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Abstract
In this paper, we consider a p-Laplacian heat equation with inhomogeneous
Neumann boundary condition. We establish respectively the conditions on the
nonlinearities to guarantee that the solution u(x, t) exists globally or blows up at some
finite time. If blow-up occurs, we obtain upper and lower bounds of the blow-up time
by differential inequalities.
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1 Introduction
In this paper, we deal with the initial-boundary value problem

⎧
⎪⎨

⎪⎩

ut = div(|∇u|p–∇u) – f (u), x ∈ �, t ∈ (, t∗),
|∇u|p– ∂u

∂n = g(u), (x, t) ∈ ∂� × (, t∗),
u(x, ) = u(x)≥ , x ∈ �,

(.)

where p ≥  is a real number, div denotes the scalar divergence operator, � is a bounded
star-sharped region ofRN (N ≥ )with smooth boundary ∂�,n is the unit outward normal
on ∂�, ∂u

∂n is the outward normal derivative of u on ∂� and t∗ is the blow-up time if blow-
up occurs, or else t∗ = +∞.
The blow-up phenomena of solutions to various nonlinear problems, particularly for

hyperbolic and parabolic systems, have received considerable attention in the recent liter-
ature. For work in this area, the reader can refer to [–]. Other contributions in the field
can be found in [–] and the references cited therein. A variety of methods have been
used to determine the blow-up of solutions and to indicate an upper bound for the blow-
up time. To our knowledge, the first work on lower bound for t∗ was shown by Weissler
[, ], but during the past several years a number of papers deriving lower bound for t∗ in
various problems have appeared (see []).
The homogeneous Dirichlet problems of nonlinear parabolic equations were considered

in [–].
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The blow-up and global existence phenomena for nonlinear parabolic equations with
Neumann boundary conditions have received considerable attention in [–]. Payne and
Schaefer [] considered

ut = �u in � × (
, t∗

)
. (.)

Under suitable conditions on the nonlinearities, they determined a lower bound on the
blow-up time when blow-up occurs. In addition, a sufficient condition which implies that
blow-up does occur was determined. Ding and Guo [] studied the global solution and
blow-up solution of the equation

(
h(u)

)

t = ∇ · (a(u, t)b(x)∇u
)
+ g(t)f (u) in D× (,T), (.)

where D ⊂ RN is a bounded domain with smooth boundary ∂D. Under appropriate as-
sumptions on the functions a, b, f , g and h, by constructing auxiliary functions and us-
ing maximum principles, the sufficient conditions for the existence of global solution or
blow-up solution, an upper estimate of the global solution, an upper bound of the blow-up
time and an upper estimate of the blow-up rate were specified. Mizoguchi [] studied the
semilinear heat equation

ut = �u + up in � × (,T) (.)

and showed that if u blows up at t = T , then |u(t)|∞ ≤ C(T – t)–


p– for some C > . Ishige
and Yagisita [] considered the blow-up problem for the semilinear heat equation

ut =D�u + up in � × (,TD), (.)

where� is a bounded smooth domain in RN , TD > ,D > , p > , and studied the blow-up
time, the location of the blow-up set, and the blow-up profile of the blow-up solution for
sufficiently large D. In particular, they proved that for almost all initial data, if D is suffi-
ciently large, then the solution blows up only near the maximum points of the orthogonal
projection of the initial data from L(�) onto the second Neumann eigenspace.
In recent paper, Payne et al. [] considered

ut = �u – f (u), x ∈ �, t ∈ (
, t∗

)
(.)

and established conditions on nonlinearities sufficient to guarantee that u(x, t) exists for
all time t >  or blows up at some finite time t∗. Moreover, an upper bound for t∗ was
derived. Under somewhat more restrictive conditions, a lower bound for t∗ was derived.
Moreover, in [], Payne et al. investigated

ut = ∇ · (|∇u|p∇u
)
, x ∈ �, t ∈ (

, t∗
)

(.)

and showed that blow-up occurs at some finite time under certain conditions on the non-
linearities and the data, upper and lower bounds for the blow-up timewere obtainedwhen
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blow-up occurs. Li and Li [] investigated

