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Abstract
We consider a class of particular (p, 2)-Laplacian Dirichlet problems with a right-hand
side nonlinearity which exhibits an asymmetric growth at +∞ and –∞. Namely, it is
linear at –∞ and superlinear at +∞. However, it need not satisfy the
Ambrosetti-Rabinowitz condition on the positive semi-axis. Some existence results for
a nontrivial solution are established by the mountain pass theorem and a variant
version of the mountain pass theorem in the general case 2 < p < N. Similar results are
also established by combining the mountain pass theorem and a variant version of
the mountain pass theorem with the Moser-Trudinger inequality in the case of p = N.
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1 Introduction
Let � be a bounded domain in R

N (N > ) with smooth boundary ∂�. We consider the
following quasilinear elliptic boundary problem:

⎧
⎨

⎩

–�pu(x) –μ�u = a(x)|u|s–u + f (x,u) in �,

u =  on ∂�,
(.)

where  < p < ∞ and  < s < p, �p denotes the p-Laplacian operator defined by �pu =
div(|∇u|p–∇u), μ >  is a real parameter, a(x) ∈ L∞(�) and f (x, t) ∈ C(� ×R).
It is known that the nontrivial solutions of problem (.) are equivalent to the corre-

sponding nonzero critical points of the C-energy functional

I(u) =

p

∫

�

|∇u|p dx + μ



∫

�

|∇u| dx – 
s

∫

�

a(x)|u|s dx –
∫

�

F(x,u)dx (.)

for all u ∈W ,p
 (�), where F(x, t) =

∫ t
 f (x, s)ds.

For the case of p > , a(x)≡  and μ > , there has been an increasing interest in looking
for the existence of solutions of (.). Using the following conditions,

μm < f ′(x, ) < μm+, F(x, t) <
λ

p
|t|p +C, x ∈ �,

where m ≥  and C is a constant, the authors in [, ] prove that (.) has at least two
nontrivial solutions by the three critical point theorems. Here and in the sequel,  < μ <
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μ < · · · denote the eigenvalues of –� in H
(�), and λ is the first eigenvalue of –�p in

W ,p
 (�) (see []). For Eq. (.) with the right-hand side having p-linear growth at infinity,

i.e., lim|t|→∞ f (x,t)
|t|p–t = λ /∈ σ (–�p), the spectrum of –�p inW ,p

 (�), the papers [, ] get the
existence of a nontrivial solution. In [], the author extends the results in [, ] under the
general asymptotically linear condition.
The main purpose of this paper is to establish existence results of a nontrivial solution

for problem (.) with  < p ≤ N when the nonlinearity term f (x, ·) exhibits an asymmetric
behavior as t ∈R approaches +∞ and –∞. More precisely, we assume that for a.e. x ∈ �,
f (x, ·) grows superlinear at +∞, while at –∞ it has a linear growth. In case of  < p < N ,
μ =  and a(x) ≡ , equations with nonlinearities which are superlinear in one direction
and linear in the other were investigated by Arcoya and Villegas [], de Figueiredo and Ruf
[], Perera []. All threeworks express the superlinear growth at +∞ using theAmbrosetti-
Rabinowitz condition ((AR)-condition, for short). Recall that a function f :� ×R →R is
said to satisfy the (AR)-condition in the positive direction if there exist μ > p and M > 
such that

 < μF(x, t)≤ tf (x, t) for all t ≥ M and a.e. x ∈ �,

where F(x, t) =
∫ t
 f (x, s)ds. Since Ambrosetti and Rabinowitz proposed themountain pass

theorem in their celebrated paper [], critical point theory has become one of the main
tools for finding solutions to elliptic equations of variational type. When we apply the
mountain pass theorem, the (AR)-condition usually plays an important role in verifying
that the functional I has a ‘mountain pass’ geometry and showing that a related (PS)c
sequence is bounded.
By simple calculation, it is easy to see that the previous one side (AR)-condition im-

plies that limt→+∞ F(x,t)
tp = +∞. That is, f (x, t) must be superlinear with respect to |t|p–t at

positive infinity. Recently, Motreanu et al. [], Papageorgiou and Papageorgiou [] and
Papageorgiou and Smyrlis [] studied asymmetric problem (.) with nonlinearity f not
satisfying the (AR)-condition on the positive semi-axis when μ =  and a(x) ≡ . Never-
theless, all of the above-mentionedworks involve the nonlinear term f (x,u) of a subcritical
(polynomial) growth, say,
(SCP): there exist positive constants c and c and q ∈ (p – ,p∗ – ) such that

