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Abstract

Introduction: Neumann boundary value problems have been studied by many
authors. We are mainly interested in the semi-positone case. This paper deals with the
existence and multiplicity of positive solutions of a superlinear semi-positone singular
Neumann boundary value problem.

Preliminaries: The proof of our main results relies on a nonlinear alternative of
Leray-Schauder type, the method of upper and lower solutions and on a well-known
fixed point theorem in cones.

Main results:We obtained the existence of at least two different positive solutions.
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problem

1 Introduction
We will be concerned with the existence and multiplicity of positive solutions of the su-
perlinear singular Neumann boundary value problem in the semi-positone case

{
–(p(x)u′)′ + q(x)u = g(x,u), x ∈ I = [, ],
u′() = , u′() = .

(.)

Here the type of perturbations g(x,u) may be singular near u =  and g(x,u) is superlinear
near u = +∞. From the physical point of view, g(x,u) has an attractive singularity near
u =  if

lim
u→o+

g(x,u) = +∞ uniformly in x

and the superlinearity of g(x,u) means that

lim
u→+∞ g(x,u)/u = +∞ uniformly in x.

By the semi-positone case of (.), we mean that g(x,u) may change sign and satisfies
F(x,u) = g(x,u) +M ≥  whereM >  is a constant.
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It is well known that the existence of positive solutions of boundary value problems has
been studied bymany authors in [–] and references therein. Theymainly considered the
case of p(x) ≡  and q(x) ≡ . In [], the authors studied positive solutions of Neumann
boundary problems of second order impulsive differential equations in the positone case,
based on a nonlinear alternative principle of Leray-Schauder type and a well-known fixed
point theorem in cones. This paper attempts to study the existence and multiplicity of
positive solutions of second order superlinear singular Neumann boundary value prob-
lems in the semi-positone case. The techniques we employ here involve a nonlinear result
of Leray-Schauder, the well-known fixed point theorem in cones and the method of up-
per and lower solutions. We prove that problem (.) has at least two different positive
solutions. Moreover, we do not take the restrictions p(x) ≡  or q(x) ≡ .
Throughout this paper, we assume that the perturbed part g(x,u) satisfies the following

hypotheses:

(H) g(x,u) ∈ C(I × R+,R+), p(x) ∈ C(I), q(x) ∈ C(I), p(x) > , q(x) > .
(H) There exists a constant M >  such that F(x,u) = g(x,u) + M ≥  for all x ∈ I and

u ∈ (,∞).

In Section , we perform a study of the sign of the Green’s function of the corresponding
linear problems

{
–(p(x)u′)′ + q(x)u = h(x), x ∈ I,
u′() = , u′() = .

(.)

In detail, we construct the Green’s function G(x, y) and give a sufficient condition to
ensure G(x, y) is positive. This fact is crucial for our arguments. We denote

A = min
(x,y)∈I×I

G(x, y), B = max
(x,y)∈I×I

G(x, y), σ = A/B. (.)

We also use ω(x) to denote the unique solution of (.) with h(x) = , ω(x) =
∫ 
 G(x, y)dy.

In Section , we state and prove the main results of this paper.

2 Preliminaries
For the reader’s convenience we introduce some results of Green’s functions. LetQ = I× I ,
Q = {(x, y) ∈Q| ≤ x≤ y ≤ }, Q = {(x, y) ∈ Q|≤ y ≤ x≤ }.
Considering the homogeneous boundary value problem

{
–(p(x)u′)′ + q(x)u = , x ∈ I,
u′() = , u′() = ,

(.)

and let G(x, y) be the Green’s function of problem (.). Then G(x, y) can be written as

G(x, y) =

{
m(x)n(y)

ω
, (x, y) ∈Q,

m(y)n(x)
ω

, (x, y) ∈Q,
(.)

wherem and n are linearly independent, andm, n and ω satisfy the following lemma.
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Lemma. [] Suppose that (H) holds and problem (.) has only zero solution, then there
exist two functions m(x) and n(x) satisfying:

(i) m(x) ∈ C(I,R) is increasing and m(x) > , x ∈ I ;
(ii) n(x) ∈ C(I,R) is decreasing and n(x) > , x ∈ I ;
(iii) Lm ≡ –(p(x)m′)′ + q(x)m = ,m() = ,m′() = ;
(iv) Ln≡ –(p(x)n′)′ + q(x)n = , n() = , n′() = ;
(v) ω ≡ p(x)(m′(x)n(x) –m(x)n′(x)) is a positive constant.