⎧
⎪⎨

⎪⎩

ut =
∑N

i,j=(aij(x)uxi )xj – f (u), x ∈ �, t ∈ (, t∗),
∑N

i,j= aij(x)uxinj = g(u), (x, t) ∈ ∂� × (, t∗),
u(x, ) = u(x) ≥ , x ∈ �

(.)

and established respectively the conditions onnonlinearities to guarantee thatu(x, t) exists
globally or blows up at some finite time. If blow-up occurs, we obtain upper and lower
bounds of the blow-up time.
Li [] considered the p-Laplacian heat-conduction model

ut = div
(|∇u|p–∇u

)
(.)

and showed the backward uniqueness in time for solutions to Neumann and Dirichlet
problems by energy methods and gave reasonable physical interpretation for the obtained
conclusions.
Motivated by the above work, we intend to study the global existence and the blow-up

phenomena for problem (.). It is well known that the data f and g may greatly affect
the behavior of u(x, t) with the development of time. From the physical standpoint, –f
is the heat source function, |∇u|p– is the variational heat-conduction coefficient, g(u) is
the heat-conduction function transmitting into interior of � from the boundary of �. We
can deduce that if f <  and g > , the blow-up phenomena of solution of (.) occur early
under some conditions. Under the conditions that f and g are nonnegative functions, we
can deduce that the solution of (.) is nonnegative and smooth. In this paper, by using
differential inequalities, we establish the conditions on the nonlinearities to guarantee that
u(x, t) exists globally or blows up at some finite time, respectively. If blow-up occurs, we
obtain the upper and lower bounds of the blow-up time. The main innovational and novel
points of this paper are: (a) the model is representative, for example, the model is the
equation in [, , –] if p =  with suitable f ; (b) the problem considered in this paper
is a nonlinear equationwith inhomogeneousNeumann boundary dissipation, this problem
is significant; (c) we give the reason and process of the definition of auxiliary functional;
(d)since the model is general, the estimates are concise and precise.
The present work is organized as follows. In Section , we establish the conditions on the

nonlinearities to guarantee that u(x, t) exists globally. In Section , we show the conditions
on the nonlinearities which ensure that the solution blows up at some finite time and
obtain the upper bound for the blow-up time. Section  is devoted to showing the lower
bound of the blow-up time under some assumptions.

2 The global solution
In this section, we establish the conditions on the nonlinearities to guarantee that u(x, t)
exists globally. We state our result as follows.

Theorem . Let u be a classical solution of (.), assume that the nonnegative functions
f and g satisfy the following conditions:

f (s)≥ ksα , (.)
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g(s) ≤ ksβ , (.)

where k > , k ≥ , s ≥ , α > β >  and

β < α + . (.)

Then u(x, t) does not blow up, that is, u(x, t) exists for all time t > .

In order to prove this theorem, we give the following lemma.

Lemma . Let � be a bounded star-sharped region in RN , N ≥ . Then, for any nonneg-
ative C function w and r > , we have

∫

∂�

wrdS ≤ N
ρ

∫

�

wr dx +
rd
ρ

∫

�

wr–|∇w|dx,

where

ρ := min
x∈∂�

(x · n), d := max
x∈∂�

|x|.

Proof The proof see [, ]. �

Proof of Theorem . Set

�(t) :=
∫

�

u dx. (.)

Differentiating (.) and using (.), we obtain

�′(t) = 
∫

�

uut dx

= 
∫

�

u
[
div

(|∇u|p–∇u
)
– f (u)

]
dx

≤ 
∫

�

u
[
div

(|∇u|p–∇u
)]
dx – k

∫

�

uα+ dx. (.)

By the divergence theorem and (.), we obtain

∫

�

u
[
div

(|∇u|p–∇u
)]
dx =

∫

∂�

u|∇u|p– ∂u
∂n

dS –
∫

�

|∇u|p dx

≤ k
∫

∂�

uβ+ dS –
∫

�

|∇u|p dx. (.)

Applying Lemma ., we have

∫

∂�

uβ+ dS ≤ N
ρ

∫

�

uβ+ dx +
(β + )d

ρ

∫

�

uβ |∇u|dx. (.)
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From (.)-(.), we get

�′(t) ≤ Nk
ρ

∫

�

uβ+ dx +
(β + )kd

ρ

∫

�

uβ |∇u|dx

– 
∫

�

|∇u|p dx – k
∫

�

uα+ dx. (.)

