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Abstract
In this paper, we consider the Schrödinger equation –�u + V(x)u = f (x,u), x ∈R

N ,
where V and f are periodic in x1, . . . , xN , asymptotically linear and satisfies a
monotonicity condition. We use the generalized Nehari manifold methods to obtain a
ground state solution and infinitely many geometrically distinct solutions when f is
odd in u.
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1 Introduction
We consider the problem

–�u +V (x)u = f (x,u), u ∈H(
R

N)
, (.)

where f and V are periodic in x, . . . ,xN , asymptotically linear and satisfies a monotonicity
condition. In the case that the nonlinear term is asymptotically linear at infinity, there are
some results in the literature [–] and the references therein, where multiplicity results
are considered in [–, , , ]. As far as we know, there are only a few papers concerned
with the existence of infinitely many solutions for the asymptotical linear case when f and
V are also periodic in x, . . . ,xN ; e.g. see []. Except for [], there seem to be few results
on the existence of a ground state solution in the asymptotically linear case. Motivated
by [], this paper is to present a different approach involving the critical point theory
with the discreteness property of the Palais-Smale in search for a ground state solution
and multiple solutions for the asymptotically linear Schrödinger equations. It should be
pointed out that in [], they cannot make sure the existence of a ground state solution.
Our results can be regarded as complements or different attempts of the results in [, ].
Setting F(x,u) :=

∫ u
 f (x, s)ds, we suppose that V and f satisfy the following assump-

tions:

(V) V is continuous, -periodic in xi,  ≤ i ≤ N , and there exists a constant a >  such
that V (x) ≥ a for all x ∈R

N .
(f) f is continuous, -periodic in xi,  ≤ i≤ N .
(f) f (x,u) = o(u) as u → , uniformly in x.

© 2014 Fang and Han; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://www.boundaryvalueproblems.com/content/2014/1/216
mailto:fangxd0401@gmail.com
mailto:hanzhiq@dlut.edu.cn


Fang and Han Boundary Value Problems 2014, 2014:216 Page 2 of 8
http://www.boundaryvalueproblems.com/content/2014/1/216

(f) There is q(x) > V (x), ∀x ∈ R
N , such that f (x,u)/u→ q(x), as |u| → ∞, where q is con-

tinuous, -periodic in xi,  ≤ i≤ N .
(f) u �→ f (x,u)/|u| is strictly increasing on (–∞, ) and (,∞).

Let ∗ denote the action of ZN on H(RN ) given by

(k ∗ u)(x) := u(x – k), k ∈ Z
N . (.)

It follows from (V) and (f) that if u is a solution of (.), then so is k ∗ u for all k ∈ Z
N .

Set

O(u) :=
{
k ∗ u : k ∈ Z

N}
.

O(u) is called the orbit of u with respect to the action of ZN , and it is called a critical
orbit for a functional F if u is a critical point of F and F isZN -invariant, i.e., F(k∗u) = F(u)
for all k ∈ Z

N and all u (then of course all points of O(u) are critical). Two solutions u,
u of (.) are said to be geometrically distinct if O(u) 
=O(u).

Theorem. Suppose that (V), (f)-(f)are satisfied.Then (.)has a ground state solution.
In addition, if f is odd in u, then (.) admits infinitely many pairs ±u of geometrically
distinct solutions.

Notation C,C,C, . . . will denote different positive constants whose exact value is
inessential. The usual norm in the Lebesgue space Lp(�) is denoted by ‖u‖p,�, and by
‖u‖p if � = R

N . E denotes the Sobolev space H(RN ) and S is the unit sphere in E. It
follows from (V) that

‖u‖ :=
(∫

RN

(|∇u| +V (x)u
))/

is an equivalent norm in E. It is more convenient for our purposes than the standard one
and will be used henceforth. For a functional I , as in [], we put

Id :=
{
u : I(u) ≤ d

}
, Ic :=

{
u : I(u) ≥ c

}
, Idc :=

{
u : c ≤ I(u) ≤ d

}
.