Lemma . [] The Green’s function G(x, y) defined by (.) has the following properties:
(i) G(x, y) is continuous in Q;
(ii) G(x, y) is symmetrical on Q;
(iii) G(x, y) has continuous partial derivatives on Q, Q;
(iv) For each fixed y ∈ I , G(x, y) satisfies LG(x, y) =  for x 	= y, x ∈ I .Moreover,

G′
x(, y) =G′

x(, y) =  for y ∈ (, ).
(v) For x = y, G′

x has discontinuity point of the first kind, and

G′
x(y + , y) –G′

x(y – , y) = –


p(y)
, y ∈ (, ).

Lemma . [] Suppose that conditions in Lemma . hold and h : I → R is continuous.
Then the problem

{
–(p(x)u′)′ + q(x)u = h(x), x ∈ I,
u′() = , u′() = ,

(.)

has a unique solution, which can be written as

u(x) =
∫ 


G(x, y)h(y)dy. (.)

Next we state the theorem of fixed points in cones, which will be used in Section .

Theorem . [] Let X be a Banach space and K (⊂ X) be a cone. Assume that �, � are
open subsets of X with  ∈ �, �̄ ⊂ �, and let

T : K ∩ (�̄\�) → K

be a continuous and compact operator such that either
(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (�̄\�).

In applications below, we take X = C(I) with the supremum norm ‖ · ‖ and define

K =
{
u ∈ X : u(x)≥  and min

x∈I u(x)≥ σ‖u‖
}
. (.)
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One may readily verify that K is a cone in X. Now suppose that F : I × R → [,∞) is
continuous and define an operator T : X → X by

(Tu)(x) =
∫ 


G(x, y)F

(
y,u(y)

)
dy (.)

for u ∈ X and x ∈ [, ].

Lemma . T is well defined and maps X into K . Moreover, T is continuous and com-
pletely continuous.

3 Main results
In this section we establish the existence and multiplicity of positive solutions to (.).
Since we are mainly interested in the attractive-superlinear nonlinearities g(x,u) in the
semi-positone case, we assume that the hypotheses of the following theorem are satisfied.

Theorem . Suppose that (H) and (H) hold. Furthermore, assume the following:

(H) There exist continuous, non-negative functions f (u) and g(u) such that

F(x,u) = g(x,u) +M ≤ f (u) + h(u) for all (x,u) ∈ I × (,∞),

and f (u) >  is non-increasing and h(u)/f (u) is non-decreasing in u ∈ (,∞).
(H) There exists r > M‖ω‖

σ
such that r

f (σ r–M‖ω‖){+ h(r)
f (r) }

> ‖ω‖.
(H) There exists a constant A >M, ε >  such that

F(x,u)≥ A, f (u) > A for all (x,u) ∈ I × (, ε].

Then problem (.) has at least one positive solution v ∈ C(I) with  < ‖v +Mω‖ < r.

Before we present the proof of Theorem ., we state and prove some facts.
First, it is easy to see that we can take c >  and n >  such that

c‖ω‖ < min

{
ε,
A –M
‖q‖

}
, (.)


n

< min

{
ε,

ε

M
, cσ‖ω‖,σ r –M‖ω‖

}
. (.)

