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1 Introduction
In this paper we deal with the existence and multiplicity of solutions to the following
Kirchhoff-type problems involving the critical growth:

{
–(a + b

∫
�

|∇u| dx)�u – a[�(u)]u = u(∗)– + λh(x,u), x ∈ �,
u = , x ∈ ∂�,

(.)

where � ⊂ R
N (N ≥ ) is an open bounded domain with smooth boundary and λ is a

positive parameter. The number ∗ = N/(N – ) is the critical exponent according to the
Sobolev embedding.
Much interest has arisen in problems involving critical exponents, starting from the cel-

ebrated paper by Brezis and Nirenberg []. For example, Li and Zou [] obtained infinitely
many solutions with odd nonlinearity. Chen and Li [] obtained the existence of infinitely
many solutions by using minimax procedure. For more related results, we refer the inter-
ested readers to [–] and references therein.
On the one hand, without a[�(u)], (.) reduces to the following Dirichlet problem of

Kirchhoff type:

{
–(a + b

∫
�

|∇u| dx)�u = f (x,u), x ∈ �,
u|∂� = ,

(.)

where � ⊂ R
N , problem (.) is a generalization of a model introduced by Kirchhoff [].

More precisely, Kirchhoff proposed a model given by the equation

ρ
∂u
∂t

–
(

ρ

h
+

E
L

∫ L



∣∣∣∣∂u∂x
∣∣∣∣


dx
)

∂u
∂x

= , (.)
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where ρ , ρ, h, E, L are constants, which extends the classical D’Alembert’s wave equation,
by considering the effects of the changes in the length of the strings during the vibrations.
Equation (.) is related to the stationary analog of problem (.). Problem (.) received
much attention only after Lions [] proposed an abstract framework to study the prob-
lem. Some important and interesting results can be found; see for example [–]. We
note that results dealing with problem (.) with critical nonlinearity are relatively scarce
[–].
In [], by means of a direct variational method, the authors proved the existence and

multiplicity of solutions to a class of p-Kirchhoff-type problem with Dirichlet boundary
data. In [], the authors showed the existence of infinite solutions to the p-Kirchhoff-
type quasilinear elliptic equation. But they did not give any further information on the
sequence of solutions. Recently, Kajikiya [] established a critical point theorem related
to the symmetric mountain-pass lemma and applied to a sublinear elliptic equation. How-
ever, there are no such results on Kirchhoff-type problems (.).
On the other hand, there are many papers concerned with the following quasilinear

elliptic equations:

–�u +V (x)u –
[
�

(
u

)]
u = h(x,u), x ∈R

N . (.)

Such equations arise in various branches of mathematical physics and they have been the
subject of extensive study in recent years. In [], by a change of variables the quasilinear
problem was transformed to a semilinear one and an Orlicz space framework was used
as the working space, and they were able to prove the existence of positive solutions of
(.) by the mountain-pass theorem. The same method of a change of variables was used
in [], but the usual Sobolev space H(�) framework was used as the working space and
one studied a different class of nonlinearity. In [], the existence of both one sign and
nodal ground state-type solutions was established by the Nehari method.
Motivated by the reasons above, the aim of this paper is to show the existence of in-

finitely many soliton solutions of problem (.), and there exists a sequence of infinitely
many arbitrarily small soliton solutions converging to zero by using a new version of the
symmetric mountain-pass lemma due to Kajikiya [].
Note that (∗) behaves like a critical exponent for the above equations; see []. For the

subcritical case, the existence of solutions for problem (.) was studied in [–] and
it was left open for the critical exponent case; see []. To the best of our knowledge, the
existence of non-trivial radial solutions for (.) with h(u) = μu(∗)– was firstly studied by
Moameni [], where the same Orlicz space as [] was used. In [], the authors showed
the existence of multiple solutions for problems (.) with a =  and b =  by minimax
methods and the Krasnoselski genus theory. For other interesting results see [, ].
To the best of our knowledge, the existence andmultiplicity of soliton solutions to prob-

lem (.) has never been studied by variational methods. As we shall see in the present
paper, problem (.) can be viewed as an elliptic equation coupled with a non-local term.
The competing effect of the non-local term with the critical nonlinearity and the lack of
compactness of the embedding of H(�) into the space Lp(�) prevent us from using the
variational methods in a standard way. Some new estimates for such a Kirchhoff equation
involving Palais-Smale sequences, which are key points in the application of this kind of
theory, need to be established.Wemainly follow the idea of [, ]. Let us point out that,
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although the idea was used before for other problems, the adaptation of the procedure to
our problem is not trivial at all; because of the appearance of a non-local term, we must
consider our problem for a suitable space and so we need more delicate estimates.
Our main result in this paper is the following.

