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Abstract
We consider the existence of at least one positive solution of the problem
–Dα

0+u(t) = f (t,u(t)), 0 < t < 1, under the circumstances that u(0) = 0,
u(1) = H1(ϕ(u)) +

∫
E H2(s,u(s))ds, where 1 < α < 2, Dα

0+ is the Riemann-Liouville
fractional derivative, and u(1) = H1(ϕ(u)) +

∫
E H2(s,u(s))ds represents a nonlinear

nonlocal boundary condition. By imposing some relatively mild structural conditions
on f , H1, H2, and ϕ , one positive solution to the problem is ensured. Our results
generalize the existing results and an example is given as well.
MSC: 34A08; 34B18

Keywords: fractional differential equation; nonlinear boundary condition;
Krasnosel’skǐi’s fixed point theorem; positive solution

1 Introduction
In this paper we consider the existence of at least one positive solution of the fractional
differential equation

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < , ()

subject to the boundary conditions

u() = , u() =H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds, ()

here E � (, ) is some measurable set,  < α < , Dα
+ is the Riemann-Liouville fractional

derivative and ϕ is a linear functional having the form

ϕ(u) :=
∫ 


u(t)dθ (t), ()

where the integral appearing in () is taken in the Lebesgue-Stieltjes sense, θ is a function
of bounded variation.
Let us review briefly some recent results on such problems in order to see our problem

()-() in a more appropriate context.
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So far, in view of their various applications in science and engineering, such as fluid
mechanics, control system, viscoelasticity, porous media, edge detection, optical systems,
electromagnetism and so forth, see [–], fractional differential equations have attracted
great attention of mathematicians.
There are a great number of works on the existence of solutions of various classes of

ordinary differential equations and fractional differential equations; readers may refer to
[–].
Some of them discussed two-point boundary value problems. For example, Bai and

Lü [] studied the following two-point boundary value problem of fractional differential
equations:

Dα
+u(t) + f

(
t,u(t)

)
= ,  < t < ,

u() = u() = ,
()

where  < α ≤ , Dα
+ is the standard Riemann-Liouville fractional derivative. By means

of Guo-Krasnosel’skǐi’s fixed point theorem and the Leggett-Williams fixed point theorem
they obtained the existence of positive solutions.
Some authors discussed multi-point boundary value problems, for instance, by using

fixed point index theory, the Krein-Rutman theorem and some other methods, Jiang []
studied the eigenvalue interval of the multi-point boundary value problem

Dαu(t) –Mu(t) = λf
(
t,u(t)

)
, t ∈ [, ],

u() =
n∑

i=

βiu(ξi),
()

where  < α < , Dα is the Caputo derivative,M ≥ ,  < ξ < ξ < · · · < ξn ≤ .
There are also results on fractional boundary value problemwith integral boundary con-

ditions, let us refer to Vong []. He investigated positive solutions of the nonlocal bound-
ary value problem for a class of singular fractional differential equations with an integral
boundary condition,

cDα
+u(t) + f

(
t,u(t)

)
= ,

u′() = · · · = u(n–)() = , u() =
∫ 


u(s)dμ(s),

()

where n≥ , α ∈ (n – ,n) and μ is a function of bounded variation.
To proceed, Goodrich [] considered the existence of at least one positive solution of

the ordinary differential equation

–y′′(t) = f
(
t, y(t)

)
,  < t < ,

y() =H
(
ϕ(y)

)
+

∫

E
H

(
s, y(s)

)
ds, y() = ,

()

in which the boundary condition is more general.
Motivated by the above works, we decided to consider the problem ()-(). As to

the novel contributions of this work, we hold in the first place that the problem dis-
cussed in [] is an ordinary differential equation, while we take a look into the frac-
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tional differential equation under the same boundary conditions. Secondly, the bound-
ary conditions are more flexible and general than often. Let us take the condition u() =
H(ϕ(u)) +

∫
E H(s,u(s))ds into consideration, where H, H, ϕ(u) are defined in the se-

quel. IfH(ϕ(u)) +
∫
E H(s,u(s))ds = , the conditions are the standard Dirichlet boundary

conditions. Readers might refer to Bai and Lü []. As far as we are concerned, ϕ(u) varies
among many sorts of functionals. If H(ϕ(u)) =