Lemma . Suppose that (H)-(H) hold, then α(x) = (M + c)ω(x) is a strict lower solution
to the problem

{
–(p(x)u′)′ + q(x)u = Fn(x,u –Mω(x)), x ∈ I,n > n,
u′() = , u′() = ,

(.)

where Fn(x,u) = F(x,max{u, n }), (x,u) ∈ I × R.

Proof It is easy to see that α′() = (M + c)ω′() =  and α′() = (M + c)ω′() = .
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Since α(x) – Mω(x) = cω(x) ≥ cσ‖ω‖ > 
n

≥ 
n , and using (.), we have ε > α(x) –

Mω(x) = cω(x) ≥ 
n > .

By assumption (H), we have

Fn
(
x,α(x) –Mω(x)

)
> A, ∀n > n.

This implies that α(x) is a strict lower solution to (.). �

Lemma . Suppose that (H)-(H) hold. Then the problem

{
–(p(x)u′)′ + q(x)u = fn(u –Mω(x))( + h(r)

f (r) ), x ∈ I,
u′() = , u′() = ,

(.)

has at least one positive solution βn(x) with ‖βn‖ < r.

Proof The existence is proved using the Leray-Schauder alternative principle together
with a truncation technique.
Since (H) holds, we have

‖ω‖f (σ r –M‖ω‖)( + h(r)/f (r)
)
< r.

Consider the family of problems

{
–(p(x)u′)′ + q(x)u = λfn(u –Mω(x))( + h(r)

f (r) ), x ∈ I,
u′() = , u′() = ,

(.)

where λ ∈ I and fn(u) = f (max{u, /n}), (x,u) ∈ I × R. fn(u) is non-increasing.
Problem (.) is equivalent to the following fixed point problem in C[, ]

β = λTnβ , (.)

where Tn is defined by

Tn
(
β(x)

)
=

∫ 


G(x, y)fn

(
β(y) –Mω(y)

)(
 + h(r)/f (r)

)
dy. (.)

We claim that any fixed point β of (.) for any λ ∈ [, ] must satisfy ‖β‖ 	= r. Other-
wise, assume that β is a solution of (.) for some λ ∈ [, ] such that ‖β‖ = r. Note that
fn(x,u)≥ . By Lemma ., for all x, β(x) –Mω(x)≥ σ r –M‖ω‖ ≥ /n. Hence, for all x,

β(x) –Mω(x) ≥ /n and β(x) –Mω(x) ≥ σ r –M‖ω‖. (.)

Then we have, for all x,

β(x) = λ

∫ 


G(x, y)fn

(
β(y) –Mω(y)

)(
 +

h(r)
f (r)

)
dy

≤
∫ 


G(x, y)f

(
β(y) –Mω(y)

)(
 +

h(r)
f (r)

)
dy

http://www.boundaryvalueproblems.com/content/2014/1/217
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≤
∫ 


G(x, y)f

(
σ r –M‖ω‖)( + h(r)/f (r)

)
dy

≤ ‖ω‖f (σ r –M‖ω‖)( + h(r)/f (r)
)
. (.)

Therefore,

r = ‖β‖ ≤ ‖ω‖f (σ r –M‖ω‖)( + h(r)/f (r)
)
< r.

This is a contradiction and the claim is proved. �

From this claim, the nonlinear alternative of Leray-Schauder guarantees that problem
(.) (with λ = ) has a fixed point, denoted by βn, in Br , i.e., problem (.) has a positive
solution βn with ‖βn‖ < r. (In fact, it is easy to see that βn(x)≥ /n with ‖βn‖ 	= r.)

Lemma . Suppose that (H)-(H) hold, then βn(x) is an upper solution of problem (.).

Proof By Lemma . we know that βn(x) is a solution to equation (.).
If βn(x) –Mω(x) ≥ 

n , then

Fn
(
x,βn(x) –Mω(x)

)
= F

(
x,βn(x) –Mω(x)

)
≤ f

(
βn(x) –Mω(x)

)(
 +

h(βn(x) –Mω(x))
f (βn(x) –Mω(x))

)

≤ fn
(
βn(x) –Mω(x)

)(
 +

h(r)
f (r)

)
. (.)