Theorem . Suppose that h(x,u) satisfies the following conditions:

(H∗
 ) h(x,u) ∈ C(� ×R,R), h(x, –u) = –h(x,u) for all u ∈ R;

(H∗
) lim|u|→∞ h(x,u)

|u|(∗)– =  uniformly for x ∈ �;
(H∗

) lim|u|→+
h(x,u)
u = ∞ uniformly for x ∈ �.

Then there exists λ∗ >  such that for any λ ∈ (,λ∗), problem (.) has a sequence of non-
trivial solutions {un} and un →  in H

(�) as n→ ∞.

2 Preliminary lemmas
The energy functional corresponding to problem (.) is defined as follows:

J(u) :=
a


∫
�

|∇u| dx + b


(∫
�

|∇u| dx
)

+ a
∫

�

|u||∇u| dx

–


(∗)

∫
�

|u|(∗) dx – λ

∫
�

H(x,u)dx

=
a


∫
�

(
 + |u|)|∇u| dx + b



(∫
�

|∇u| dx
)

–


(∗)

∫
�

|u|(∗) dx

– λ

∫
�

H(x,u)dx,

where H(x, s) =
∫ s
 h(x, τ )dτ for (x, s) ∈ R

N × R. It should be pointed out that the func-
tional J is not well defined in general, for instance, in H

(�). To overcome this difficulty,
we employ an argument developed by Colin and Jeanjean []. We make the change of
variables v = f –(u), where f is defined by

f ′(t) =
√

 + f (t)
and f () = 

on [,+∞) and by f (t) = –f (–t) on (–∞, ].
The following result is due to Colin and Jeanjean [] (see also []).

Lemma . The function f satisfies the following properties:

(f) f is uniquely defined C∞ and invertible.
(f) |f ′(t)| ≤  for all t ∈R.
(f) f (t)

t →  as t → .
(f) f (t)√

t →  
 as t → ∞.

(f) 
 f (t) ≤ tf ′(t)≤ f (t) for all t ≥ .

(f) |f (t)| ≤ t for all t ∈R.
(f) |f (t)| ≤  

 |t|  for all t ∈R.
(f) The function f (t) is strictly convex.
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(f) There exists a positive constant C such that

∣∣f (t)∣∣ ≥
{
C|t|, |t| ≤ ,
C|t|  , |t| ≥ .

(f) There exist positive constants C and C such that

|t| ≤ C
∣∣f (t)∣∣ +C

∣∣f (t)∣∣ for all t ∈R.

(f) |f (t)f ′(t)| ≤ √
 for all t ∈R.

So after this change of variables, we can write J(u) as

J(v) :=
a


∫
�

|∇v| dx + b


(∫
�

∣∣f ′(v)
∣∣|∇v| dx

)

–


(∗)

∫
�

∣∣f (v)∣∣(∗) dx

– λ

∫
�

H
(
x, f (v)

)
dx. (.)

Then J(v) is well defined onH
(�). Standard arguments [, ] show that J(v) :H

(�) →
R is of class C with

〈
J ′(v),w

〉
= a

∫
�

∇v∇wdx –
∫

�

f (
∗)–(v)f ′(v)wdx – λ

∫
�

h
(
x, f (v)

)
f ′(v)wdx

+
b


(∫
�

|∇v|
 + f (v)

dx
)(∫

�

∇v∇w( + f (v)) – |∇v|f (v)f ′(v)w
[ + f (v)]

dx
)
,

for v,w ∈H
(�).

As in [], we note that if v is a non-trivial critical point of J , then v is a non-trivial
solution of the problem

–a�v – b
∫
RN

∣∣f ′(v)
∣∣|∇v| dx · η(v) = g(x, v), (.)

where

η(v) =
(
f ′(v)f ′′(v)|∇v| + f ′(v)�v + f (v)f ′(v)|∇v|)

and

g(x, v) = f ′(v)
(
λh

(
x, f (v)

)
+ f (

∗)–(v)
)
.

