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Abstract
In this paper, we study the following biharmonic equations with mixed nonlinearity:
�2u –�u + V(x)u = f (x,u) + λξ (x)|u|p–2u, x ∈R

N , u ∈ H2(RN), where V ∈ C(RN),

ξ ∈ L
2

2–p (RN), 1 ≤ p < 2, and λ > 0 is a parameter. The existence of multiple solutions is
obtained via variational methods. Some recent results are improved and extended.
MSC: 35J35; 35J60

Keywords: biharmonic equations; mixed nonlinearity; variational methods

1 Introduction andmain result
This paper is concerned with the following biharmonic equations:

{
�u –�u +V (x)u = f (x,u) + λξ (x)|u|p–u, x ∈R

N ,
u ∈H(RN ),

()

where � := �(�) is the biharmonic operator, V ∈ C(RN ), f ∈ C(RN ×R), ξ ∈ L


–p (RN ),
λ > , and  ≤ p < . There are many results for biharmonic equations, but most of them
are on bounded domains; see [–]. In addition, biharmonic equations on unbounded
domains also have captured a lot of interest; see [–] and the references therein. Many
of these papers are devoted to the study of the existence and multiplicity of solutions for
problem (). In [, , , ], the authors considered the superlinear case; one considered the
sublinear case in [–]. However, there are notmanyworks focused on the asymptotically
linear case. Motivated by the above facts, in the present paper, we shall study problem
() with mixed nonlinearity, that is, a combination of superlinear and sublinear terms,
or asymptotically linear and sublinear terms. So, the aim of the present paper is to unify
and generalize the results of the above papers to a more general case. To the best of our
knowledge, there have been no works concerning this case up to now, hence this is an
interesting and new research problem. For related results, we refer the readers to [–]
and the references therein.
More precisely, we make the following assumptions:

(V) V ∈ C(RN ,R) and infRN V (x) > , and there exists a constant l >  such that

lim|y|→∞ meas
({
x ∈R

N : |x – y| ≤ l,V (x) ≤ M
})

= , ∀M > ,

where meas(·) denotes the Lebesgue measure in R
N ;
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(F) f (x,u) ∈ C(RN ×R,R), such that f (x,u)≡  for all u <  and x ∈R
N . Moreover, there

exists b ∈ L∞(RN ,R+) with |b|∞ < 
γ 

 γ 

such that

lim
|u|→+

f (x,u)
u

= b(x) uniformly in x ∈R
N

and

f (x,u)
uk

≥ b(x) for all u >  and x ∈R
N ,

where γ, γ are defined in ();
(F) there exists q ∈ L∞(RN ,R+) with |q|∞ > 

γ 
 γ 


such that

lim|u|→∞
f (x,u)
uk

= q(x) uniformly in x ∈R
N ;

(F) there exist two constants θ , d satisfying θ >  and  ≤ d < θ–
θγ 

 γ 

such that

F(x,u) –

θ
f (x,u)u≤ du for all u >  and x ∈R

N ,

where F(x,u) =
∫ u
 f (x, s)ds.

Before stating our result, we denote ξ± = max{±ξ , }. The main result of this paper is
the following theorem.

Theorem . Suppose that (V), (F)-(F) are satisfied. ξ ∈ L


–p (RN ) \ {} with ξ+ 	≡ . In
addition, for any real number k ≥ :

(I) If k =  and μ∗ <  with

μ∗ = inf

{∫
RN

(|�u| + |∇u| +V (x)|u|)dx ∣∣∣ u ∈ H(
R

N)
,
∫
RN

q(x)u dx = 
}
, ()

then there exists � >  such that, for every  < λ < �, problem () has at least two
solutions;

(I) If k > , then there exists � >  such that, for every  < λ <�, problem () has at least
two solutions.

Remark . It is easy to check that f (x,u) is asymptotically linear at infinity in uwhen k = 
and f (x,u) is superlinear at infinity in u when k > . Together with λ >  and  ≤ q < , we
see easily that our nonlinearity is amore generalmixed nonlinearity, that is, a combination
of sublinear, superlinear, and asymptotically linear terms. Therefore, our result unifies and
sharply improves some recent results.

2 Variational setting and proof of themain result
Now we establish the variational setting for our problem (). Let

E =
{
u ∈H(

R
N)

:
∫
RN

(|�u| + |∇u| +V (x)|u|)dx < +∞
}
,
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equipped with the inner product

(u, v) =
∫
RN

(
�u�v +∇u · ∇v +V (x)uv

)
dx, u, v ∈ E,

and the norm

‖u‖ =
(∫

RN

(|�u| + |∇u| +V (x)|u|)dx) 

, u ∈ E.

Lemma . ([]) Under assumptions (V), the embedding E ↪→ Ls(RN ) is compact for any
s ∈ [, ∗), where ∗ = N

N– if N ≥ , ∗ = ∞ if N < .