∣
∣f (x, t)

∣
∣ ≤ c + c|t|q for all t ∈R and x ∈ �,

where p∗ =Np/(N – p) denotes the critical Sobolev exponent. One of the main reasons to
assume this condition (SCP) is that they can use the Sobolev compact embeddingW ,p

 ↪→
Lq(�),  ≤ q < p∗.
In this paper, we always assume that μ =  in (.). Under the motivation of Lam and

Lu [], our first main results will be to study problem (.) in the improved subcritical
polynomial growth

(SCPI): lim
t→∞

f (x, t)
tp∗– =  uniformly on x ∈ �,

which is much weaker than (SCP). Note that in this case, we do not have the Sobolev com-
pact embedding anymore. Our work again is to study asymmetric problem (.) without
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the (AR)-condition in the positive semi-axis. In fact, this condition was studied by Liu and
Wang in [] in the case of Laplacian (i.e., p = ) by the Nehari manifold approach. How-
ever, we will use the mountain pass theorem and a suitable version of the mountain pass
theorem to get the nontrivial solution to problem (.) in the general case  < p <N . Our
results are different from those in [–] and our proof of the compactness condition is
skillful.
Let us now state our results: Suppose that f (x, t) ∈ C(� ×R) and satisfies:

(H) limt→
f (x,t)
|t|p–t = f uniformly for a.e. x ∈ �, where f ∈ [, +∞);

(H) limt→–∞ f (x,t)
|t|p–t = l uniformly for a.e. x ∈ �, where l ∈ [, +∞];

(H) limt→+∞ f (x,t)
tp– = +∞ uniformly for a.e. x ∈ �;

(H) f (x,t)
|t|p–t is nonincreasing with respect to t ≤  for a.e. x ∈ �.

Let λ be the first eigenvalue of (–�p,W
,p
 (�)) and φ(x) >  for every x ∈ � be the λ

eigenfunction. Throughout this paper, we denote by | · |p the Lp(�) norm and the norm of
u inW ,p

 (�) will be defined by

‖u‖ =
(∫

�

|∇u|p dx
) 

p
.

Theorem . Let  < p < N and assume that f has the improved subcritical polynomial
growth on � (condition (SCPI)) and satisfies (H)-(H). If f < λ < l < ∞, then there exists
m =m(f, s, f ,N ,�) such that for all a(x) ∈ L∞(�) with |a|∞ <m, problem (.) has at least
a nontrivial solution if l is not any of the eigenvalues of –�p on W ,p

 (�).

Remark . In view of conditions (H) and (H), problem (.) is called asymmetric.
Hence, Theorem . is completely different from the results contained in [–].

Theorem . Let  < p < N and assume that f has the improved subcritical polynomial
growth on � (condition (SCPI)) and satisfies (H)-(H). If f < λ = l and limt→–∞[f (x, t)t –
pF(x, t)] = +∞ uniformly for a.e. x ∈ �, then there exists m =m(f, s, f ,N ,�) such that for
all a(x) ∈ L∞(�) and a(x) < with |a|∞ <m, problem (.) has at least a nontrivial solution.

Remark . When l = λ, problem (.) is called resonant at negative infinity. This case is
completely new. Here, we also give an example for f (x, t). It satisfies our conditions (H)-
(H) and (SCPI).

Example A Define

f (x, t) =

⎧
⎨

⎩

g(t)|t|p–t, t ≤ ,

g(t)|t|p–t + h(t), t > ,

where g(t) ∈ C(R), g() = ; g(t) ≥ , t ∈ R; h(t) ∈ C[, +∞); limt→+
h(t)
tp– = ;

limt→+∞ h(t)
tp∗– = ; limt→+∞ h(t)

tp– = +∞. Moreover, there exists t >  such that g(t) ≡ λ

for all |t| ≥ t.

Theorem . Let  < p < N and assume that f has the improved subcritical polynomial
growth on � (condition (SCPI)) and satisfies (H)-(H). If f < λ and l = +∞, then there

http://www.boundaryvalueproblems.com/content/2014/1/241
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exists m =m(f, s, f ,N ,�) such that for all a(x) ∈ L∞(�) with |a|∞ <m, problem (.) has
at least a nontrivial solution.