∫
F u(t)dt (where F ⊂ E � (, ) is defined

in the sequel) or H(ϕ(u)) =
∫
[,] u(t)dθ (t), our conditions reduce to integral boundary

conditions, while if H(ϕ(u)) =
∑n

i= |ai|u(ξi), we have multi-point boundary conditions.
Thirdly, compared to Goodrich [], we make an adjustment to the Green function and
define a function r(·) instead of a constant which affects the defined cone.
This paper is organized as follows. In Section , we review some preliminaries and lem-

mas. In Section , a theorem and five corollaries about the existence of at least one positive
solution of problem ()-() are obtained. Lastly, we give an example to illustrate the ob-
tained theorem.

2 Preliminaries and lemmas
For the convenience of the readers, we give some background materials from fractional
calculus theory to facilitate the analysis of the boundary value problem ()-().

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
y : (, +∞)→R is given by

Iα+y(t) =


�(α)

∫ t


(t – s)α–y(s)ds,

provided the right side is pointwise defined on (,+∞).

Definition . ([]) The Riemann-Liouville typed fractional derivative of order α (α > )
of a continuous function f : (, +∞) →R is given by

Dα
+ f (t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α+f (s)ds,

where n = [α] + , [α] denotes the integer part of number α, provided that the right side is
pointwise defined on (,+∞).

Lemma. ([]) Let α > . If we assume u ∈ C(, )∩L(, ), then the fractional differential
equation

Dα
+u(t) = 

has u(t) = ctα– + ctα– + · · · + cntα–n, ci ∈ R, i = , , . . . ,n, as a unique solution, where n
is the smallest integer greater than or equal to α.

Lemma . ([]) Let u ∈ C(, ) ∩ L(, ) with a fractional derivative of order α (α > )
that belongs to C(, )∩ L(, ). Then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n, for some ci ∈R, i = , , . . . ,n,

where n is the smallest integer greater than or equal to α.
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Remark . ([]) The Riemann-Liouville type fractional derivative and integral of order
α (α > ) have the following properties:

Dα
+ I

α
+u(t) = u(t), Iα+ I

β

+u(t) = Iα+β

+ u(t), α,β > ,u ∈ L(, ).

Lemma . Let u ∈ C[, ] and  < α < . Then the fractional differential equation bound-
ary value problem

Dα
+u(t) + y(t) = ,  < t < ,

u() = , u() =H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds,

has a unique solution,

u(t) = tα–
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+
∫ 


G(t, s)y(s)ds,

where

G(t, s) =


�(α)

⎧
⎨

⎩

tα–( – s)α– – (t – s)α–,  ≤ s≤ t ≤ ,

tα–( – s)α–,  ≤ t ≤ s≤ .
()

Proof We may apply Lemma . to reduce () to an equivalent integral equation,

u(t) = –Iα+y(s) + ctα– + ctα–, c, c ∈R.

Consequently, the general solution of () is

u(t) = –
∫ t



(t – s)α–

�(α)
y(s)ds + ctα– + ctα–, c, c ∈R.

By (), we have

c =H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds +

∫ 



( – s)α–

�(α)
y(s)ds,

c = .

Therefore, the unique solution of problem () and () is

u(t) = tα–
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

–
∫ t



(t – s)α–

�(α)
y(s)ds + tα–

∫ 



( – s)α–

�(α)
y(s)ds

= tα–
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+
∫ 


G(t, s)y(s)ds.

The proof is complete. �
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Lemma . ([]) Let (a,b) ⊂ (, ) be an arbitrary but fixed interval. Then the function
G(t, s) defined by () satisfies the following conditions:
() G(t, s) > , for t, s ∈ (, );
() there exists a positive function γ (·) ∈ C(, ) such that

min
a≤t≤b

G(t, s)≥ γ (s) max
≤t≤

G(t, s) = γ (s)G(s, s), for each  ≤ s≤ . ()

Lemma . ([]) Let B be a Banach space, and let K ⊂ B be a cone. Assume 
, 
 are
open and bounded subsets of B with  ∈ 
, 
̄ ⊂ 
, and let T : K ∩ (
̄ \ 
) → K be a
completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂
, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂
; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂
, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂
.