Clearly, E is continuously embedded intoH(RN ) and fromLemma ., there exist γs > 
and γ >  such that

‖u‖s ≤ γs‖u‖H(RN ) ≤ γsγ‖u‖, ∀u ∈ E, ≤ s < ∗. ()

Now, on E we define the following functional:

	(u) =



∫
RN

(|�u| + |∇u| +V (x)u
)
dx –

∫
RN

F(x,u)dx –
λ

p

∫
RN

ξ (x)|u|p dx. ()

By a standard argument, it is easy to verify that 	 ∈ C(E,R) and

〈
	′(u), v

〉
=

∫
RN

[
�u�v +∇u · ∇v +V (x)uv

]
dx

–
∫
RN

f (x,u)vdx – λ

∫
RN

ξ (x)|u|p–uvdx ()

for all u, v ∈ E.

Lemma . μ∗ > , and this is achieved by some φ ∈ H(RN ) with
∫
RN qφ

 dx = , where
μ∗ is given in ().

Proof By Lemma . and standard arguments, it is easy to prove this lemma, so we omit
the proof here. �

Next, we give a useful theorem. It is the variant version of the mountain pass theorem,
which allows us to find a (C)c sequence.

Theorem . ([]) Let E be a real Banach space, with dual space E∗, and suppose that
	 ∈ C(E,R) satisfies

max
{
	(),	(e)

} ≤ μ < η ≤ inf‖u‖=ρ
	(u),

for some μ < η, ρ >  and e ∈ E with ‖e‖ > ρ . Let ĉ≥ η be characterized by

ĉ = inf
β∈�

max
≤τ≤

	
(
β(τ )

)
,
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where � = {β ∈ C([, ],E) : β() = ,β() = e} is the set of continuous paths joining  and e,
then there exists a sequence {un} ⊂ E such that

	(un) → ĉ≥ η and
(
 + ‖un‖

)∥∥	′(un)
∥∥
E∗ →  as n → ∞.

Lemma . For any real number k ≥ , assume that (F) and (F) are satisfied, and ξ ∈
L


–p (RN ) \ {} with ξ+ 	≡ . Then there exists � >  such that, for every λ ∈ (,�), there

exist two positive constants ρ , η such that 	(u)|‖u‖=ρ ≥ η > .

Proof For any ε > , it follows from the conditions (F) and (F) that there exist Cε >  and
max{,k} < r < ∗ such that

F(x,u)≤ |b|∞ + ε


|u| + Cε

r
|u|r , for all u ∈ E. ()

Thus, from (), (), and the Sobolev inequality, we have, for all u ∈ E,

∫
RN

F(x,u)dx≤ |b|∞ + ε



∫
RN

u dx +
Cε

r

∫
RN

|u|r dx

≤ (|b|∞ + ε)γ 
 γ 




‖u‖ + Cεγ
r
r γ

r


r
‖u‖r ,

which implies that

	(u) =


‖u‖ –

∫
RN

F(x,u)dx –
λ

p

∫
RN

ξ (x)|u|p dx

≥ 

‖u‖ – (|b|∞ + ε)γ 

 γ 



‖u‖ – Cεγ

r
r γ

r


r
‖u‖r – λγ

p
 γ

p


p
‖ξ‖ 

–p
‖u‖p

= ‖u‖p
[


(
 –

(|b|∞ + ε
)
γ 
 γ 


)‖u‖–p – Cεγ

r
r γ

r


r
‖u‖r–p – λγ

p
 γ

p


p
‖ξ‖ 

–p

]
. ()

Take ε = 
γ 

 γ 

– |b|∞ and define

g(t) =


t–p –

Cεγ
r
r γ

r


r
tt–p, for t ≥ .

It is easy to prove that there exists ρ >  such that

max
t≥

g(t) = g(ρ) =
r – 

(r – p)

[
( – p)r

Cεγ r
r γ

r
 (r – p)

] –p
r–

.

Then it follows from () that there exists � >  such that, for every λ ∈ (,�), there
exists η >  such that 	(u)|‖u‖=ρ ≥ η. �

Lemma . For any real number k ≥ , assume that (F), (F) are satisfied, and ξ ∈
L


–p (RN ) \ {} with ξ+ 	≡ . Let ρ,� >  be as in Lemma .. Then we have the following

results:
(i) If k =  and μ∗ < , then there exists e ∈ E with ‖e‖ > ρ such that 	(e) <  for all

λ ∈ (,�);
(ii) if k > , then there exists e ∈ E with ‖e‖ > ρ such that 	(e) <  for all λ ∈ (,�).
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Proof (i) In the case k = , since μ∗ < , we can choose a nonnegative function ϕ ∈ E with

∫
RN

q(x)ϕ dx =  such that
∫
RN

(|�ϕ| + |∇ϕ| +V (x)|ϕ|)dx < .