Clearly, for all ρ > ,

∫

�

uβ |∇u|dx ≤ ρ



∫

�

uβ dx +

ρ

∫

�

|∇u| dx. (.)

Applying Hölder’s inequality and Young’s inequality, we get

∫

�

|∇u| dx ≤
(∫

�

|∇u|p dx
) 

p
|�| p–p ≤ 

p

∫

�

|∇u|p dx + p – 
p

|�|, (.)

where |�| denotes the measure of �. Combining (.), (.) with (.), we have

�′(t)≤ Nk
ρ

∫

�

uβ+ dx +
ρ(β + )kd

ρ

∫

�

uβ dx +
[
k(β + )d

ρρp
– 

]∫

�

|∇u|p dx

+
k(β + )(p – )

ρρp
|�| – k

∫

�

uα+ dx. (.)

Choose ρ = k(β+)d
ρp

. Equation (.) implies

�′(t)≤ Nk
ρ

∫

�

uβ+ dx + pρ
∫

�

uβ dx + (p – )|�| – k
∫

�

uα+ dx. (.)

Using Hölder’s inequality and Young’s inequality, we get

∫

�

uβ dx =
∫

�

u
(β–)(α+)

α–β
+ (α+–β)(β+)

α–β dx

≤
(∫

�

uβ+ dx
)γ (∫

�

uα+ dx
)–γ

=
(

ε

∫

�

uα+ dx
)–γ (

ε
γ–
γ

∫

�

uβ+ dx
)γ

≤ ( – γ )ε
∫

�

uα+ dx + γ ε
γ–
γ

∫

�

uβ+ dx, (.)

where γ = α+–β
α–β

. We note that γ ∈ (, ) in view of (.) and α > β > .
Inserting (.) into (.), we obtain

�′(t)≤ M

∫

�

uβ+ dx –M

∫

�

uα+ dx + (p – )|�|, (.)

withM = Nk
ρ

+ pργ ε
γ–
γ > ,M = k – pρ( – γ )ε >  for ε >  small enough.
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Application of Hölder’s inequality leads to

∫

�

uβ+ dx ≤
(∫

�

uα+ dx
) β+

α+ |�| α–β
α+ . (.)

Combining (.) with (.), we obtain

�′(t)≤ M

(∫

�

uα+ dx
) β+

α+
{

|�| α–β
α+ –M

(∫

�

uα+ dx
) α–β

α+
}

+ (p – )|�|. (.)

Using Hölder’s inequality, we have

�(t) =
∫

�

u dx ≤
(∫

�

uα+ dx
) 

α+ |�| α–
α+ . (.)

Combining (.) with (.), we obtain

�′(t)≤ M

(∫

�

uα+ dx
) β+

α+ {|�| α–β
α+ –M|�| (α–β)(–α)

(α+) �
α–β


}
+ (p – )|�|. (.)

From (.), we can conclude that�(t) remains bounded for all time under the condition
in Theorem .. In fact, if u(x, t) blows up at finite time t∗, then�(t) is unbounded near t∗,
which forces �′(t) ≤  in some interval [t, t∗). So we have �(t) ≤ �(t) in [t, t∗), which
implies that �(t) is bounded in [t, t∗), this is a contradiction.
The proof of Theorem . is completed. �

3 Blow-up and upper bound estimation of t∗

In this section, we do not need� to be star-sharped.We establish the conditions to ensure
that the solution of (.) blows up at finite time t∗ and derive an upper bound for the blow-
up time t∗. Now we state the result as follows.

Theorem . Let u(x, t) be the nonnegative solution of problem (.), and assume that the
nonnegative integrable functions f and g satisfy the following conditions:

ξg(ξ )≥ pG(ξ ), ξ ≥ ,

ξ f (ξ )≤ ( + θ )F(ξ ), ξ ≥ ,

where

F(ξ ) =
∫ ξ


f (s)ds, G(ξ ) =

∫ ξ


g(s)ds,

and θ satisfies

 ≤ θ ≤ p – 


.
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Moreover, we assume H() >  with

H(t) = p
∫

∂�

G(u)dS –
∫

�

|∇u|p dx – p
∫

�

F(u)dx.