Therefore, let u = f (v) and since (f –)′(t) = [f ′(f –(t))]– =
√
 + t, we conclude that u is a

non-trivial solution of the problem

–
(
a + b

∫
RN

|∇u| dx
)

�u – a
[
�

(
u

)]
u = u(

∗)– + λh(x,u).

The auxiliary result of this paper is as follows.
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Theorem . Suppose that h(x, s) satisfies the following conditions:

(H) h(x, s) ∈ C(� ×R,R), h(x, –s) = –h(x, s) for all s ∈R;
(H) lim|s|→∞ h(x,s)

|s|(∗)– =  uniformly for x ∈ �;
(H) lim|u|→+

h(x,s)
s = ∞ uniformly for x ∈ �.

Then there exists λ∗ >  such that for any λ ∈ (,λ∗), problem (.) has a sequence of non-
trivial solutions {vn} and vn →  in H

(�) as n→ ∞.

We recall the second concentration-compactness principle of Lions [].

Lemma . Let {vn} ⊂ H
(�) be a weakly convergent sequence to v in H

(�) such that
|vn|∗

⇀ ν and |∇vn| ⇀ μ in the sense of measures. Then, for some at most countable
index set I ,

(i) ν = |v|∗ +
∑

j∈I δxjνj, νj > ,
(ii) μ ≥ |∇v| +∑

j∈I δxjμj, μj > ,
(iii) μj ≥ Sν/∗

j ,
where S is the best Sobolev constant, i.e. S = inf{∫

�
|∇v| dx : ‖v‖∗

∗ = }, xj ∈ R
N , δxj are

Dirac measures at xj and μj, νj are constants.

Under assumptions (H) and (H), we have

h(x, s)s = o
(|s|(∗)), H(x, s) = o

(|s|(∗)),
which means that, for all ε > , there exist a(ε),b(ε) >  such that

∣∣h(x, s)s∣∣ ≤ a(ε) + ε|s|(∗), (.)∣∣H(x, s)
∣∣ ≤ b(ε) + ε|s|(∗). (.)

Hence,

H(x, s) –


h(x, s)s≤ c(ε) + ε|s|(∗), (.)

for some c(ε) > .

Lemma . Assume conditions (H) and (H) hold. Then for any λ > , the functional J
satisfies the local (PS)c condition in

c ∈
(
–∞,


N

(
–aS

)N
 – λc

(


Nλ

)
|�|

)

in the following sense: if

J(vn)→ c <

N

(
–aS

)N
 – λc

(


Nλ

)
|�|

and J ′(vn) →  for some sequence in H
(�), then {vn} contains a subsequence converging

strongly in H
(�).
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Proof Let {vn} be a sequence in H
(�) such that

J(vn) =
a


∫
�

|∇vn| dx + b


(∫
�

∣∣f ′(vn)
∣∣|∇vn| dx

)

–


(∗)

∫
�

∣∣f (vn)∣∣(∗) dx

– λ

∫
�

H
(
x, f (vn)

)
dx = c + o(), (.)

〈
J ′(vn),w

〉
= a

∫
�

∇vn∇wdx –
∫

�

f (
∗)–(vn)f ′(vn)wdx

– λ

∫
�

h
(
x, f (vn)

)
f ′(vn)wdx + b

(∫
�

|∇vn|
 + f (vn)

dx
)

×
(∫

�

∇vn∇w( + f (vn)) – |∇vn|f (vn)f ′(vn)w
[ + f (vn)]

dx
)

= o()‖vn‖. (.)

Choose w = wn =
√
 + f (vn)f (vn), we have wn ∈ H

(�) and

|∇wn| =
(
 +

f (vn)
 + f (vn)

)
|∇vn|.

Thus, we can deduce that ‖wn‖ ≤ c‖vn‖. By (.) we have

〈
J ′(vn),wn

〉
= a

∫
�

(
 +

f (vn)
 + f (vn)

)
|∇vn| dx –

∫
�

f (
∗)(vn)dx

+ b
(∫

�

|∇vn|
 + f (vn)

dx
)

– λ

∫
�

h
(
x, f (vn)

)
f (vn)dx

= o()‖vn‖. (.)

