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Abstract
We consider the Dirichlet boundary value problem for higher order elliptic equations
in divergence form with discontinuous coefficients in polyhedral angles. Some
uniqueness results are proved.
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1 Introduction
TheDirichlet problem for the polyharmonic equation in a bounded domain ofRn has been
studied by Sobolev in []. Later on, different problems (Dirichlet, Neumann and Riquier
problems) for harmonic, biharmonic andmeta-harmonic functions have been considered
by Vekua in [] and [], both in the cases of bounded and unbounded domains of Rn.
Successively, many authors studied analogous problems in more general cases and with
different methods (see, for instance, [–], the general survey on this subject [] and the
references quoted therein). In particular, in [], the author obtains the uniqueness of the
solution of the Dirichlet problem,

⎧
⎨

⎩

�mu(x) =  in R
n
l ,

∂ ju(x)
∂–→ν j |∂Rn

l
= , j = , . . . ,m – ,

(.)

where �m denotes the polyharmonic operator of order m, � is the Laplace operator and
R

n
l is a polyhedral angle ofRn, defined in Section .We explicitly observe that for l =  the

above mentioned definition gives the half-space Rn
+. We note that, due to the tools used

in the proof, some restrictions on the dimension n of the space are required.
Our aim, in this paper, is to generalize the uniqueness result of []. More precisely,

we are concerned with the following Dirichlet problem for a homogeneous equation in
divergence form of order m:

⎧
⎨

⎩

∑
|α|=|β|=mDα(aαβ(x)Dβu(x)) =  in R

n
l ,

∂ ju(x)
∂–→ν j |∂Rn

l
= , j = , . . . ,m – ,

(.)

© 2014 Monsurrò et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://www.boundaryvalueproblems.com/content/2014/1/232
mailto:smonsurro@unisa.it


Monsurrò et al. Boundary Value Problems 2014, 2014:232 Page 2 of 8
http://www.boundaryvalueproblems.com/content/2014/1/232

where the discontinuous coefficients aαβ are bounded andmeasurable functions satisfying
the uniform ellipticity condition.
Let us remark that if we take α = β and if the coefficients of the equation are constants

aαβ(x) = m!
α! , then the left-hand side of the equation in (.) is exactly the polyharmonic

operator �m in (.).
Ourmain results consist in two uniqueness theorems obtained for some particular cases

of problem (.). More precisely, in Section  we consider problem (.) in the case m = 
and in Section  we assume that α = β . The main tool in our analysis is a generalization of
the Hardy inequality proved by Kondrat’ev and Oleinik in [] (see Section ).

2 Notation
Throughout this work we use the following notation:
- n ∈N is the dimension of the considered space;
- Greek letters denote n-dimensional multi-indices, for instance α = (α,α, . . . ,αn),
where αi ∈ N∪ {}, i = , . . . ,n;

- |α| = α + · · · + αn is the module of the multi-index α;
- α! = α! · · ·αn! is the factorial of the multi-index α;
- ϕ,i(x) = ∂ϕ(x)

∂xi
, i = , . . . ,n;

- Dαi
i = ∂αi

(∂xi)αi
, i = , . . . ,n;

- Dα =Dα
 · · ·Dαn

n ;
- for ξ = (ξ, . . . , ξn) ∈R

n we set ξα = ξ
α
 · · · ξαn

n ;
- for every l ∈ {, . . . ,n – },

R
n
l =

{
x = (x,x, . . . ,xn) ∈R

n : xi > , i = n – l, . . . ,n
}

is the ‘polyhedral angle’ with vertex in the origin;
- for l =  the above definition gives the half-space Rn

+;
- for ρ >  we denote by Qρ = {x ∈R

n
l : |x| < ρ}.

3 Setting of the problem
We want to consider the following differential equation in divergence form of order m,
m ∈N, in certain unbounded domains of Rn, n > :

∑

|α|=|β|=m
Dβ

(
aαβ (x)Dαu(x)

)
= f (x), (.)

where f (x) is a given datum and the coefficients aαβ(x) are bounded measurable functions
satisfying the uniform ellipticity condition, i.e. there exist two positive constants λ and
λ such that for each nonzero vector ξ ∈R

n one has

λ|ξ |m ≤
∑

|α|=|β|=m
aαβ(x)ξαξβ ≤ λ|ξ |m a.e. (.)

Let us mention that if we take α = β in (.) and if the coefficients of the equation are
constants aα(x) = m!

α! , then left-hand side of this equation is the polyharmonic operator
�m, where � denotes, as usual, the Laplace operator.
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For every sufficiently differentiable functions u and v let us set

Ea
m(u, v) =

∑

|α|=|β|=m
aαβ(x)DαuDβv,

Em(u, v) =
∑

|α|=m

m!
α!

DαuDαv,

Ea
m(u) = Ea

m(u,u),

Em(u) = Em(u,u).