Then u(x, t) blows up at time t∗ < T , with

T =
�()

(p – )H()
(p > ),

where �(t) =
∫

�
u dx is defined as (.).When p =  (θ = ), we have t∗ = ∞.

Proof Using the divergence theorem and the assumptions on f , g , we obtain

�′(t) = 
∫

�

uut dx

= 
∫

�

u
[
div

(|∇u|p–∇u
)
– f (u)

]
dx

= 
∫

∂�

ug(u)dS – 
∫

�

|∇u|p dx – 
∫

�

uf (u)dx

≥ 
∫

∂�

pG(u)dS – 
∫

�

|∇u|p dx – 
∫

�

( + θ )F(u)dx

≥ 
{

p
∫

∂�

G(u)dS –
∫

�

|∇u|p dx – p
∫

�

F(u)dx
}

= H(t), (.)

and

H ′(t) = p
∫

∂�

g(u)ut dS – p
∫

�

|∇u|p–∇u∇ut dx – p
∫

�

f (u)ut dx

= p
∫

∂�

g(u)ut dS – p
∫

∂�

ut|∇u|p– ∂u
∂n

dS

+ p
∫

�

div
(|∇u|p–∇u

)
ut dx – p

∫

�

f (u)ut dx

= p
∫

�

|ut| dx, (.)

which with H() >  imply H(t) >  for all t ∈ (, t∗).
Using (.), (.) and Hölder’s inequality, we have

H(t)�′(t) ≤ (�′(t))


= 

(∫

�

uut dx
)

≤ 
∫

�

u dx
∫

�

ut dx =
H ′(t)�(t)

p
. (.)

Multiplying (.) by �– p
 –, we deduce

(
H(t)�

–p
 (t)

)′ ≥ . (.)

http://www.boundaryvalueproblems.com/content/2014/1/219
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Integrating (.) over [, t] implies

H(t)�
–p
 (t)≥ H()�

–p
 () =:M > . (.)

Combining (.) with (.), we obtain

�′(t)�
–p
 (t) ≥ H()�

–p
 () ≥ M. (.)

If p > , (.) can be written as

(
�– p

 (t)
)′ ≤ M

(

 –
p


)

. (.)

Integrating (.) over [, t], we obtain

�– p
 (t)≤ M

(

 –
p


)

t +�– p
 (),

that is,

�
p–
 (t)≥ 

M( – p)t +�
–p
 ()

,

which with (.) implies �(t)→ +∞ as t → T = �()
(p–)H() . Therefore, for p > ,

t∗ ≤ T =
�()

(p – )H()
.

If p = , we have θ =  (by  ≤ θ ≤ p–
 ). Furthermore, by (.) we conclude that �(t) ≥

�()eMt and �(t) is increasing for all t > . So t∗ = +∞.
The proof of Theorem . is completed. �

4 Lower bound estimation of t∗

In this section, under the assumptions that � ⊂ R is a bounded star-sharped domain and
convex in two orthogonal directions, we establish a lower bound for the blow-up time t∗.
Now we state the result as follows.

Theorem . Let u(x, t) be the nonnegative solution of problem (.), and u(x, t) blow up
at time t∗;moreover, the nonnegative functions f and g satisfy the following conditions:

f (s)≥ ksα , s ≥ , g(s)≤ ksβ , s ≥ ,

for some constants ki >  and β > 
 . Define

�(t) :=
∫

�

uσ (β–) dx with σ ≥ max

{

,


β – 

}

.

http://www.boundaryvalueproblems.com/content/2014/1/219
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Then �(t) satisfies the inequality

�′(t)≤
∑

i=

γi�
θi :=�(�),

where γi, θi are computable (nonnegative) constants. It follows that t∗ is bounded below by

t∗ ≥
∫ ∞

�()

dη

�(η)
.

In order to prove Theorem ., we list the following lemmas.