2 Preliminary results
Consider the functional

I(u) :=



∫

RN
|∇u| + 



∫

RN
V (x)u –

∫

RN
F(x,u). (.)

Then I is well defined on E and I ∈ C(E,R) under the hypotheses (V), (f)-(f). Note also
that (V), (f) imply I is invariant with respect to the action of ZN given by (.). It is easy
to see that

〈
I ′(u), v

〉
=

∫

RN
∇u∇v +

∫

RN
V (x)uv –

∫

RN
f (x,u)v (.)

for all u, v ∈ E.
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Let

M :=
{
u ∈ E \ {} : 〈I ′(u),u〉

= 
}
. (.)

Recall that M is called the Nehari manifold. We do not know whether M is of class C

under our assumptions and therefore we cannot use minimax theory directly on M. To
overcome this difficulty, we employ the arguments developed in [, , ].
We assume that (V) and (f)-(f) are satisfied from now on. First, (f) and (f) imply that

for each ε >  there is Cε >  such that

∣∣f (x,u)
∣∣ ≤ ε|u| +Cε|u|p– for all u ∈R, (.)

where  < p < ∗, ∗ := N/(N – ) if N ≥ , ∗ :=∞ if N =  or .
For t > , let

h(t) := I(tu) =
t



∫

RN
|∇u| +V (x)u –

∫

RN
F(x, tu).

Let

E :=
{
u ∈ E :

∫

RN
|∇u| +V (x)u <

∫

RN
q(x)u

}
.

It follows from q(x) –V (x) > , ∀x ∈ R
N , that E 
= ∅.

Lemma . F(x,u) >  and 
 f (x,u)u > F(x,u) if u 
= .

This follows immediately from (f) and (f).

Lemma .
() For each u ∈ E there is a unique tu >  such that h′(t) >  for  < t < tu and h′(t) < 

for t > tu.Moreover, tu ∈M if and only if t = tu.
() If u /∈ E , then tu /∈M for any t > .

Proof () For each u ∈ E , due to the Lebesgue dominated convergence theorem and (f),
(f), we get

lim
t→∞

I(tu)
t

=



∫

RN
|∇u| +V (x)u – lim

t→∞

∫

u
=
F(x, tu)
tu

u

=



[∫

RN
|∇u| +V (x)u –

∫

RN
q(x)u

]
< 

and

lim
t→

I(tu)
t

=



∫

RN
|∇u| +V (x)u – lim

t→

∫

u
=
F(x, tu)
tu

u

=



∫

RN
|∇u| +V (x)u > .
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Hence h has a positive maximum. The condition h′(t) =  is equivalent to

‖u‖ =
∫

u
=
f (x, tu)
tu

u.

By (f), the first conclusionholds. The second conclusion follows fromh′(t) = t–〈I ′(tu), tu〉.
() If tu ∈M for some t > , then 〈I ′(tu),u〉 =  and therefore using (f) and (f)

‖u‖ =
∫

u
=
f (x, tu)
tu

u <
∫

RN
q(x)u.

Hence u ∈ E . �

Lemma .
() There exists ρ >  such that c := infM I ≥ infSρ I > .
() ‖u‖ ≥ c for all u ∈M.

Proof () Using (.) and the Sobolev inequality we have infSρ I >  if ρ is small enough.
The inequality infM I ≥ infSρ I is a consequence of Lemma . since for every u ∈M there
is s >  such that su ∈ Sρ (and I(tuu) ≥ I(su)).
() For u ∈M, by Lemma . we have

c≤ 

‖u‖ –

∫

RN
F(x,u)≤ 


‖u‖. �

We do not know whether I is coercive onM. However, we can prove the following.

Lemma . All Palais-Smale sequences (un) ⊂M are bounded.