Definition . We say that the function u is a generalized solution of (.) in R
n
l with

homogeneous Dirichlet boundary conditions if u ∈ Wm,(Rn
l ) and it satisfies the integral

identity

(–)m
∫

Qρ

Ea
m(u, v)dx =

∫

Qρ

f (x)v(x)dx, (.)

for any ρ >  and any function v ∈ Wm,
 (Qρ), where f ∈ L(Rn

l ).

To prove our main results, consisting in two uniqueness theorems, we will essentially
use the following generalized Hardy inequality.

Lemma . (Generalized Hardy inequality) Let p > , j, and n be such that j + n – p �= .
Assume that for a sufficiently smooth function g the following condition is fulfilled in a cone
V ⊂R

n with vertex in the origin of coordinates:

∫

V
|x|j∣∣�g(x)

∣
∣p dx < ∞, (.)

where �g = ( ∂g
∂x

, . . . , ∂g
∂xn ) is the gradient of the function g . Then there exist two constants

M,K >  such that

∫

V
|x|j–p∣∣g(x) –M

∣
∣p dx < K

∫

V
|x|j∣∣�g(x)

∣
∣p dx, (.)

where the constant K does not depend on the function g . If, in addition, g() =  thenM = .

Remark . The previous lemma, which was proved by Kondrat’ev and Oleinik in [],
holds also if we replace (.) with the following inequality:

∫

VR \VR

|x|j–p∣∣g(x) –M
∣
∣p dx < K

∫

VR \VR

|x|j∣∣�g(x)
∣
∣p dx, (.)

with  < R < R, where VR, R > , denotes the intersection between the cone V and the
open ball of center in the origin and radius R.
This result can be deduced by the proof of Lemma ., with slight modifications. We

point out that in this proof it is also well rendered that the constant K does not depend on
R and R.
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Remark . As evidenced in many works about different variants of Hardy or Caffarelli-
Kohn-Nirenberg type inequalities (see for instance [, –]), there are always very im-
portant restrictions on the dimension of the space n, the order of ‘singularity’ j and the
order of the integral norm p.

4 Dirichlet problem for second order elliptic equations
In this section we consider, for m = , the homogeneous equation (.) in the polyhedral
angle Rn

l ,  ≤ l ≤ n – , with the homogeneous Dirichlet boundary condition, namely

⎧
⎨

⎩

∑n
i,j=

∂
∂xj

(aij(x) ∂u
∂xi

) =  in R
n
l ,

u|∂Rn
l
= .

(.)

Let us observe that by Definition . it follows that every generalized solution is such
that

∫

R
n
l

E(u)dx < ∞. (.)

Now we prove our first uniqueness result.

Theorem . Let n > . Assume that (.) is satisfied, with m = . If u is a generalized
solution of problem (.), then u≡  in R

n
l .

Proof Let �(s) be an auxiliary function in C∞
 ([,∞[) defined by

�(s)≡

⎧
⎪⎪⎨

⎪⎪⎩

 ≤ s ≤ ,

θ (s)  ≤ s≤ ,

 s≥ ,

(.)

with ≤ θ (s) ≤ , and such that there exists a positive constant K such that

∣
∣�′(s)

∣
∣ ≤ K�(s). (.)

We note that in order to obtain a cut-off function �(s) of the above mentioned type one
can consider a classical mollifier and modify it suitably near to s =  and s = .
Set, for any R > ,

�R(x) = �

( |x|
R

)

. (.)

Note that the function �R is such that, for any j = , . . . ,n, one has

�R,j(x) = �′
( |x|

R

)

· xj
R|x| . (.)

Let us now consider the function

v(x) = u(x) · �R(x).
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Clearly, by definition of �R and as a consequence of our boundary condition, one has
v(x) ∈W ,

 (QR). Thus, substituting this function in the integral identity (.), we get

∫

QR

n∑

i,j=

aij(x)u,iu,j�R(x)dx +
∫

QR\QR

n∑

i,j=

aij(x)u,iu�R,j(x)dx = .

Hence, by (.) we have

∫

QR

Ea
 (u) · �R(x)dx =

∣
∣
∣
∣

∫

QR\QR

n∑

i,j=

aij(x)u,iu�′
( |x|

R

)

· xj
R|x| dx

∣
∣
∣
∣.

Recalling that for any ε >  one has

ab ≤ ε · a


+
b

ε
, a,b ≥ , (.)

in view of the boundedness of the coefficients and of (.), one gets

∫

QR

Ea
 (u) · �R(x)dx

≤ ε


KK

∫

QR\QR

E(u) · �R dx +
K

ε

∫

QR\QR

u

|x| dx,

whereK is the constant in (.) andK = K(n,λ). Thus, taking into account the ellipticity
of the coefficients, we obtain

∫

QR

E(u) · �R(x)dx

≤ ε


KK

∫

QR\QR

E(u) · �R dx +
K

ε

∫

QR\QR

u

|x| dx, (.)

with K = K(n,λ,λ).
Therefore, if we choose ε = 

KK
and we apply the generalized Hardy inequality (.)