In case of p =N , we have p∗ = +∞. In this case, every polynomial growth is admitted, but
one knows easy examples that W ,n

 (�)� L∞(�). Hence, one is led to look for a function
g(s) :R→ R+ with maximal growth such that

sup
u∈W ,N

 ,‖u‖≤

∫

�

g(u)dx <∞.

It was shown by Trudinger [] and Moser [] that the maximal growth is of exponential
type. So, we must redefine the subcritical (exponential) growth in this case as follows.
(SCE): f has subcritical (exponential) growth on �, i.e., limt→∞ |f (x,t)|

exp(α|t| N
N– )

= 
uniformly on x ∈ � for all α > .

When p = N and f has the subcritical (exponential) growth (SCE), our work is still to
study asymmetric problem (.) without the (AR)-condition in the positive semi-axis. To
our knowledge, this case is completely new. Our results are as follows.

Theorem . Let p = N and assume that f has the subcritical exponential growth on
� (condition (SCE)) and satisfies (H)-(H). If f < λ < l < ∞, then there exists m =
m(f, s, f ,N ,�) such that for all a(x) ∈ L∞(�) with |a|∞ < m, problem (.) has at least
a nontrivial solution if l is not any of the eigenvalues of –�N on W ,N

 (�).

Remark . In view of conditions (H), (H) and (SCE), problem (.) is called asymmetric
subcritical exponential problem. Hence, Theorem . is completely new.

Theorem . Let p = N and assume that f has the subcritical exponential growth on �

(condition (SCE)) and satisfies (H)-(H). If f < λ = l and limt→–∞[f (x, t)t – NF(x, t)] =
+∞ uniformly for a.e. x ∈ �, then there exists m = m(f, s, f ,N ,�) such that for all
a(x) ∈ L∞(�) and a(x) <  with |a|∞ < m, problem (.) has at least one nontrivial solu-
tion.

Remark . When l = λ, problem (.) is called resonant at negative infinity. This case is
new and completely different from the results contained in [].

Theorem . Let p = N and assume that f has the subcritical exponential growth on
� (condition (SCE)) and satisfies (H)-(H). If f < λ and l = +∞, then there exists m =
m(f, s, f ,N ,�) such that for all a(x) ∈ L∞(�) with |a|∞ <m, problem (.) has at least one
nontrivial solution.

2 Preliminaries and some lemmas
Definition . Let (E,‖ · ‖E) be a real Banach space with its dual space (E∗,‖ · ‖E∗ ) and I ∈
C(E,R). For c ∈ R, we say that I satisfies the (PS)c condition if for any sequence {xn} ⊂ E
with

I(xn)→ c, DI(xn) →  in E∗,
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there is a subsequence {xnk } such that {xnk } converges strongly in E. Also, we say that I
satisfies the (C)c condition if for any sequence {xn} ⊂ E with

I(xn)→ c,
∥
∥DI(xn)

∥
∥
E∗

(
 + ‖xn‖E

) → ,

there is a subsequence {xnk } such that {xnk } converges strongly in E.

We have the following version of the mountain pass theorem (see []).

Proposition . Let E be a real Banach space and suppose that I ∈ C(E,R) satisfies the
condition

max
{
I(), I(u)

} ≤ α < β ≤ inf‖u‖=ρ
I(u)

for some α < β , ρ >  and u ∈ E with ‖u‖ > ρ . Let c≥ β be characterized by

c = inf
γ∈�

max
≤t≤

I
(
γ (t)

)
,

where � = {γ ∈ C([, ],E),γ () = ,γ () = u} is the set of continuous paths joining 
and u. Then there exists a sequence {un} ⊂ E such that

I(un) → c ≥ β and
(
 + ‖un‖

)∥
∥I ′(un)

∥
∥
E∗ →  as n→ ∞.

Lemma . Let  < p <N and φ >  be a λ-eigenfunction with ‖φ‖ =  and assume that
(H)-(H) and (SCPI) hold. If f < λ < l ≤ +∞, then there exists m =m(f, s, f ,N ,�) such
that for all a(x) ∈ L∞(�) with |a|∞ <m, we have:

(i) There exist ρ,α >  such that I(u) ≥ α for all u ∈W ,p
 (�) with ‖u‖ = ρ .