Proof Arguing by contradiction, suppose there exists a sequence (un) ⊂ M such that
‖un‖ → ∞ and I(un) ≤ d for some d ∈ [c,∞). Let vn := un/‖un‖. Then vn ⇀ v and
vn(x)→ v(x) a.e. in R

N after passing to a subsequence. Choose yn ∈R
N so that

∫

B(yn)
vn = max

y∈RN

∫

B(y)
vn. (.)

Since I andM are invariant with respect to the action ofZN given by (.), wemay assume
that (yn) is bounded in R

N . If

∫

B(yn)
vn →  as n→ ∞, (.)

then it follows that vn →  in Lr(RN ) for  < r < ∗ by Lions’ lemma (cf. [], Lemma .),
and therefore (.) implies that

∫
RN F(x, svn) →  for every s ∈R. Lemma . implies that

d ≥ I(un) ≥ I(svn) =
s


–

∫

RN
F(x, svn) → s


.

Taking a sufficiently large s, we get a contradiction. Hence (.) cannot hold and, since
vn → v in Lloc(R

N ), v 
= . Hence |un(x)| → ∞ if v(x) 
= .
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Let ϕ ∈ C∞
 (RN ). Then 〈I ′(un),ϕ〉 →  and hence

∫

RN
∇vn∇ϕ +V (x)vnϕ –

∫

RN

f (x,un)
un

vnϕ → .

By the Lebesgue dominated convergence theorem we therefore have

∫

RN
∇v∇ϕ +V (x)vϕ =

∫

RN
q(x)vϕ.

So v 
=  and –�v + V (x)v = q(x)v. This is impossible because –� + V – q has only an
absolutely continuous spectrum. The proof is complete. �

Lemma . If V is a compact subset of E , then there exists R >  such that I ≤  on (R+V)\
BR().

Proof We may assume without loss of generality that V ⊂ S. Arguing by contradiction,
suppose there exist un ∈ V and wn = tnun, where un → u, tn → ∞ and I(wn)≥ . We have

 ≤ I(tnun)
tn

=



∫

RN
|∇un| +V (x)un –

∫

un 
=
F(x, tnun)

tnun
un

→ 


∫

RN
|∇u| +V (x)u –




∫

RN
q(x)u < . �

Let U := E ∩ S and define the mappingm :U →M by setting

m(w) := tww,

where tw is as in Lemma ..

Lemma . U is an open subset of S.

Proof Obvious because E is open in E. �

Lemma . Assume un ∈ U , un → u ∈ ∂U , and tnun ∈M, then I(tnun) → ∞.

Proof Since u ∈ ∂U ,
∫
RN |∇u| +V (x)u =

∫
RN q(x)u. Using this, we have

I(tu) =


t

∫

RN
|∇u| +V (x)u – t

∫

RN

F(x, tu)
tu

u

=


t

∫

RN

(
q(x) –

F(x, tu)
tu

)
u

=


t

∫

RN

(
q(x) –

f (x, tu)
tu

)
u

+
∫

RN



f (x, tu)tu – F(x, tu).

Note that by (f), we have for large enough s, there is δ >  such that



f (x, s)s – F(x, s)≥ δ
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(see [], Remark .). So I(tu) → ∞, as t → ∞ (we have used Fatou’s lemma). Given
C > , choose t >  such that I(tu) ≥ C. Since un → u,

lim
n→∞ I(tnun)≥ lim

n→∞ I(tun) = I(tu) ≥ C

and hence I(tnun) → ∞. �

The following lemmas are taken from [, ].
Below we shall use the notations

K :=
{
w ∈ S :
 ′(w) = 

}
,

Kd :=
{
w ∈ K : 
(w) = d

}
.

Since f is odd in u, we can choose a subsetF ofK such thatF = –F and each orbitO(w) ⊂
K has a unique representative in F . We must show that the set F is infinite. Arguing
indirectly, assume

F is a finite set. (.)

Lemma . The mapping m is a homeomorphism between U and M, and the inverse of
m is given by m–(u) = u

‖u‖ .