(with p =  and j = ) to the second term in the right-hand side of (.), we deduce that

∫

QR

E(u) · �R(x)dx≤ K

∫

QR\QR

E(u)dx,

where the constant K does not depend on the radius R and on the function u (see Re-
mark .).
Now, observe that clearly for any P >  there exists R > P such that QP ⊂ QR and there-

fore, in view of the definition of �R, by the former inequality we obtain

∫

QP

E(u)dx ≤ K

∫

QR\QR

E(u)dx. (.)
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Condition (.) being satisfied, the right-hand side of (.) tends to zero when R −→ ∞.
Now, since the left-hand side of (.) is independent of the radius R, we have, for any P > ,

∫

QP

E(u)dx =
∫

QP

n∑

i=

u,iu,i dx = .

This means that the function u(x) is a constant and, according to the boundary condition
in (.), this constant is zero. This concludes our proof. �

Remark . Note that our proof do not provide any uniqueness result for n = , since in
this case the generalized Hardy inequality in Lemma . does not apply, as a consequence
of our choice of p and j.

5 Dirichlet problem for higher order elliptic equations
Here, we consider the following homogeneous equation of order m with homogeneous
Dirichlet boundary conditions in the polyhedral angle Rn

l , l ∈ {, . . . ,n – }:
⎧
⎨

⎩

∑
|α|=mDα(aα(x)Dαu(x)) =  in R

n
l ,

∂ ju(x)
∂–→ν j |∂Rn

l
= , j = , . . . ,m – .

(.)

Note that, again, in view of Definition . one finds that every generalized solution of
problem (.) is such that

∫

R
n
l

Em(u)dx < ∞. (.)

Theorem . Let n > m or n = k + , with k ∈ N. Assume that (.) is satisfied. If u is a
generalized solution of problem (.), then u(x) ≡  in R

n
l .

Proof Let us use again the function �R introduced in the proof of Theorem ..
It is easy to check that

Dα�R(x) =
|α|∑

i=

�(i)
( |x|

R

)

· P|α|(x)
Ri|x|(|α|–i) ,

where �(i) denotes the derivative of order i of the function � and P|α|(x) is a polynomial
of order |α|.
Moreover, if we assume that there exist some positive constants Ki, such that

∣
∣�(i)(s)

∣
∣ ≤ Ki�(s), i = , . . . , |α|,

then, for R < |x| < R, one has

∣
∣Dα�R(x)

∣
∣ ≤ Kα�R(x)

|x||α| , (.)

where the constant Kα depends only on α.
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Note that function v(x) = u(x) · �R(x) ∈ Wm,
 (QR), thus, substituting it in the integral

identity (.), we deduce

∫

QR

Ea
m(u,u�R)dx =

∫

QR

Ea
m(u)�R dx

+
∫

QR\QR

∑

|α|=m
aα(x)Dαu

[ ∑

γ+ι=α,ι�=

(|γ | + |ι|)!
γ !ι!

DγuDι�R

]

dx = .

Therefore
∫

QR

Ea
m(u)�R dx =

∣
∣
∣
∣

∫

QR\QR

∑

|α|=m
aα(x)Dαu

[ ∑

γ+ι=α,ι�=

(|γ | + |ι|)!
γ !ι!

DγuDι�R

]

dx
∣
∣
∣
∣.

From (.) and (.), arguing as in the proof of Theorem ., we deduce that

∫

QR

Em(u)�R(x)dx≤
∑

|α|=m
K ′

αεα

∫

QR\QR

Em(u)�R(x)dx

+
∑

|α|=m

K ′′
α

εα

∫

QR\QR

[ m–∑

|γ |=
E|γ |(u) · 

|x|(m–|γ |)

]

dx, (.)

with K ′
α = K ′

α(n,α,λ,λ,Kα) and K ′′
α = K ′′

α (n,α,λ,λ).
Now, we apply repeatedly the Hardy inequality (.) to the single summands of the sec-

ond term in the right-hand side of (.) until the order of the partial derivatives achievesm.
Thus, after an appropriate selection of εα , we get

∫

QR

Em(u)�R(x)dx≤ K̃
∫

QR\QR

Em(u)dx,

where the constant K̃ is independent of the radius R and of the function u.
Finally, following the same argument used in Theorem ., for any P >  we find R > P

such that QP ⊂QR and therefore, taking into account the definition of �R, we obtain

∫

QP

Em(u)dx ≤ K̃
∫

QR\QR

Em(u)dx. (.)

In view of condition (.), the right-hand side of (.) goes to zero when R −→ ∞, and,
since the left-hand side of (.) is independent of R, we have, for any P > ,

∫

QP

Em(u)dx =
∫

QP

[ ∑

|α|=m

m!
α!

DαuDαu
]

dx = .

Therefore, the partial derivatives of any order of the solution are equal to zero, thus, as a
consequence of the boundary conditions in (.), we deduce that u(x) ≡  in R

n
l . �

Remark . Clearly also in this case the repeated application of the Hardy inequality
yields the restrictions n > m or n = k + , k ∈ N, on the space dimension.
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