Therefore, from (F) and Fatou’s lemma, we have

lim
t→+∞

	(tϕ)
t

=


‖ϕ‖ – lim

t→+∞

∫
RN

F(x, tϕ)
tϕ ϕ dx – lim

t→+∞
λ

pt–p

∫
RN

ξ (x)|ϕ|p dx

≤ 

‖ϕ‖ – 



∫
RN

q(x)ϕ dx =


(‖ϕ‖ – 

)
< .

So, if 	(tϕ)→ –∞ as t → +∞, then there exists e ∈ E with ‖e‖ > ρ such that 	(e) < .
(ii) In the case k > , since q ∈ L∞(RN ,R+) with q+ 	≡ , we can choose a nonnegative

function ω ∈ E such that
∫
RN q(x)ωk+ dx > . Thus, from (F) and Fatou’s lemma, we have

lim
t→+∞

	(tω)
tk+

= lim
t→+∞

‖ω‖
tk–

– lim
t→+∞

∫
RN

F(x, tω)
tk+ωk+ ω

k+ dx

– lim
t→+∞

λ

ptk+–p

∫
RN

ξ (x)|ω|p dx

≤ –


k + 

∫
RN

q(x)ωk+ dx < .

So, if 	(tω) → –∞ as t → +∞, then there exists e ∈ E with ‖e‖ > ρ such that 	(e) < .
This completes the proof. �

Next, we define

α = inf
β∈�

max
≤t≤

	
(
β(t)

)
,

where � = {β ∈ C([, ],E) : β() = ,β() = e}. Then by Theorem . and Lemmas .
and ., there exists a sequence {un} ⊂ E such that

	(un) → α >  and
(
 + ‖un‖

)∥∥	′(un)
∥∥
E∗ →  as n→ ∞. ()

Lemma . For any real number k ≥ , assume that (V) and (F)-(F) are satisfied, and
ξ ∈ L


–p (RN ) \ {} with ξ+ 	≡ . Let � >  be as in Lemma .. Then {un} defined by () is

bounded in E for all λ ∈ (,�).

Proof For n large enough, from (F), (), the Hölder inequality, and Lemma ., we have

α +  ≥ 	(un) –

θ

〈
	′(un),un

〉
=

(


–

θ

)
‖un‖ –

∫
RN

[
F(x,un) –


θ
f (x,un)un

]
dx

– λ

(

p
–

θ

)∫
RN

ξ (x)|un|p dx

≥ θ – 
θ

‖un‖ – d
∫
RN

un dx –
λ(θ – p)

pθ
‖ξ‖ 

–p
‖un‖p
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≥ θ – 
θ

‖un‖ – dγ 
 γ 

 ‖un‖ – λ(θ – p)γ p
 γ

p


pθ
‖ξ‖ 

–p
‖un‖p

>
(

θ – 
θ

– dγ 
 γ 



)
‖un‖ – λ(θ – p)γ p

 γ
p


pθ
‖ξ‖ 

–p
‖un‖p,

which implies that {un} is bounded in E since ≤ p < . �

Lemma . For any real number k ≥ , assume that (V) and (F)-(F) are satisfied, and
ξ ∈ L


–p (RN ) \ {} with ξ+ 	≡ . Let � >  be as in Lemma .. Then for every λ ∈ (,�),

there exists u ∈ E such that

	(u) = inf
{
	(u) : u ∈ B̄ρ

}
< 

and u is a nontrivial solution of problem ().

Proof Since ξ ∈ L


–p (RN ) \ {} with ξ+ 	≡ , we can choose a function φ ∈ E such that

∫
RN

ξ (x)|φ|p dx > . ()

By (), for t > , we have

	(tφ) =
t


‖φ‖ –

∫
RN

F(x, tφ)dx –
λtp

p

∫
RN

ξ (x)|φ|p dx

≤ t


‖φ‖ – λtp

p

∫
RN

ξ (x)|φ|p dx, for t >  small enough.

Hence, θ := inf{	(u) : u ∈ B̄ρ} < . By Ekeland’s variational principle, there exists a min-
imizing sequence {un} ⊂ B̄ρ such that 	(un) → θ and 	′(un) →  as n → ∞. Hence,
Lemma . implies that there exists u ∈ E such that 	′(u) =  and 	(u) = θ < . �

Proof of Theorem . From Lemmas . and ., there exists a constant ũ ∈ E such that,
up to a subsequence,

un ⇀ ũ in E, un → ũ in Ls
(
R

N)
for s ∈ [, ∗).

By using a standard procedure, we can prove that un → ũ in E. Moreover,	(ũ) = α >  and
ũ is another nontrivial solution of problem (). Therefore, combining with Lemma .,
we can prove that problem () has at least two nontrivial solutions u, ũ ∈ E satisfying
	(u) <  and 	(ũ) > . �
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