If βn(x) –Mω(x) ≤ 
n , then

Fn
(
x,βn(x) –Mω(x)

)
= F

(
x,


n

)
≤ f

(

n

)(
 +

h( n )
f ( n )

)

≤ fn
(
βn(x) –Mω(x)

)(
 +

h(r)
f (r)

)
. (.)

Since β ′
n() = β ′

n() = , we have

{
–(p(x)β ′

n(x))′ + q(x)βn(x)≥ Fn(x,βn(x) –Mω(x)), x ∈ I,
β ′
n() = , β ′

n() = .

This implies that βn(x) is an upper solution of problem (.). �

Lemma . Suppose that (H)-(H) hold, then βn(x)≥ α(x) (n > n).

Proof Let z(x) = α(x)–βn(x), wewill prove z(x)≤ . If this is not true for n > n, there exists
x ∈ [, ] such that z(x) = max z(x) > , z′(x) = , z′′(x) ≤ . Then (p(x)z′(x))′ ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/217
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Since α(x) –Mω(x) = cω(x) ≥ cσ‖ω‖ > 
n

≥ 
n , α(x) –Mω(x) ≤ c‖ω‖ < ε, and fn(u)

is non-increasing, we have

fn
(
β(x) –Mω(x)

) ≥ fn
(
α(x) –Mω(x)

)
= f

(
α(x) –Mω(x)

)
> A (.)

and

–
(
p(x)z′(x)

)′ + q(x)z(x) = M + c – fn
(
βn(x) –Mω(x)

)(
 +

h(r)
f (r)

)

≤ M + c – fn
(
α(x) –Mω(x)

)(
 +

h(r)
f (r)

)

≤ M + c –A
(
 +

h(r)
f (r)

)
< . (.)

This is a contradiction and completes the proof of Lemma .. �

Proof of Theorem . To show (.) has a positive solution, we will show

{
–(p(x)u′)′ + q(x)u = F(x,u(x) –Mω(x)), x ∈ I,
u′() = u′() = 

(.)

has a solution u ∈ C(I), u(x) >Mω(x), x ∈ I .
If this is true, then v(x) = u(x) –Mω(x) is a positive solution of (.) since

–
(
p(x)v′)′ + q(x)v = –

(
p(x)u′(x) – p(x)Mω′(x)

)′ + q(x)u(x) –Mq(x)ω(x)

= –
(
p(x)u′(x)

)′ + q(x)u(x) –M

= F
(
x,u(x) –Mω(x)

)
–M

= g
(
x,u(x) –Mω(x)

)
= g

(
x, v(x)

)
.

As a result, we will only concentrate our study on (.).
By Lemmas .-. and the upper and lower solutions method, we know that (.) has

a solution un with (M + c)ω(x) = α(x) ≤ un(x) ≤ βn(x) < r. Thus we have un(x) –Mω(x) ≥
cσ‖ω‖, un(x) ≤ βn(x) < r.
By the fact that un is a bounded and equi-continuous family on [, ], the Arzela-Ascoli

theorem guarantees that {un}n∈N has a subsequence {unk }k∈N , which converges uniformly
on [, ] to a function u ∈ C[, ]. Then u satisfies u(x) –Mω(x) ≥ cσ‖ω‖, u(x) < r for all x.
Moreover, unk satisfies the integral equation

unk (x) =
∫ 


G(x, y)F

(
y,unk (y) –Mω(y)

)
dy.

http://www.boundaryvalueproblems.com/content/2014/1/217
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Letting k → ∞, we arrive at

u(x) =
∫ 


G(x, y)F

(
y,u(y) –Mω(y)

)
dy,

where the uniform continuity of F(x,u(x)–Mω(x)) on [, ]×[cσ‖ω‖, r] is used. Therefore,
u is a positive solution of (.).
Finally, it is not difficult to show that ‖u‖ < r. Assume otherwise: note that F(x,u) ≥ .