We consider the functional 
 :U →R given by


(w) := I
(
m(w)

)
.

Lemma .
() 
 ∈ C(U ,R) and

〈

 ′(w), z

〉
=

∥
∥m(w)

∥
∥〈
I ′
(
m(w)

)
, z

〉
for all z ∈ Tw(U).

() If (wn) is a Palais-Smale sequence for 
 , then (m(wn)) is a Palais-Smale sequence
for I . If (un) ⊂M is a bounded Palais-Smale sequence for I , then (m–(un)) is a
Palais-Smale sequence for 
 .

() w is a critical point of 
 if and only if m(w) is a nontrivial critical point of I .
Moreover, the corresponding values of 
 and I coincide and infU 
 = infM I .

() 
 is even (because I is).

By (.), the following lemma also holds.

Lemma . Let d ≥ c. If (vn), (vn) ⊂ 
d are two Palais-Smale sequences for
 , then either
‖vn – vn‖ →  as n→ ∞ or lim supn→∞ ‖vn – vn‖ ≥ ρ(d) > , where ρ(d) depends on d but
not on the particular choice of Palais-Smale sequences.

It is well known that 
 admits a pseudo-gradient vector field H :U \ K → TU (see e.g.
[], p.). Moreover, since 
 is even, we may assume H is odd. Let η : G →U \K be the

http://www.boundaryvalueproblems.com/content/2014/1/216
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flow defined by

⎧
⎨

⎩

d
dtη(t,w) = –H(η(t,w)),

η(,w) = w,
(.)

where

G :=
{
(t,w) : w ∈U \K ,T–(w) < t < T+(w)

}

and (T–(w),T+(w)) is the maximal existence time for the trajectory t �→ η(t,w). Note that
η is odd in w because H is and t �→ 
(η(t,w)) is strictly decreasing by the properties of a
pseudogradient.
Let P ⊂U , δ >  and define Uδ(P) := {w ∈U : dist(w,P) < δ}.

Lemma . Let d ≥ c. Then for every δ >  there exists ε = ε(δ) >  such that
(a) 
d+ε

d–ε ∩K = Kd and
(b) limt→T+(w) 
(η(t,w)) < d – ε for w ∈ 
d+ε \Uδ(Kd).

Part (a) is an immediate consequence of (.) and (b) has been proved in []; see Lem-
mas . and . there. The argument is exactly the same except that S should be replaced
byU . We point out that an important role in the proof of Lemma . is played by the dis-
creteness property of the Palais-Smale sequences expressed in Lemma ..

3 Proof of Theorem 1.1
Proof of Theorem . Taking a similar argument as in the proof of Theorem . in [], it
is easy to get a ground state solution. Noting that by Lemma . and Ekeland’s variational
principle, it can make sure the existence of a (PS)c sequence belonging to U .
For themultiplicity the argument is the same as in Theorem . (cf. []). However, there

are details which need to be clarified.
Let η be the flow given by (.). If T+(w) < ∞, then limt→T+(w) η(t,w) exists (cf. [],

Lemma ., Case ) but unlike the situation in [], this limit may be a point w ∈ ∂U .
This possibility is ruled out by Lemma ..
Finally, we need to show that U contains sets of arbitrarily large genus. Since the spec-

trum of –� + V – q in L(RN ) is absolutely continuous, E ∪ {} contains an infinite-
dimensional subspace E. Hence E ∩ S ⊂U and γ (E ∩ S) = ∞. �

Remark . There is a small gap in the proof of Theorem . in []. Lemma . as stated
there does not exclude the possibility of η(t,w) approaching the boundary as t → T+(w)
(because we only know that η(t,w) goes to infinity). But it is easy to prove that I(η(t,w))
goes to infinity as well in []. In Lemma . of this paper we make some proper modifi-
cations which also apply to [] and were proposed by Andrzej Szulkin.
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