By (.) and (.), we have

c + o()‖vn‖ = J(vn) –



〈
J ′(vn),wn

〉
=

a


∫
�

|∇vn|
 + f (vn)

dx +
(


–


(∗)

)∫
�

f (
∗)(vn)dx

– λ

∫
�

H
(
x, f (vn)

)
dx +

λ



∫
�

h
(
x, f (vn)

)
f (vn)dx

≥ 
N

∫
�

f (
∗)(vn)dx – λ

∫
�

H
(
x, f (vn)

)
dx +

λ



∫
�

h
(
x, f (vn)

)
f (vn)dx,

i.e.


N

∫
�

f (
∗)(vn)dx ≤ λ

∫
�

(
H

(
x, f (vn)

)
–


h
(
x, f (vn)

)
f (vn)

)
dx + c + o()‖vn‖.

Then by (.), we have

(

N

– λε

)∫
�

f (
∗)(vn)dx ≤ λc(ε)|�| + c + o()‖vn‖.

http://www.boundaryvalueproblems.com/content/2014/1/210
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Setting ε = /Nλ, we get

∫
�

f (
∗)(vn)dx ≤ M + o()‖vn‖, (.)

where o() →  and M is a some positive number. On the other hand, by (.) and (.),
we have

c + o()‖vn‖ = J(vn) =
a


∫
�

|∇vn| dx + b


(∫
�

∣∣f ′(vn)
∣∣|∇vn| dx

)

–


(∗)

∫
�

∣∣f (vn)∣∣(∗) dx – λ

∫
�

H
(
x, f (vn)

)
dx

≥ a

‖vn‖ – λb(ε)|�| –

[


(∗)
+ λε

]∫
�

∣∣f (vn)∣∣(∗) dx. (.)

Therefore, the inequalities (.) and (.) imply that {vn} is bounded in H
(�). Then

{f (vn)} is also bounded in H
(�). Therefore we can assume that vn ⇀ v in H

(�), vn → v
a.e. in �, since f ∈ C∞, then f (vn) → f (v) a.e. in � and then f (vn) ⇀ f (v) in H

(�).
Thus, there exist measures μ and ν such that |∇f (vn)| ⇀ μ, f (∗)(vn) ⇀ ν . Let xj
be a singular point of the measures μ and ν . We define a function φ(x) ∈ C∞

 (RN )
such that φ(x) =  in B(xj, ε), φ(x) =  in � \ B(xj, ε) and |∇φ| ≤ /ε in �. Let w̃n =√
 + f (vn)f (vn)φ, then {w̃n} is bounded in H

(�). Obviously, 〈J ′(vn), w̃nφ〉 → , i.e.

– lim
ε→

lim
n→∞

[
a

∫
�

√
 + f (vn)f (vn)∇vn∇φ dx

+ b
(∫

�

|∇vn|
 + f (vn)

dx
)(∫

�

f (vn)∇vn∇φ√
 + f (vn)

dx
)]

= lim
ε→

lim
n→∞

{
a

∫
�

(
 +

f (vn)
 + f (vn)

)
|∇vn|φ dx + b

(∫
�

|∇vn|
 + f (vn)

dx
)

×
(∫

�

|∇vn|φ
 + f (vn)

dx
)
–

∫
�

h
(
x, f (vn)

)
f (vn)φ dx –

∫
�

f (
∗)(vn)φ dx

}
. (.)

On the other hand, by the Hölder inequality and (f) in Lemma ., we have

 ≤ lim
ε→

lim
n→∞

∣∣∣∣a
∫

�

√
 + f (vn)f (vn)∇vn∇φ dx

∣∣∣∣
≤ C lim

ε→
lim
n→∞

∫
�

|vn∇vn∇φ|dx

≤ C lim
ε→

lim
n→∞

[(∫
�

|∇vn| dx
) 


(∫

�

|vn∇φ| dx
) 


]

≤ C lim
ε→

(∫
B(xj ,ε)

|v|∗
dx

) 
∗

= . (.)