(ii) I(tφ) → –∞ as t → +∞.

Proof By (SCPI) and (H)-(H), if l ∈ (λ, +∞), for any ε > , there exist A = A(ε), B =
B(ε) such that for all (x, s) ∈ � ×R,

F(x, s)≤ 
p
(f + ε)|s|p +A|s|p∗ , (.)

F(x, s)≥ 
p
(l – ε)|s|p – B if l ∈ (λ, +∞). (.)

Choose ε >  such that (f + ε) < λ. By (.), the Poincaré inequality and the Sobolev
inequality, |u|p∗

p∗ ≤ K‖u‖p∗ ,

I(u) ≥ 
p

∫

�

|∇u|p dx – ‖a‖∞
s

∫

�

|u|s dx –
∫

�

F(x,u)dx

≥ 
p

∫

�

|∇u|p dx – ‖a‖∞
s

∫

�

|u|s dx – 
p

∫

�

[
(f + ε)|u|p +A|u|p∗]

dx

≥ 
p

(

 –
f + ε

λ

)

‖u‖p – ‖a‖∞Ks

s
‖u‖s –AKp∗‖u‖p∗

.
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Set

ρ =
(‖a‖∞(p – s)Ks

sAKp∗

) 
p∗–s

,

m =
(

λ – f – ε

pλ

) p∗–s
p∗–p

sK–s(AKp∗) s–p
p∗–p

[(
p – s
p∗ – p

) s–p
p∗–s

+
(

p – s
p∗ – p

) p∗–p
p∗–s ]

s–p∗
p∗–p

.

So, part (i) holds if we choose ‖u‖ = ρ >  and ‖a‖∞ <m.
On the other hand, if l ∈ (λ, +∞), take ε >  such that l – ε > λ. By (.), we have

I(tφ)≤ tp

p
‖φ‖p + t

∫

�

|∇φ| dx – ts

s

∫

�

a(x)(φ)s dx –
l – ε

p
|φ|pp + B|�|.

Since l – ε > λ and ‖φ‖ = , it is easy to see that

I(tφ) ≤ 
p

(

 –
l – ε

λ

)

tp + t
∫

�

|∇φ| dx – ts

s

∫

�

a(x)(φ)s dx + B|�|
→ –∞ as t → +∞,

and part (ii) is proved. �

Lemma . (see [, ]) Let u ∈ W ,N
 (�), then exp(|u| N

N– ) ∈ Lq(�) for all  ≤ q < ∞.
Moreover,

sup
u∈W ,N

 (�),‖u‖≤

∫

�

exp
(
α|u| N

N–
)
dx ≤ C(�) for α ≤ αN .

The inequality is optimal: for any growth exp(α|u| N
N– ) with α > αN , the corresponding

supremum is +∞.

Lemma . Let p = N and φ >  be a λ-eigenfunction with ‖φ‖ =  and assume that
(H)-(H) and (SCE) hold. If f < λ < l ≤ +∞, then there exists m = m(f, s, f ,N ,�) such
that for all a(x) ∈ L∞(�) with |a|∞ <m, we have:

(i) There exist ρ,α >  such that I(u) ≥ α for all u ∈W ,N
 (�) with ‖u‖ = ρ .

(ii) I(tφ) → –∞ as t → +∞.

Proof By (SCE) and (H)-(H), if l ∈ (λ, +∞), for any ε > , there exist A = A(ε), B =
B(ε), κ >  and q >N such that for all (x, s) ∈ � ×R,

F(x, s)≤ 
N
(f + ε)|s|N +A exp

(
κ|s| N

N–
)|s|q, (.)

F(x, s)≥ 
N
(l – ε)|s|N – B if l ∈ (λ, +∞). (.)