Then T has a fixed point in K ∩ (
̄ \ 
).

In order to get the main results, we first need some structure on H, H, ϕ, and f ap-
pearing in problem ()-().
Let B be the Banach space on C([, ]) equipped with the usual supremum norm ‖ · ‖.

Then define the cone K ⊆ B by

K =
{
u ∈ B | u(t)≥ , min

a≤t≤b
u(t) ≥ γ ∗‖u‖,ϕ(u),ϕ(u) ≥ 

}
,

where γ ∗ = min{mint∈[a,b] tα–,mins∈[a,b] γ (s)}.
Define the operator T : C[, ] → C[, ] by

Tu(t) = tα–
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+
∫ 


G(t, s)f

(
s,u(s)

)
ds. ()

Here we come to the nine significant assumptions.

(H) Let H : [, +∞) → [, +∞) and H : [, ] × [, +∞) → [, +∞) be real-valued con-
tinuous functions.

(H) The functional ϕ(u) :=
∫
[,] u(t)dθ (t) can be written in the form

ϕ(u) = ϕ(u) + ϕ(u) :=
∫

[,]
u(t)dθ(t) +

∫

[,]
u(t)dθ(t), ()

where θ , θ, θ : [, ] →R satisfy θ , θ, θ ∈ BV ([, ]), and ϕ, ϕ are continuous linear
functionals.

(H) There is a constant C ∈ [, ) such that the functional ϕ in () satisfies the inequality

∣
∣ϕ(u)

∣
∣ ≤ C‖u‖ ()

for all u ∈ C([, ]). Furthermore, there is a constant C >  such that the functional
ϕ in () satisfies |ϕ(u)| ≥ C‖u‖ whenever u ∈ K .

(H) For each given ε > , there are C >  andMε >  whenever z ≥ Mε and we have

∣
∣H(z) –Cz

∣
∣ < εCz. ()
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(H) There exists a function F : [, +∞) → [, +∞) satisfying the growth condition

F(u) < Cu ()

for some C ≥ , having the property that for each given ε > , there is Mε >  such
that

∣
∣H(x,u) – F(u)

∣
∣ < εF(u) ()

for all x ∈ [, ], whenever u≥ Mε .
(H) Assume that the nonlinearity f (t,u) splits in the sense that f (t,u) = a(t)g(u), for con-

tinuous functions a : [, ] → [, +∞) and g : R → [, +∞) such that a is not identi-
cally zero on any subinterval of [, ].

(H) Suppose limu→+
g(u)
u = +∞.

(H) Suppose limu→+∞ g(u)
u = .

(H) For each i = ,  both

∫

[,]
tα– dθi(t)≥  ()

and
∫

[,]
G(t, s)dθi(t)≥  ()

hold, where () holds for each s ∈ [, ].

3 Main results
In this section we state and prove the existence theorem of problem ()-().

Lemma . Let T be the operator defined in (). Assume conditions (H)-(H) hold. Then
T : K → K , and the operator T is completely continuous.

Proof Now we divide the proof into two steps; in the first step we prove that T : K → K ,
then in the next, the conclusion that the operator T is completely continuous is treated.
Step . Here we are going to show that T : K → K . In fact, since H, H, a, and g are

all nonnegative, it is easy to find that whenever u ∈ K , it follows that (Tu)(t) ≥ , for each
t ∈ [, ], where we use the fact ϕ(u) ≥ , following H(ϕ(u))≥ .
On the other hand, provided u ∈ K we get

min
t∈[a,b]

Tu(t) ≥ min
t∈[a,b]

tα–
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+ min
t∈[a,b]

∫ 


G(t, s)f

(
s,u(s)

)
ds

≥ γ

[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+ max
t∈[,]

∫ 


γ (s)G(t, s)f

(
s,u(s)

)
ds

≥ γ

[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+ max
t∈[,]

∫ b

a
γ (s)G(t, s)f

(
s,u(s)