By Lemma ., for all x, u(x) ≥ /n and r ≥ u(x) –Mω(x) ≥ σ r –M‖ω‖ ≥ /n. Hence, for
all x,

u(x) –Mω(x)≥ /n and r ≥ u(x) –Mω(x) ≥ σ r –M‖ω‖. (.)

Then we have for all x,

u(x) =
∫ 


G(x, y)F

(
y,u(y) –Mω(y)

)
dy

≤
∫ 


G(x, y)f

(
u(y) –Mω(y)

)(
 +

h(u(y) –Mω(y))
f (u(y) –Mω(y))

)
dy

≤
∫ 


G(x, y)f

(
σ r –M‖ω‖)( + h(r)/f (r)

)
dy

≤ ‖ω‖f (σ r –M‖ω‖)( + h(r)/f (r)
)
. (.)

Therefore,

r = ‖u‖ ≤ ‖ω‖f (σ r –M‖ω‖)( + h(r)/f (r)
)
.

This is a contradiction and completes the proof of Theorem .. �

Corollary . Let us consider the following boundary value problem

{
–(p(x)u′)′ + q(x)u = μ(u–α + uβ + k(x)), x ∈ I,
u′() = u′() = ,

(.)

where α > , β >  and k : [, ] → R is continuous, μ >  is chosen such that

μ < sup
u∈(M‖ω‖

σ ,∞)

u(σu –M‖ω‖)α
‖ω‖{ + Huα + uα+β} , (.)

here H = ‖k‖. Then problem (.) has a positive solution u ∈ C[, ].

Proof We will apply Theorem . withM = μH and

f (u) = f(u) = μu–α , h(u) = μ
(
uβ + H

)
, h(u) = μuβ .

Clearly, (H)-(H) and (H) are satisfied.

http://www.boundaryvalueproblems.com/content/2014/1/217
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Set

T(u) =
u(σu –M‖ω‖)α

‖ω‖{ + Huα + uα+β} , u ∈
(
M‖ω‖

σ
, +∞

)
.

Since T(M‖ω‖
σ

) = , T(∞) = , then there exists r ∈ (M‖ω‖
σ

,∞) such that

T(r) = sup
u∈(M‖ω‖

σ ,∞)

u(σu –M‖ω‖)α
‖ω‖{ + Huα + uα+β} .

This implies that there exists r ∈ (M‖ω‖
σ

,∞) such that μ < r(σ r–M‖ω‖)α
‖ω‖{+rα+β+Hrα} , so (H) is sat-

isfied.
Since β > . Thus all the conditions of Theorem . are satisfied, so the existence is guar-

anteed. �

Next we will find another positive solution to problem (.) by using Theorem ..

Theorem . Suppose that conditions (H)-(H) hold. In addition, it is assumed that the
following two conditions are satisfied:

(H) F(x,u) = g(x,u) +M ≥ f(u) + h(u) for some continuous non-negative functions f(u)
and h(u) with the properties that f(u) >  is non-increasing and h(u)/f(u) is non-
decreasing.

(H) There exists R > r such that R
σ f(R){+ h(σR–M‖ω‖)

f(σR–M‖ω‖) } < ‖ω‖.

Then, besides the solution u constructed in Theorem ., problem (.) has another posi-
tive solution ṽ ∈ C[, ] with r < ‖ṽ +Mω‖ ≤ R.

Proof To show (.) has a positive solution, we will show (.) has a solution ũ ∈ C[, ]
with ũ(x) >Mω(x) for x ∈ [, ] and r ≤ ‖ũ‖ ≤ R.
Let X = C[, ] and K be a cone in X defined by (.). Let

�r =
{
ũ ∈U : ‖ũ‖ < r

}
, �R =

{
ũ ∈ X : ‖ũ‖ < R

}

and define the operator T : K ∩ (�̄R \ �r) → K by

(Tũ)(x) =
∫ 


G(x, y)F

(
y, ũ(y) –Mω(y)

)
dy,  ≤ x≤ , (.)

where G(x, y) is as in (.).
For each ũ ∈ K ∩ (�̄R \ �r)r ≤ ‖ũ‖ ≤ R, we have  < σ r –M‖ω‖ ≤ ũ(x) –Mω(x) ≤ R.