Choose ε >  such that (f + ε) < λ. By (.), the Holder inequality and the Moser-
Trudinger embedding inequality, we get

I(u) ≥ 
N

‖u‖N –
f + ε

N
|u|NN –

‖a‖∞
s

∫

�

|u|s dx –A

∫

�

exp
(
κ|u| N

N–
)|u|q dx

≥ 
N

(

 –
f + ε

λ

)

‖u‖N –
‖a‖∞
s

∫

�

|u|s dx

http://www.boundaryvalueproblems.com/content/2014/1/241
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–A

(∫

�

exp

(

κr‖u‖ N
N–

( |u|
‖u‖

) N
N–

)

dx
) 

r
(∫

�

|u|r′q dx
) 

r′

≥ 
N

(

 –
f + ε

λ

)

‖u‖N –
‖a‖∞Ks

s
‖u‖s –C‖u‖q,

where r >  sufficiently close to , ‖u‖ ≤ σ and κrσ
N

N– < αN . Set

ρ =
(‖a‖∞(N – s)Ks

sC

) 
q–s

,

m =
(

λ – f – ε

Nλ

) q–s
q–N

sK–s(C)
s–N
q–N

[(
N – s
q –N

) s–N
q–s

+
(
N – s
q –N

) q–N
q–s

] s–q
q–N

.

So, part (i) holds if we choose ‖u‖ = ρ >  and ‖a‖∞ <m.
On the other hand, if l ∈ (λ, +∞), taking ε >  such that l – ε > λ and using (.), we

have

I(tφ) ≤ 
N

(

 –
l – ε

λ

)

|t|N + t
∫

�

|∇φ| dx – ts

s

∫

�

a(x)(φ)s dx + B|�|
→ –∞ as t → +∞.

Thus part (ii) is proved. By exactly slight modification to the proof above, we can prove
(ii) if l = +∞. �

Lemma . For the functional I defined by (.), if un(x)≤  a.e. x ∈ �, n ∈N and

〈
I ′(un),un

〉 →  as n→ ∞,

then there exists a subsequence, still denoted by {un}, such that

I(tun) ≤  + tp

np
+

(
tp

p
–
ts

s

)∫

�

a(x)|un|s dx + I(un) for all t ≥  and n ∈N.

Proof By 〈I ′(un),un〉 →  as n → ∞, for a suitable subsequence, we may assume that

–

n
<

〈
I ′(un),un

〉
= ‖un‖p + ‖un‖∗ –

∫

�

a(x)|un|s dx –
∫

�

f
(
x,un(x)

)
un dx <


n

(.)

for all n, where ‖ · ‖∗ denotes the norm of H
(�).

We claim that for any ≤ t and n ∈ N,

I(tun) ≤
(


‖un‖∗ –


p
‖un‖∗

)

+
(
tp

p
–
ts

s

)∫

�

a(x)|un|s dx

+
tp

pn
+

∫

�

{

p
f
(
x,un(x)

)
un – F

(
x,un(x)

)
}

dx. (.)

Indeed, for any t ≥ , at fixed x ∈ � and n ∈ N, if we set

h(t) =

p
tpf (x,un)un(x) – F

(
x, tun(x)

)
,

http://www.boundaryvalueproblems.com/content/2014/1/241
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then

h′(t) = tp–f (x,un)un(x) – f (x, tun)un(x)

= tp–un(x)
{
f (x,un) – f

(
x, tun(x)

)
/tp–

}

=

⎧
⎨

⎩

≥  for  < t ≤ ,

≤  for t ≥ 
by (H),

hence

h(t) ≤ h() for all t ≥ .

Therefore,

I(tun) =

p
tp‖un‖p + 


t‖un‖∗ –

ts

s

∫

�

a(x)|un|s dx –
∫

�

F
(
x, tun(x)

)
dx

<


t‖un‖∗ +


p
tp

{

n
– ‖un‖∗ +

∫

�

f
(
x,un(x)

)
un(x)dx

}

–
ts

s

∫

�

a(x)|un|s dx –
∫

�

F
(
x, tun(x)

)
dx

≤
(


t‖un‖∗ –

tp

p
‖un‖∗

)

+
tp

pn
+

(
tp

p
–
ts

s

)∫

�

a(x)|un|s dx

+
∫

�

{

p
tpf

(
x,un(x)

)
un(x) – F

(
x, tun(x)

)
}

dx

≤
(


‖un‖∗ –


p
‖un‖∗

)

+
tp

pn
+

(
tp

p
–
ts

s

)∫

�

a(x)|un|s dx

+
∫

�

{

p
f
(
x,un(x)

)
un(x) – F

(
x,un(x)

)
}

dx,

and our claim (.) is proved.
On the other hand,

I(un) =

p
‖un‖p + 


‖un‖∗ –


s

∫

�

a(x)|un|s dx –
∫

�

F
(
x,un(x)

)
dx

≥ 

‖un‖∗ +


p

{

–

n
– ‖un‖∗ +

∫

�

f
(
x,un(x)

)
un(x)dx

}

–
∫

�

F
(
x,un(x)

)
dx,

that is,

∫

�

{

p
f
(
x,un(x)

)
un(x) – F

(
x,un(x)

)
}

dx ≤ 
pn

+

p
‖un‖∗ –



‖un‖∗ + I(un). (.)