)
ds

≥ γ

[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]
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+ min
t∈[a,b]

γ (t) max
t∈[,]

∫ b

a
G(t, s)f

(
s,u(s)

)
ds

≥ γ ∗‖Tu‖, ()

where γ = mint∈[a,b] tα–.
Consequently, for each i = ,  we deduce that

ϕi(Tu) =
∫

[,]
tα–

[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

dθi(t)

+
∫

[,]

(∫ 


G(t, s)a(s)g

(
u(s)

)
ds

)

dθi(t)

=
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]∫

[,]
tα– dθi(t)

+
∫ 



[∫

[,]
G(t, s)dθi(t)

]

a(s)g
(
u(s)

)
ds

≥ , ()

where the inequality follows from assumption (H). Thus, ϕi(Tu) ≥ , therefore as desired
we conclude T(K) ⊂ K .
Step . In this part we turn to the proof that T(
) in the sequel is bounded as well as

equicontinuous with the help of the Arzelà-Ascoli theorem.
With the continuity of H, H, a, and g , it is easy to find T is continuous.
Let 
 ⊂ K be bounded, namely, there exists a number M > , such that for each u ∈ 


we have ‖u‖ ≤ M. By the continuity ofH,H, and ϕ, we findH,H are bounded, so there
exist constants P >  and Q >  such that |H(ϕ(
))| ≤ P and |H(t,u(t))| ≤ Q. E� (, ) is
a measurable set, take L = maxt∈[,],u∈[,M] |f (t,u)| + , then

∣
∣(Tu)(t)

∣
∣ =

∣
∣
∣
∣t

α–
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+
∫ 


G(t, s)f

(
s,u(s)

)
ds

∣
∣
∣
∣

≤ ∣
∣H

(
ϕ(u)

)∣∣ +
∫

E

∣
∣H

(
s,u(s)

)∣∣ds +
∫ 


G(t, s)

∣
∣f

(
s,u(s)

)∣∣ds

≤ P +Qm(E) + L
∫ 


G(t, s)ds

≤ P +Qm(E) + L
∫ 


G(s, s)ds

= P +Qm(E) +
L

�(α + )
. ()

Hence T(
) is bounded.
For each u ∈ 
, t, t ∈ [, ], t < t, and assuming there is a δ > , such that t – t < δ,

for each ε >  put

δ = min

{

ε,



(
ε

N

) 
α–

,
[

ε

(α – )N

] 
α–

,
(

ε

Nα

) 
α
}

, ()
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where N = P +Qm(E) + L
�(α+) , we find |(Tu)(t) – (Tu)(t)| < ε, so that T(
) is equicontin-

uous.
Indeed,

∣
∣(Tu)(t) – (Tu)(t)

∣
∣

=
∣
∣
∣
∣t

α–


[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+
∫ 


G(t, s)f

(
s,u(s)

)
ds

– tα–

[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

–
∫ 


G(t, s)f

(
s,u(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣
(
tα– – tα–

)
[

H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds

]

+
∫ 



(
G(t, s) –G(t, s)

)
f
(
s,u(s)

)
ds

∣
∣
∣
∣

≤ (
tα– – tα–

)
[∣
∣H

(
ϕ(u)

)∣
∣ +

∫

E

∣
∣H

(
s,u(s)

)∣
∣ds

]

+
∣
∣
∣
∣

∫ 



(
G(t, s) –G(t, s)

)
f
(
s,u(s)

)
ds

∣
∣
∣
∣. ()

By the continuity of H, H, and ϕ, we find H, H are bounded, so there exist constants
P >  and Q >  such that |H(ϕ(
))| ≤ P and |H(t,u(t))| ≤ Q. E � (, ) is a measurable
set, take L = maxt∈[,],u∈[,M] |f (t,u)| + , then

∣
∣(Tu)(t) – (Tu)(t)

∣
∣

≤ (
tα– – tα–

)[
P +Qm(E)

]
+

∫ 



∣
∣(G(t, s) –G(t, s)

)
f
(
s,u(s)

)∣∣ds

≤ (
tα– – tα–

)[
P +Qm(E)

]

+
L

�(α)