Lemma . Let � ⊂ R be a bounded star-sharped domain and convex in two orthogonal
directions. Then, for any nonnegative C function w and σ ≥ , we have

∫

�

w
σ
 dx ≤

{

ρ

∫

�

wσ dx +
σ



(

 +
d
ρ

)∫

�

wσ–|∇w|dx
} 


,

where

ρ := min
x∈∂�

(x · n), d := max
x∈∂�

|x|.

Proof The proof can be found in []. �

Lemma . For all a≥  and b ≥ , we have

(a + b)

 ≤ √


(
a


 + b



)
.

Proof Let f (x) = x 
 . Since f ′′(x) = 


√
x >  for all x > , we have

f
(
x + y


)

≤ f (x) + f (y)


.

This completes the proof. �

Proof of Theorem . Differentiating �(t) :=
∫

�
uσ (β–) dx, we obtain

�′(t) = σ (β – )
∫

�

uσ (β–)–ut dx

= σ (β – )
∫

�

uσ (β–)–[div
(|∇u|p–∇u

)
– f (u)

]
dx

= σ (β – )
∫

∂�

uσ (β–)–g(u)dS

– σ (β – )
[
σ (β – ) – 

]
∫

�

uσ (β–)–|∇u|p dx

– σk(β – )
∫

�

uσ (β–)+α– dx. (.)

http://www.boundaryvalueproblems.com/content/2014/1/219
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By Lemma ., we have

∫

∂�

uσ (β–)–g(u)dS

≤ k
∫

∂�

u(σ+)(β–) dS

≤ k
ρ

∫

�

u(σ+)(β–) dx +
(σ + )(β – )kd

ρ

∫

�

u(σ+)(β–)–|∇u|dx. (.)

Combining (.) with (.), we obtain

�′(t)≤ σ (σ + )(β – )kd
ρ

I +
σk(β – )

ρ
I

– σ (β – )
[
σ (β – ) – 

]
I – σk(β – )

∫

�

uσ (β–)+α– dx, (.)

where

I =
∫

�

u(σ+)(β–)–|∇u|dx,

I =
∫

�

u(σ+)(β–) dx,

I =
∫

�

uσ (β–)–|∇u|r dx.

Firstly, we give the estimation of I. Application of Lemma . leads to

I =
∫

�

u(σ+)(β–) dx

≤
{


ρ

∫

�

u

 (σ+)(β–) dx +

(σ + )(β – )


(

 +
d
ρ

)∫

�

u
(σ+)(β–)

 –|∇u|dx
} 



≤
{

ρ

�
(σ+)
σ |�|– (σ+)

σ +
(σ + )(β – )



(

 +
d
ρ

)∫

�

u
(σ+)(β–)

 –|∇u|dx
} 


.

(.)

Using Hölder’s inequality, we have

∫

�

u
(σ+)(β–)

 –|∇u|dx =
∫

�

u
(σ+)(β–)

 –– σ (β–)–
p

{
u

σ (β–)–
p |∇u|}dx

≤
{∫

�

u
(σ+)(β–)(–δ)

 dx
} p–

p
I

p , (.)

with

δ =
(σ – )(β – ) + p – 
(σ + )(β – )(p – )

< 
(

by σ ≥ max

{

,


β – 

})

.

http://www.boundaryvalueproblems.com/content/2014/1/219
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By Hölder’s inequality, we have

∫

�

u
(σ+)(β–)(–δ)

 dx ≤ �
(σ+)(–δ)

σ |�|– (σ+)(–δ)
σ . (.)

Inserting (.) and (.) into (.) and using Lemma ., we obtain

I ≤ {
c�

(σ+)
σ + c�

(σ+)(–δ)(p–)
σp I


p
} 
 ≤ c�

(σ+)
σ + c�

(σ+)(–δ)(p–)
σp I


p (.)

for some positive constants c, c.
Secondly, we estimate I. Using Hölder’s inequality, we have

I =
∫

�

u(σ+)(β–)–|∇u|dx =
∫

�

u(σ+)(β–)––
σ (β–)–

p u
σ (β–)–

p |∇u|dx

≤
{∫

�

u(σ+)(β–)(–δ) dx
} p–

p
I

p , (.)

with

δ =
β(p – )

(σ + )(β – )(p – )
< 

(

by σ ≥ max

{

,


β – 

})

.

