. Thus, we have proved that $S(t)$ has a global attractor in $H^{2}(\Omega)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All the authors typed, read, and approved the final manuscript.

Author details

School of Automation, Southeast University, Nanjing, 210096, China. ${ }^{2}$ Key Laboratory of Measurement and Control of CSE, Ministry of Education, Southeast University, Nanjing, 210096, China. ${ }^{3}$ Faculty of Science, Jiangsu University, Zhenjiang, 212013, China. ${ }^{4}$ National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, 310029, China.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61374194), the National Natural Science Foundation of China (61403081), the Natural Science Foundation of Jiangsu Province (BK20140638), the China Postdoctoral Science Foundation (2013M540405) and the Special Program of China Postdoctoral Science Foundation (2014T70454).

Received: 24 June 2014 Accepted: 26 August 2014 Published online: 25 September 2014

References

1. Camassa, R, Holm, D: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661-1664 (1993)
2. Constantin, A, Escher, J: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303-328 (1998)
3. Ding, D, Tian, L: The study on solution of Camassa-Holm equation with weak dissipation. Commun. Pure Appl. Anal. 5, 483-493 (2006)
4. Lai, S, Li, N, Wu, Y: The existence of global weak solutions for a weakly dissipative Camassa-Holm equation in $H^{1}(R)$. Bound. Value Probl. 2013, 26 (2013)
5. Dai, H: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127 193-207 (1998)
6. Dai, H: Exact travelling-wave solutions of an integrable equation arising in hyperelastic rod. Wave Motion 28, 367-381 (1998)
7. Dai, H, Huo, Y: Solitary waves in an inhomogeneous rod composed of a general hyperelastic material. Wave Motion 35, 55-69 (2002)
8. Zhou, Y: Blow-up of solutions to a nonlinear dispersive rod equation. Calc. Var. Partial Differ. Equ. 25, 63-77 (2005)
9. Zhou, Y: Blow-up phenomenon for a periodic rod equation. Phys. Lett. A 353, 479-486 (2006)
10. Zhou, Y: Local well-posedness and blow-up criteria of solutions for a rod equation. Math. Nachr. 278, 1726-1739 (2005)
11. Karapetyan, D: Non-uniform dependence and well-posedness for the hyperelastic rod equation. J. Differ. Equ. 249, 796-826 (2010)
12. Mustafa, O: Global conservative solutions of the hyperelastic rod equation. Int. Math. Res. Not. (2007) doi:10.1093/imm/rnm040
13. Coclite, G, Holden, H, Karlsen, K: Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J. Math Anal. 37, 1044-1069 (2005)
14. Coclite, G, Holden, H, Karlsen, K: Well-posedness for a parabolic-elliptic system. Discrete Contin. Dyn. Syst. 13, 659-682 (2005)
15. Benjamin, T, Bona, J, Mahony, J: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272, 47-78 (1972)
16. Bona, J, Tzvetkov, N: Sharp well-posedness results for the BBM equation. Discrete Contin. Dyn. Syst. 23, 1241-1252 (2009)
17. Lenells, J: Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306, 72-82 (2005)
18. Henry, D: Infinite propagation speed for the Degasperis-Procesi equation. J. Math. Anal. Appl. 311, 755-759 (2005)
19. Escher, J, Liu, Y, Yin, Z: Global weak solution and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal. 241, 457-485 (2006)
20. Tian, L, Fan, J: The attractor on viscosity Degasperis-Procesi equation. Nonlinear Anal., Real World Appl. 9, 1461-1473 (2008)
21. Johnson, R: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63-82 (2002)
22. Holden, H, Raynaud, X: Global conservative solutions of the generalized hyperelastic-rod wave equation. J. Differ. Equ. 233, 448-484 (2007)
23. Cohen, D, Raynaud, X: Geometric finite difference schemes for the generalized hyperelastic-rod wave equation. J. Comput. Appl. Math. 235, 1925-1940 (2011)
24. Lai, S, Wu, Y: The study of global weak solutions for a generalized hyperelastic-rod wave equation. Nonlinear Anal. 80 96-108 (2013)
25. Chen, C, Shi, L, Wang, H: Existence of global attractors in L^{p} for m-Laplacian parabolic equation in R^{N}. Bound. Value Probl. 2009, 563767 (2009)
26. Ding, D, Tian, L: The attractor in dissipative Camassa-Holm equation. Acta Math. Appl. Sin. 27, 536-545 (2004)
27. Zeng, W, Lu, X, Liu, Q: Blow-up profile for a degenerate parabolic equation with a weighted localized term. Bound. Value Probl. 2013, 269 (2013)

[^0] 2014 2014:209

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field
Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: doi:10.1186/s13661-014-0209-0
 Cite this article as: Bi et al.: Global attractor for the generalized hyperelastic-rod equation. Boundary Value Problems