[∫ t



∣
∣tα– ( – s)α– – (t – s)α– – tα– ( – s)α– + (t – s)α–

∣
∣ds

+
∫ t

t

∣
∣tα– ( – s)α– – (t – s)α– – tα– ( – s)α–

∣
∣ds

+
∫ 

t

∣
∣tα– ( – s)α– – tα– ( – s)α–

∣
∣ds

]

≤ (
tα– – tα–

)[
P +Qm(E)

]
+

L
�(α)

{∣
∣tα– – tα–

∣
∣
∫ t


( – s)α– ds

+
∫ t



[
(t – s)α– – (t – s)α–

]
ds +

∣
∣tα– – tα–

∣
∣
∫ t

t
( – s)α– ds

+
∫ t

t
(t – s)α– ds +

∣
∣tα– – tα–

∣
∣
∫ 

t
( – s)α– ds

}

=
(
tα– – tα–

)
[

P +Qm(E) +
L

�(α + )

]

+
L

�(α + )
(
tα – tα

)
. ()

Next we discuss the following three cases.
Case . δ ≤ t < t < .

tα– – tα– ≤ α – 
δ–α

(t – t)≤ (α – )δα– ≤ ε

N
,

tα – tα ≤ α

δ–α
(t – t) ≤ αδα ≤ ε

N
.

()

http://www.boundaryvalueproblems.com/content/2014/1/225
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Case .  ≤ t < δ < t < δ.

tα– – tα– ≤ tα– ≤ (δ)α– ≤ ε

N
, ()

tα – tα ≤ tα ≤ (δ)α ≤ ε

N
.

Case .  ≤ t < t < δ.

tα– – tα– ≤ tα– ≤ δα– ≤ ε

N
, ()

tα – tα ≤ tα ≤ δα ≤ ε

N
.

Hence |(Tu)(t) – (Tu)(t)| ≤ ε.
From the Arzelà-Ascoli theorem, T is completely continuous. The proof is complete.

�

With Lemma . in hand, we are now ready to present the first existence theorem for
problem () and ().

Theorem . Assume that conditions (H)-(H) hold. Suppose that

CC +Cm(E) <  ()

and that E� (, ). Then problem ()-() has at least one positive solution.

Proof Begin by selecting a number η such that

η

∫ b

a
γ ∗G

(


, s

)

a(s)ds≥ . ()

From (H), there exists a number r >  such that g(u) ≥ ηu whenever  < u ≤ r. Then
set


r :=
{
u ∈ B : ‖u‖ < r

}
, ()

for u ∈ K ∩ ∂
r we find

(Tu)
(



)

≥
∫ 


G

(


, s

)

a(s)g
(
u(s)

)
ds≥ ‖u‖η

∫ b

a
γ ∗G

(


, s

)

a(s)ds

≥ ‖u‖, ()

from the definition of norm ‖ · ‖, we get ‖Tu‖ ≥ ‖u‖, and so, T is a cone expansion on
K ∩ ∂
r .

http://www.boundaryvalueproblems.com/content/2014/1/225
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From condition (), we choose a positive number ε small enough, so that we may as-
sume

CCε +CC + ε + (C +Cε)m(E) ≤ . ()

Since ϕ(u) ≥ , it follows that ϕ(u) ≥ ϕ(u) ≥ C‖u‖, if ‖u‖ ≥ Mε

C
, then ϕ(u) >Mε , and

then by condition (H), we have

∣
∣H

(
ϕ(u)

)
–Cϕ(u)

∣
∣ < εCϕ(u). ()

For E � (, ), we may select  < a < b <  such that E ⊆ (a,b). By the definition of the
cone, we have

min
t∈E u(t) ≥ min

t∈[a,b]
u(t)≥ r∗‖u‖. ()

If ‖u‖ ≥ Mε

r∗ , then

min
t∈E u(t) ≥ min

t∈[a,b]
u(t)≥ r∗‖u‖ ≥ r∗

Mε

r∗
=Mε . ()

Hence, by condition (H) we get

∣
∣H

(
x,u(s)

)
– F

(
u(s)

)∣∣ < εF
(
u(s)

)
. ()