Since F : [, ] × [σ r –M‖ω‖,R] → [,∞) is continuous, it follows from Lemma . that
the operator T : K ∩ (�̄R \ �r) → K is well defined, is continuous and completely contin-
uous.
First we show

‖Tũ‖ < ‖ũ‖ for ũ ∈ K ∩ ∂�r . (.)

http://www.boundaryvalueproblems.com/content/2014/1/217
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In fact, if ũ ∈ K ∩ ∂�r , then ‖ũ‖ = r and ũ(x) ≥ σ r >M‖ω‖ for x ∈ I . So we have

(Tũ)(x) =
∫ 


G(x, y)F

(
y, ũ(y) –Mω(y)

)
dy

≤
∫ 


G(x, y)f

(
ũ(y) –Mω(y)

){
 +

h(ũ(y) –Mω(y))
f (ũ(y) –Mω(y))

}
dy

≤
∫ 


G(x, y)f

(
σ r –M‖ω‖){ + h(r)

f (r)

}
dy

= ω(x)f
(
σ r –M‖ω‖){ + h(r)

f (r)

}

≤ ‖ω‖f (σ r –M‖ω‖){ + h(r)
f (r)

}

< r = ‖ũ‖.

This implies ‖Tũ‖ < ‖ũ‖, i.e., (.) holds.
Next we show

‖Tũ‖ > ‖ũ‖ for ũ ∈ K ∩ ∂�R. (.)

To see this, let ũ ∈ K ∩ ∂�R, then ‖ũ‖ = R and ũ(x) ≥ σR >M‖ω‖ for x ∈ I . As a result,
it follows from (H) and (H) that, for x ∈ I ,

(Tũ)(x) =
∫ 


G(x, y)F

(
y, ũ(y) –Mω(y)

)
dy

≥
∫ 


G(x, y)f

(
ũ(y) –Mω(y)

){
 +

h(ũ(y) –Mω(y))
f(ũ(y) –Mω(y))

}
dy

≥
∫ 


G(x, y)f(R)

{
 +

h(σR –M‖ω‖)
f(σR –M‖ω‖)

}
dy

= ω(x)f(R)
{
 +

h(σR –M‖ω‖)
f(σR –M‖ω‖)

}

≥ σ‖ω‖f(R)
{
 +

h(σR –M‖ω‖)
f(σR –M‖ω‖)

}

> R = ‖ũ‖.

Now (.), (.) and Theorem . guarantee that T has a fixed point ũ ∈ K ∩ (�̄R \�r)
with r ≤ ‖ũ‖ ≤ R. Clearly, this ũ is a positive solution of (.). This completes the proof
of Theorem .. �

Let us consider again example (.) in Corollary . for the superlinear case, i.e., α > ,
β >  and k : [, ]→ R is continuous, μ >  is chosen such that (.) holds, hereH = ‖k‖.
Then problem (.) has a positive solution ũ ∈ C[, ]. Clearly, (H)-(H) are satisfied.
Since β > , then (H) is satisfied for R large enough because when R → ∞,

R
σ f(R){ + h(σR–M‖ω‖)

f(σR–M‖ω‖) }
=

Rα+

σμ( + (σR –M‖ω‖)α+β )
→ .
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Thus all the conditions of Theorem . are satisfied, so the existence is guaranteed.

Corollary . Assume that α > , β >  and k : I → R is continuous, μ >  is chosen such
that (.) holds. Take H = ‖k‖. Then problem (.) has at least two different positive
solutions.
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