Application of Hölder’s inequality leads to

∫

�

u(σ+)(β–)(–δ) dx ≤
{∫

�

u(σ+)(β–) dx
}–δ

|�|δ . (.)

By Hölder’s inequality and Lemma ., we get

∫

�

u(σ+)(β–) dx

≤
{


ρ

∫

�

u
(σ+)(β–)

 dx +
(σ + )(β – )



(

 +
d
ρ

)∫

�

u
(σ+)(β–)

 –|∇u|dx
} 



≤
{

ρ

�
(σ+)
σ |�|– (σ+)

σ +
(σ + )(β – )



(

 +
d
ρ

)∫

�

u
(σ+)(β–)

 –|∇u|dx
} 


.

(.)

Using Hölder’s inequality, we obtain

∫

�

u
(σ+)(β–)

 –|∇u|dx =
∫

�

u
(σ+)(β–)

 –– σ (β–)–
p u

σ (β–)–
p |∇u|dx

≤
{∫

�

u
(σ+)(β–)(–δ)

 dx
} p–

p
I

p , (.)

with

δ =
(σ – )(β – ) + p – 
(σ + )(β – )(p – )

< δ < ,

http://www.boundaryvalueproblems.com/content/2014/1/219
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and
∫

�

u
(σ+)(β–)(–δ)

 dx ≤ �
(σ+)(–δ)

σ |�|– (σ+)(–δ)
σ . (.)

Inserting (.) into (.), we get

∫

�

u
(σ+)(β–)

 –|∇u|dx ≤ c�
(σ+)(–δ)(p–)

σp I

p . (.)

Inserting (.) into (.), we have

∫

�

u(σ+)(β–) dx ≤ {
c�

(σ+)
σ + c�

(σ+)(–δ)(p–)
σp I


p
} 
 . (.)

Inserting (.) and (.) into (.), we find

I(t)≤ c�
(σ+)λ(–δ)

σ I

p + c�

λ(σ+)(–δ)(–δ)
σ Iμ, (.)

with

λ =
p – 
p

, μ =

p
+
λ( – δ)

p
< .

Combining (.), (.) with (.), we have

�′(t)≤ k�
σ+
σ + k̃�

(σ+)λ(–δ)
σ I


p + k̃�

(σ+)λ(–δ)
σ I


p + k̃�

λ(σ+)(–δ)(–δ)
σ Iμ

– σ (β – )
[
σ (β – ) – 

]
I – σk(β – )

∫

�

uσ (β–)+α– dx, (.)

where ki and k̃i are computable positive constants.
Using Young’s inequality, we obtain

�τ Iτ = (kI)τ
(

�
τ

–τ

k
τ

–τ

)–τ

≤ τkI + ( – τ)k
τ

τ– �
τ

–τ

for τ ∈ (, ). So we have the following inequalities:

k̃�
(σ+)λ(–δ)

σ I

p ≤ αI + γ�

p(σ+)λ(–δ)
σ (p–) , (.)

k̃�
(σ+)λ(–δ)

σ I

p ≤ αI + γ�

p(σ+)λ(–δ)
σ (p–) , (.)

k̃�
λ(σ+)(–δ)(–δ)

σ Iμ ≤ αI + γ�
λ(σ+)(–δ)(–δ)

σ (–μ) . (.)

Choose αi satisfying

α + α + α – σ (β – )
[
σ (β – ) – 

]
= . (.)

http://www.boundaryvalueproblems.com/content/2014/1/219
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From (.)-(.), we conclude

�′(t)≤ γ�
σ+
σ + γ�

p(σ+)λ(–δ)
σ (p–) + γ�

p(σ+)λ(–δ)
σ (p–) + γ�

λ(σ+)(–δ)(–δ)
σ (–μ)

=: γ�θ + γ�
θ + γ�

θ + γ�
θ =: �(�),

that is,

(∫ �(t)

�()

dη

�(η)

)′
=

�′(t)
�(�)

≤ . (.)

Integrating (.) over [, t], we get

∫ �(t)

�()

dη

�(η)
≤ t.

As u(x, t) blows up, letting �(t)→ ∞, we get the bound for t∗ as follows:

t∗ ≥
∫ ∞

�()

dη

�(η)
.

The proof of Theorem . is completed. �
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