Provided that

‖u‖ ≥ max

{
Mε

C
,
Mε

r∗

}

, ()

both () and () hold.
Next we are going to discuss these two cases: g is bounded and unbounded on [,+∞),

respectively.
Now if g is bounded on [,+∞), then there exists r >  sufficiently large such that

g(u) ≤ r, for any u≥ . ()

Indeed, we might assume without loss of generality that

g(u) ≤ rε
∫ 
 G(s, s)a(s)ds

, ()

where ε is selected sufficiently small such that both () and () hold.We define a number

r∗ := max

{
r
r∗

, r,
Mε

C
,
Mε

r∗

}

.

Set


r∗ :=
{
u ∈ B : ‖u‖ < r∗

}
. ()

http://www.boundaryvalueproblems.com/content/2014/1/225
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Then for each u ∈ K ∩ ∂
r∗ we find that

‖Tu‖ ≤ H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds +

∫ 


G(s, s)a(s)g

(
u(s)

)
ds

≤ ∣
∣H

(
ϕ(u)

)
–Cϕ(u)

∣
∣ +C

∣
∣ϕ(u)

∣
∣ +

∫

E

∣
∣H

(
s,u(s)

)
– F

(
u(s)

)∣
∣ds

+
∫

E

∣
∣F

(
u(s)

)∣
∣ds +

∫ 


rεds

≤ εCC‖u‖ +CC‖u‖ +m(E)C( + ε)‖u‖ + ε‖u‖
=

[
CCε +CC +m(E)C( + ε) + ε

]‖u‖
≤ ‖u‖, ()

whence T is a cone compression on K ∩ ∂
r∗ .
On the other hand, assume g is unbounded on [,+∞). From condition (H) there is a

number r >  such that g(u) ≤ ηu whenever u > r, where η is picked with

η

∫ 


G(s, s)a(s)ds≤ ε. ()

Since g is unbounded on [,+∞), we can find a number r∗ satisfying

r∗ > max

{
r
r∗

, r,
Mε

C
,
Mε

r∗

}

,

such that g(u) ≤ g(r∗) for any u ∈ [, r∗].
Take


r∗ :=
{
u ∈ B : ‖u‖ < r∗

}
. ()

Then for each u ∈ K ∩ ∂
r∗ we find that

‖Tu‖ ≤ H
(
ϕ(u)

)
+

∫

E
H

(
s,u(s)

)
ds +

∫ 


G(s, s)a(s)g

(
u(s)

)
ds

≤ ∣
∣H

(
ϕ(u)

)
–Cϕ(u)

∣
∣ +C

∣
∣ϕ(u)

∣
∣ +

∫

E

∣
∣H

(
s,u(s)

)
– F

(
u(s)

)∣
∣ds

+
∫

E

∣
∣F

(
u(s)

)∣∣ds +
∫ 


G(s, s)a(s)g

(
r∗

)
ds

≤ Cεϕ(u) +CC‖u‖ +
∫

E
( + ε)F

(
u(s)

)
ds +

∫ 


G(s, s)a(s)g

(
r∗

)
ds

≤ εCC‖u‖ +CC‖u‖ +m(E)C( + ε)‖u‖ + ε‖u‖
=

[
CCε +CC +m(E)C( + ε) + ε

]‖u‖
≤ ‖u‖, ()

whence T is a cone compression on K ∩ ∂
r∗ .
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Therefore, in either case, define r∗ = max{r∗, r∗}, we find ‖Tu‖ ≤ ‖u‖ whenever u ∈ K ∩
∂
r∗ . From Lemma ., we claim that problem ()-() has at least one positive solution;
the proof is complete. �

Next we are going to give some corollaries since ϕ(u) admits a wide variety of function-
als. First we assume H(ϕ(u)) = , then, respectively, that H(ϕ(u)) =

∫
F u(t)dt, H(ϕ(u)) =∑n

i= |ai|u(ξi) and H(ϕ(u)) =
∫
[,] u(t)dθ (t), where F ⊂ E � (, ) is not Lebesgue null. In

addition, we know u() =  is also well defined and if u() =  the problem as well as the
boundary conditions are similar to [].