Combining (.) and (.), we find that

I(tun) ≤  + tp

np
+

(
tp

p
–
ts

s

)∫

�

a(x)|un|s dx + I(un) for all t ≥  and n ∈N. (.)
�

http://www.boundaryvalueproblems.com/content/2014/1/241
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3 Proofs of themain results
Here, we only prove Theorems .-.. Others follow these results.

Proof of Theorem . By Lemma ., the geometry conditions of mountain pass theorem
hold. So, we only need to verify condition (PS). Let {un} ⊂ W ,p

 (�) be a (PS) sequence
such that for every n ∈N,

∣
∣
∣
∣

p

∫

�

|∇un|p dx + 


∫

�

|∇un| dx – ts

s

∫

�

a(x)|un|s dx –
∫

�

F(x,un)dx
∣
∣
∣
∣ ≤ c (.)

and
∣
∣
∣
∣

∫

�

|∇un|p–∇un∇vdx +
∫

�

∇un∇vdx

–
∫

�

a(x)|un|s–unv –
∫

�

f (x,un)vdx
∣
∣
∣
∣ ≤ εn‖v‖ (.)

for all v ∈ W ,p
 (�), where c >  is a positive constant and {εn} ⊂ R

+ is a sequence which
converges to zero.
Step . In order to prove that {un} has a convergent subsequence, we first show that it is a

bounded sequence. To do this, we argue by contradiction assuming that for a subsequence,
which we denote by {un}, we have

‖un‖ → +∞ as n→ ∞.

Without loss of generality, we can assume ‖un‖ >  for all n ∈ N and define zn = un
‖un‖ .

Obviously, ‖zn‖ = , ∀n ∈ N, and then it is possible to extract a subsequence (denoted
also by {zn}) such that

zn ⇀ z inW ,p
 (�), (.)

zn → z in Lp(�), (.)

zn(x)→ z(x) a.e. x ∈ �, (.)
∣
∣zn(x)

∣
∣ ≤ q(x) a.e. x ∈ �, (.)

where z ∈W ,p
 (�) and q ∈ Lp(�). Dividing both sides of (.) by ‖un‖p–, we obtain

∣
∣
∣
∣

∫

�

|∇zn|p–∇zn∇vdx + ‖un‖–p
∫

�

∇zn∇vdx

–
∫

�

a(x)|un|s–unv
‖un‖p– –

∫

�

f (x,un)
‖un‖p– vdx

∣
∣
∣
∣ ≤ εn

‖un‖p– ‖v‖

for all v ∈W ,p
 (�). Passing to the limit we deduce from (.) that

lim
n→∞

∫

�

f (x,un)
‖un‖p– vdx =

∫

�

|∇z|p–∇z∇vdx (.)

for all v ∈W ,p
 (�).

http://www.boundaryvalueproblems.com/content/2014/1/241
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Nowwe claim that z(x)≤  for a.e. x ∈ �. To verify this, let us observe that by choosing
v = z+ = max{z, } in (.), we have

lim
n→∞

∫

�+

f (x,un)
‖un‖p– z dx =

∫

�+
|∇z|p dx < +∞, (.)

where �+ = {x ∈ �|z(x) > }. On the other hand, from (H) and (H), it implies

f (x,un(x))
‖un‖p– z(x)≥

(
–l

∣
∣q(x)

∣
∣p–q(x) –K

)
z(x) a.e. x ∈ �

for some positive constant K > . Moreover, using limn→∞ un(x) = +∞ for a.e. x ∈ �+,
(.) and the superlinearity of f (see (H)), we also deduce

lim
n→∞

f (x,un(x))
‖un‖p– z(x) = lim

n→∞
f (x,un(x))

up–n
zn(x)p–z(x) = +∞ a.e. x ∈ �+.