Similarly, we have

lim
ε→

lim
n→∞

[
b
(∫

�

|∇vn|
 + f (vn)

dx
)(∫

�

f (vn)∇vn∇φ√
 + f (vn)

dx
)]

= . (.)

http://www.boundaryvalueproblems.com/content/2014/1/210
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From the inequalities (.), (.), and (.), together with the following facts:
(i)



∣∣∇f (vn)

∣∣φ = 
∣∣f (vn)∣∣∣∣f ′(vn)

∣∣|∇vn|φ

=
f (vn)

 + f (vn)
|∇vn|φ

≤
(
 +

f (vn)
 + f (vn)

)
|∇vn|φ.

(ii) Similar to the proof of (.), it follows that

lim
ε→

lim
n→∞

∫
�

h
(
x, f (vn)

)
f (vn)φ dx = .

(iii)

lim
ε→

lim
n→∞

∫
�

∣∣∇f (vn)
∣∣φ dx = μj and lim

ε→
lim
n→∞

∫
�

f (
∗)(vn)φ dx = νj.

We get

 = lim
ε→

lim
n→∞

{
a

∫
�

(
 +

f (vn)
 + f (vn)

)
|∇vn|φ dx + b

(∫
�

|∇vn|
 + f (vn)

dx
)

×
(∫

�

|∇vn|φ
 + f (vn)

dx
)
–

∫
�

h
(
x, f (vn)

)
f (vn)φ dx –

∫
�

f (
∗)(vn)φ dx

}

≥ lim
ε→

lim
n→∞

[
a


∫
�

φ
∣∣∇f (vn)

∣∣ dx – ∫
�

h
(
x, f (vn)

)
f (vn)φ dx –

∫
�

f (
∗)(vn)φ dx

]

=
a

μj – νj. (.)

Combining this with Lemma ., we obtain νj ≥ –aSν

∗
j . This result implies that

(I) νj =  or (II) νj ≥
(
–aS

)N
 .

If the second case νj ≥ (–aS)N holds, for some j ∈ I , then by using the Hölder inequality,
we have

c = lim
n→∞

(
J(vn) –




〈
J ′(vn), vn

〉)

= lim
n→∞

[
a


∫
�

|∇vn|
 + f (vn)

dx +
(


–


(∗)

)∫
�

f (
∗)(vn)dx

– λ

∫
�

H
(
x, f (vn)

)
dx +

λ



∫
�

h
(
x, f (vn)

)
f (vn)dx

]

≥ lim
n→∞

[

N

∫
�

f (
∗)(vn)dx – λ

∫
�

H
(
x, f (vn)

)
dx +

λ



∫
�

h
(
x, f (vn)

)
f (vn)dx

]
.

http://www.boundaryvalueproblems.com/content/2014/1/210
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By using inequality (.), we get

c = lim
n→∞

(
J(vn) –




〈
J ′(vn), vn

〉)

≥ lim
n→∞

[(

N

– λε

)∫
�

f (
∗)(vn)dx – λc(ε)|�|

]

=
(


N

– λε

)
lim
n→∞

∫
�

f (
∗)(vn)dx – λc(ε)|�|.

Since  ≤ φ ≤ , it follows that

c = lim
n→∞

(
J(vn) –




〈
J ′(vn), vn

〉) ≥
(


N

– λε

)
lim
n→∞

∫
�

f (
∗)(vn)φ dx – λc(ε)|�|.

By using f (∗)(vn) ⇀ f (∗)(v) in the measure sense and Lemma .(i), we have

c = lim
n→∞

(
J(vn) –




〈
J ′(vn), vn

〉)

≥
(


N

– λε

)
lim
n→∞

∫
�

f (
∗)(v)φ dx +

(

N

– λε

)∑
j∈I

δxj (φ)νj – λc(ε)|�|

≥
(


N

– λε

)
νj – λc(ε)|�|

≥ 
N

(
–aS

)N
 – λc

(


Nλ

)
|�|,

where ε = /Nλ. This is impossible. Consequently, νj =  for all j ∈ I and hence

∫
�

f (
∗)(vn)dx →

∫
�

f (
∗)(v)dx, as n→ +∞.