Corollary . Assume that conditions (H), (H)-(H) hold, then the problemwith Dirich-
let conditions

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() = , u() = ,
()

has at least one positive solution.

Corollary . Assume that conditions (H)-(H) hold. Suppose, in addition,

CC +Cm(E) < ,

and F ⊂ E � (, ) is not Lebesgue null, and m(F) ≤ C, then the problem with integral
conditions

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() =
∫

F
u(t)dt +

∫

E
H

(
s,u(s)

)
ds, u() = ,

()

has at least one positive solution.

Corollary . Assume that conditions (H)-(H) hold. Suppose, in addition,

CC +Cm(E) < ,

and E � (, ) is not Lebesgue null, and
∑n

i= |ai| ≤ C, then the problem with multi-point
conditions

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() =
n∑

i=

|ai|u(ξi) +
∫

E
H

(
s,u(s)

)
ds, u() = ,

()

has at least one positive solution.

Corollary . Assume that conditions (H)-(H) hold. Suppose, in addition,

CC +Cm(E) < ,

http://www.boundaryvalueproblems.com/content/2014/1/225
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and E� (, ) is not Lebesgue null, and the total variation of θ over [, ] satisfies V[,](θ ) ≤
C, then the problem with the Lebesgue-Stieltjes integral conditions

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() =
∫

[,]
u(t)dθ (t) +

∫

E
H

(
s,u(s)

)
ds, u() = ,

()

has at least one positive solution.

Specially, take θ (t) = t – t, for any x, y ∈ [, ] we have

∣
∣θ (x) – θ (y)

∣
∣ =

∣
∣(x – y)(x + y – )

∣
∣ ≤ |x – y|,

then

V[,](θ ) =
n∑

i=

∣
∣θ (xi) – θ (xi–)

∣
∣ ≤

n∑

i=

|xi – xi–| =
n∑

i=

(xi – xi–) = ,

thus we have the following corollary.

Corollary . Assume that conditions (H)-(H) and (H)-(H) hold. Suppose, in addi-
tion,

CC < ,

then the problem

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() =
∫

[,]
u(t)d

(
t – t

)
, u() = ,

()

has at least one positive solution.

4 Example
In this part we give an example of Theorem ..
Define ϕ(u) in the first place by

ϕ(u) =


u
(



)

–


u
(



)

+
∫

[ 
 ,


 ]
u(t)dt, ()

where

ϕ(u) =


u
(



)

–


u
(



)

, ϕ(u) =
∫

[ 
 ,


 ]
u(t)dt. ()

Then define H, H by

H(z) = ln(z + ) + z ()

http://www.boundaryvalueproblems.com/content/2014/1/225
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and

H(x,u) = u + x + ex
√
u. ()

It is clear that

lim
z→∞

∣
∣
(
ln(z + ) + z

)
– z

∣
∣ = , ()

and moreover

lim
u→∞

|(u + x + ex
√
u) – u|

u
= , ()

so conditions (H) and (H) hold, and we see C = , C = , and F(u) = u.
Now we consider the boundary value problem

–Dα
+u(t) = f

(
t,u(t)

)
,  < t < ,

u() = ln
(
ϕ(u) + 

)
+ ϕ(u) +

∫ 





[
u(s) + s + es

√
u(s)

]
ds, u() = ,

()

where f (t,u(t)) is a given function with conditions (H) and (H) satisfied. Here E = [ 
 ,


 ]

is chosen such thatm(E) = 
 and E ⊂ (, ).

What is more, for each u ∈ K

∣
∣ϕ(u)

∣
∣ ≤ 


‖u‖ + 


‖u‖ +

(


–




)

‖u‖ = 


‖u‖ ()

and

∣
∣ϕ(u)

∣
∣ ≥ 


r∗‖u‖. ()

Then we find that C = 
 ∈ [, ] and C = 

 r
∗ > , so condition (H) is met as well.

Finally, after straightforward numerical calculations, condition (H) can also be achieved,
since

CC +Cm(E) =



·  +  · 


< .

As a consequence, each of conditions (H)-(H) is satisfied. FromTheorem ., problem
() has at least one positive solution.
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