Therefore, if |�+| > , by Fatou’s lemma, we will obtain that

lim
n→∞

∫

�+

f (x,un(x))
‖un‖p– z(x)dx = +∞,

which contradicts (.). Thus |�+| =  and the claim is proved.
Clearly, z(x) �≡ . By (H), there exists c >  such that |f (x,un)|

|un|p– ≤ c for a.e. x ∈ �. By using
the Lebesgue dominated convergence theorem in (.), we have

∫

�

|∇z|p–∇z∇vdx –
∫

�

l|z|p–zvdx =  (.)

for all v ∈ W ,p
 (�). This contradicts our assumption, i.e., l is not any of the eigenvalues of

–�p onW ,p
 (�).

Step . Now, we prove that {un} has a convergent subsequence. In fact, we can suppose
that

un ⇀ u inW ,p
 (�),

un → u in Lq(�),∀≤ q < p∗,

un(x)→ u(x) a.e. x ∈ �.

Now, since f has the subcritical growth on�, for every ε > , we can find a constant C(ε) >
 such that

f (x, s)≤ C(ε) + ε|s|p∗–, ∀(x, s) ∈ � ×R,

then
∣
∣
∣
∣

∫

�

f (x,un)(un – u)dx
∣
∣
∣
∣

≤ C(ε)
∫

�

|un – u|dx + ε

∫

�

|un – u||un|p∗– dx

http://www.boundaryvalueproblems.com/content/2014/1/241
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≤ C(ε)
∫

�

|un – u|dx + ε

(∫

�

(|un|p∗–) p∗
p∗– dx

) p∗–
p∗ (∫

�

|un – u|p∗
) 

p∗

≤ C(ε)
∫

�

|un – u|dx + εC(�).

Similarly, since un ⇀ u in W ,p
 (�),

∫

�
|un – u|dx → . Since ε >  is arbitrary, we can

conclude that
∫

�

(
f (x,un) – f (x,u)

)
(un – u)dx →  as n→ ∞. (.)

By (.), we have

〈
I ′(un) – I ′(u), (un – u)

〉 →  as n→ ∞. (.)

From (.) and (.), we obtain

∫

�

(|∇un|p–∇un – |∇u|p–∇u
)
(∇un –∇u) →  as n→ ∞.

Using an elementary inequality

–p|b – a|p ≤ 〈|b|p–b – |a|p–a,b – a
〉
, ∀a,b ∈R

N ,

we can imply that

∇un → ∇u in Lp(�).

So we have un → u inW ,p
 (�), which means that I satisfies (PS). �

Proof of Theorem . Since l = λ, obviously, Lemma .(i) holds. We only need to show
that Lemma .(ii) holds. Let u = tφ. Using condition (H), we have

I(tφ) =

p
tp

∫

�

|∇φ|p dx + t



∫

�

|∇φ| dx – ts

s

∫

�

a(x)|φ|s dx

–
∫

�

F(x, tφ)dx

=

p
tp

∫

�

|∇φ|p dx + t



∫

�

|∇φ| dx – ts

s

∫

�

a(x)|φ|s dx

– tpM
∫

�

|φ|p dx +C → –∞

as t → +∞, where M is a positive constant large enough. By Proposition ., there exists
a sequence {un} ⊂W ,p

 (�) such that

I(un) =

p
‖un‖p + 


‖un‖∗ –


s

∫

�

a(x)|un|s dx –
∫

�

F(x,un)dx = c + ◦(), (.)

(
 + ‖un‖

)∥
∥I ′(un)

∥
∥
W–,p


→  as n→ ∞. (.)

http://www.boundaryvalueproblems.com/content/2014/1/241
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Clearly, (.) implies that

〈
I ′(un),un

〉
= ‖un‖p + ‖un‖∗ –

∫

�

a(x)|un|s dx

–
∫

�

f
(
x,un(x)

)
un dx = ◦(). (.)

To complete our proof, we first need to verify that {un} is bounded inW ,p
 (�). Similar to

the proof of Theorem ., we have z(x)≤ , x ∈ �, z(x) �≡  and

∫

�

|∇z|p–∇z∇vdx –
∫

�

l|z|p–zvdx = 

for all v ∈ W ,p
 (�). By the maximum principle (see []), z <  is an eigenfunction of λ,

then |un(x)| → ∞ for a.e. x ∈ �. By our assumptions, we have

lim
n→∞

(
f
(
x,un(x)

)
un(x) – pF

(
x,un(x)

))
= +∞

uniformly in x ∈ �, which implies that

∫

�

(
f
(
x,un(x)

)
un(x) – pF

(
x,un(x)

))
dx → +∞ as n→ ∞. (.)