Thus, from the weak lower semicontinuity of the norm and f ∈ C∞ we have

o()‖vn‖ =
〈
J ′(vn),wn

〉
= a

∫
�

(
 +

f (vn)
 + f (vn)

)
|∇vn| dx + b

(∫
�

|∇vn|
 + f (vn)

dx
)

– λ

∫
�

h
(
x, f (vn)

)
f (vn)dx –

∫
�

f (
∗)(vn)dx

= a‖vn‖ + a
∫

�

f (vn)
 + f (vn)

|∇vn| dx + b
(∫

�

|∇vn|
 + f (vn)

dx
)

– λ

∫
�

h
(
x, f (vn)

)
f (vn)dx –

∫
�

f (
∗)(vn)dx

≥ a‖vn – v‖ + a‖v‖ + a
∫

�

f (v)
 + f (v)

|∇v| dx + b
(∫

�

|∇v|
 + f (v)

dx
)

– λ

∫
�

h
(
x, f (v)

)
f (v)dx –

∫
�

f (
∗)(v)dx

= a‖vn – v‖ + o()‖v‖,

since J ′(v) = . Thus we prove that {vn} strongly converges to v in H
(�). �
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3 Existence of a sequence of arbitrarily small solutions
In this section, we prove the existence of infinitely many solutions of (.) which tend to
zero. Let X be a Banach space and denote

� :=
{
A⊂ X \ {} : A is closed in X and symmetric with respect to the origin

}
.

For A ∈ �, we define genus γ (A) as

γ (A) := inf
{
m ∈N : ∃ϕ ∈ C

(
A,Rm \ {}, –ϕ(x) = ϕ(–x)

)}
.

If there is nomapping ϕ as above for anym ∈ N , then γ (A) = +∞. Let�k denote the family
of closed symmetric subsets A of X such that  /∈ A and γ (A) ≥ k. We list some properties
of the genus (see [, ]).

Proposition . Let A and B be closed symmetric subsets of X which do not contain the
origin. Then the following hold.
() If there exists an odd continuous mapping from A to B, then γ (A) ≤ γ (B).
() If there is an odd homeomorphism from A to B, then γ (A) = γ (B).
() If γ (B) < ∞, then γ (A \ B) ≥ γ (A) – γ (B).
() Then n-dimensional sphere Sn has a genus of n +  by the Borsuk-Ulam theorem.
() If A is compact, then γ (A) < +∞ and there exists δ >  such that Uδ(A) ∈ � and

γ (Uδ(A)) = γ (A), where Uδ(A) = {x ∈ X : ‖x –A‖ ≤ δ}.

The following version of the symmetric mountain-pass lemma is due to Kajikiya [].

Lemma . Let E be an infinite-dimensional space and J ∈ C(E,R) and suppose the fol-
lowing conditions hold.

(C) J(u) is even, bounded from below, J() =  and J(u) satisfies the local Palais-Smale
condition, i.e. for some c̄ > , in the case when every sequence {uk} in E satisfying
limk→∞ J(uk) = c < c̄ and limk→∞ ‖J ′(uk)‖E∗ =  has a convergent subsequence.

(C) For each k ∈N , there exists an Ak ∈ �k such that supu∈Ak
J(u) < .

Then either (R) or (R) below holds.

(R) There exists a sequence {uk} such that J ′(uk) = , J(uk) <  and {uk} converges to zero.
(R) There exist two sequences {uk} and {vk} such that J ′(uk) = , J(uk) < , uk �= ,

limk→∞ uk = , J ′(vk) = , J(vk) < , limk→∞ vk = , and {vk} converges to a non-zero
limit.

Remark . From Lemma . we have a sequence {uk} of critical points such that
J(uk) ≤ , uk �=  and limk→∞ uk = .

In order to get infinitely many solutions we need some lemmas. Let ε = 
(∗)λ , from (.)

we have

J(v) :=
a


∫
�

|∇v| dx + b


(∫
�

∣∣f ′(v)
∣∣|∇v| dx

)

–


(∗)

∫
�

∣∣f (v)∣∣(∗) dx

– λ

∫
�

H
(
x, f (v)

)
dx
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≥ a


∫
�

|∇v| dx –
(


(∗)

+ ελ

)∫
�

∣∣f (v)∣∣(∗) dx – λb(ε)|�|

=
a


∫
�

|∇v| dx – 
∗

∫
�

∣∣f (v)∣∣(∗) dx – λb
(


(∗)λ

)
|�|

≥ L‖v‖ – L‖v‖∗
– Lλ,

where L, L, L are some positive constants.
Let Q(t) = Lt – Lt

∗ – Lλ. Then

J(v)≥ Q
(‖v‖).