On the other hand, (.) implies that

pI(un) –
〈
I ′(un),un

〉 → pc as n→ ∞.

Thus
∫

�

(
f (x,un)un – pF(x,un)

)
dx → –∞ as n→ ∞,

which contradicts (.). Hence {un} is bounded. According to Step  of the proof of The-
orem ., we have un → u inW ,p

 (�), which means that I satisfies (C)c. �

Proof of Theorem . By Lemma . and Proposition ., (.)-(.) hold. We still can
prove that {un} is bounded in W ,p

 (�). Assume ‖un‖ → +∞ as n → ∞. Similar to the
proof of Theorem ., we have z(x)≤  andwhen z(x) < , un = zn‖un‖ → –∞ as n → ∞.
Let

sn =
p√pc
‖un‖ , wn = snun =

p√pcun
‖un‖ . (.)

Since {wn} is bounded inW ,p
 (�), it is possible to extract a subsequence (denoted also by

{wn}) such that

wn ⇀ w inW ,p
 (�),

wn → w in Lp(�),

http://www.boundaryvalueproblems.com/content/2014/1/241
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wn(x)→ w(x) a.e. x ∈ �,
∣
∣wn(x)

∣
∣ ≤ h(x) a.e. x ∈ �,

where w ∈W ,p
 (�) and h ∈ Lp(�).

If ‖un‖ → +∞ as n → ∞, then w(x) ≡ . In fact, letting �– = {x ∈ � : w(x) < } and
noticing l = +∞, from (H) we have that

f (x,un)
|un|p–un ≥ M uniformly for all x ∈ �–,

whereM is a large enough constant. Therefore, by (.) and (.), we have

pc = lim
n→∞‖wn‖p

= lim
n→∞

∫

�

f (x,un)
|un|p–un |wn|p dx

≥ lim
n→∞

∫

�–

f (x,un)
|un|p–un |wn|p dx

≥ M lim
n→∞

∫

�–
|w|p dx.

So w ≡  for a.e. x ∈ �. But, if w ≡ , then
∫

�
F(x,wn)dx → . Hence

I(wn) =

p
‖wn‖p + 


‖wn‖∗ + ◦()≥ c + ◦(). (.)

On the other hand, by ‖un‖ → ∞ as n → ∞, we have sn →  as n → ∞. From Lem-
ma . and (.), we get

I(wn) = I(snun)

≤  + (sn)p

np
+ I(un)

≤ c as n→ ∞.

Obviously, it contradicts (.). So {un} is bounded inW ,p
 (�). According to Step  of the

proof of Theorem ., we have un → u inW ,p
 (�), which means that I satisfies (Cc). �

Proof of Theorem . By Lemma ., the geometry conditions of mountain pass theorem
hold. So, we only need to verify condition (PS). Similar to Step  of the proof of The-
orem ., we easily know that the (PS) sequence {un} is bounded in W ,N

 (�). Next, we
prove that {un} has a convergent subsequence. Without loss of generality, suppose that

‖un‖ ≤ β ,

un ⇀ u inW ,N
 (�),

un → u in Lq(�),∀q ≥ ,

un(x)→ u(x) a.e. x ∈ �.

http://www.boundaryvalueproblems.com/content/2014/1/241
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Now, since f has the subcritical exponential growth (SCE) on �, we can find a constant
Cβ >  such that

∣
∣f (x, t)

∣
∣ ≤ Cβ exp

(
αN

β
N

N–
|t| N

N–

)

, ∀(x, t) ∈ � ×R.

Thus, by the Moser-Trudinger inequality (see Lemma .),

∣
∣
∣
∣

∫

�

f (x,un)(un – u)dx
∣
∣
∣
∣

≤ C
(∫

�

exp

(
αN

β
N

N–
|un| N

N–

)

dx
) 

 |un – u|

≤ C
(∫

�

exp

(
αN

β
N

N–
‖un‖ N

N–

∣
∣
∣
∣
un

‖un‖
∣
∣
∣
∣

N
N–

)

dx
) 

 |un – u|

≤ C|un – u| → .

Similar to the last proof of Theorem ., we have un → u inW ,N
 (�), which means that I

satisfies (PS). �
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