Furthermore, there exists λ∗ := L
NL

( L
∗L )

(N–)/ such that for λ ∈ (,λ∗), Q(t) attains its
positive maximum, that is, there exists

R =
(

L
∗L

)(N–)/

such that

e =Q(R) = max
t≥

Q(t) > .

Therefore, for e ∈ (, e), we may find R < R such that Q(R) = e. Now we define

χ (t) =

⎧⎪⎨
⎪⎩
,  ≤ t ≤ R,
Lt–λL–e

Lt
∗ , t ≥ R,

C∞, χ (t) ∈ [, ], R ≤ t ≤ R.

Then it is easy to see χ (t) ∈ [, ] and χ (t) is C∞. Let ϕ(v) = χ (‖v‖) and consider the per-
turbation of J(v):

G(v) :=
a


∫
�

|∇v| dx + b


(∫
�

∣∣f ′(v)
∣∣|∇v| dx

)

–


(∗)
ϕ(v)

∫
�

∣∣f (v)∣∣(∗) dx

– λϕ(v)
∫

�

H
(
x, f (v)

)
dx. (.)

Then

G(v)≥ L‖v‖ – Lϕ(v)‖v‖∗
– Lλ =Q

(‖v‖),
where Q(t) = Lt – Lχ (t)t

∗ – Lλ and

Q(t) =

{
Q(t),  ≤ t ≤ R,
e, t ≥ R.

From the above arguments, we have the following.

Lemma . Let G(v) is defined as in (.). Then
(i) G ∈ C(H

(�),R) and G is even and bounded from below.
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(ii) If G(v) < e, then Q(‖v‖) < e, consequently, ‖v‖ < R and I(v) =G(v).
(iii) There exists λ∗ such that, for λ ∈ (,λ∗), G satisfies a local (PS)c condition for

c < e ∈
(
,min

{
e,


N

(
–aS

)N
 – λc

(


Nλ

)
|�|

})
.

Lemma . Assume that (H) of Theorem . holds. Then for any k ∈ N , there exists δ =
δ(k) >  such that γ ({v ∈H

(�) :G(v)≤ –δ(k)} \ {})≥ k.

Proof Firstly, by (H) of Theorem ., for any fixed v ∈D,
 (�), v �= , we have

H(x,ρv)≥ M(ρ)(ρv) withM(ρ) → ∞ as ρ → .

Secondly, given any k ∈N , let Ek be a k-dimensional subspace ofH
(�). Then there exists

a constant σk such that

‖v‖ ≤ σk|v|, ∀v ∈ Ek .

Therefore for any v ∈ Ek with ‖v‖ =  and ρ small enough, by (f) in Lemma . we have

G(ρv) =
aρ



∫
�

|∇v| dx + bρ



(∫
�

∣∣f ′(ρv)
∣∣|∇v| dx

)

–


(∗)
ϕ(ρv)

∫
�

∣∣f (ρv)∣∣(∗) dx – λϕ(ρv)
∫

�

H
(
x, f (ρv)

)
dx

≤ aρ


+
bρ


–

λM(ρ)ϕ(ρv)
σ 
k

ρ

≤
(
a

+
bρ


–

λM(ρ)ϕ(ρv)
σ
p
k

)
ρ

= –δ(k) < ,

since lim|ρ|→M(ρ) = +∞. That is,

{
v ∈ Ek : ‖v‖ = ρ

} ⊂ {
v ∈H

(�) :G(v)≤ –δ(k)
} \ {}.

This completes the proof. �

Now we give the proof of Theorem ..

Proof of Theorem . Recall that

�k =
{
A ∈H

(�) \ {} : A is closed and A = –A,γ (A) ≥ k
}

and define

ck = inf
A∈�k

sup
u∈A

G(v).
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Zhou et al. Boundary Value Problems 2014, 2014:210 Page 13 of 14
http://www.boundaryvalueproblems.com/content/2014/1/210

By Lemmas .(i) and Lemmas ., we know that –∞ < ck < . Therefore, assumptions
(C) and (C) of Lemma . are satisfied. This means that G has a sequence of solutions
{vn} converging to zero. Hence, Theorem . follows by Lemma .(ii). �

Proof of Theorem . This follows from Theorem ., since um = f (vm) �= un = f (vn) if vm �=
vn and f ∈ C∞. �
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